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The review presents some considerations on applications of statistics in 
analytical chemistry such as the statistics of the point, data analysis by 
regression, correlation and self correlation, dispersional analysis and ANOVA 
model, validation of statistic hypothesis. 

Statistics have undergone an enormous impact from microelectronics, in 
the form of microcomputers and hand-held calculators. These have brought 
difficult statistical procedures within the reach of all practising scientists. The 
availability of the tremendous computing power naturally makes it all the 
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more important that the scientist applies statistical methods rationally and 
correctly. 

1. THE STATISTICS OF THE POINT 

1.1 General considerations 

Any natural phenomenon and especially those that can be characterized by 
numerical dates are the result of one or more causes of an action. The 
experiment, this powerful tool of scientific research, becomes efficient 
through the skill of the scientist to replace such a complex system of causes 
with a simple system where only one causative circumstance is allowed to 
change in time. 

The chemist and the physicist have a certain advantage in their research. 
In their fields of science, experiment has reached a high level of perfection. 
However, even in these sciences, there are wide possibilities of applying 
research of a permanent statistical character. We could almost say that in all 
modern research statistical analysis is used. The elaborate methods aiming to 
eliminate the effect of circumstances that affect the conditions of 
measurement, although continually improving, have not reached and could 
not reach perfection. The scientist himself, and his entire apparatus of 
observation, constitutes a source of errors too; effects like changes in 
temperature, humidity, pressure and current, vibration, cannot be completely 
eliminated. 

Statistics has to deal principally with numeric dates, generated by multiple 
causes. Through making an experiment the scientist wants to solve a certain 
complex of causes, singling out one by removing all the causes excepting one, 
or more exactly concentrating his attention on studying one of them by 
reducing the action of the others as much as possible. Statistics, lacking this 
possibility, is obliged to analyze data which are influenced by other data and, 
finally, to determine which are the most important causes and which are the 
results of the observation that can be attributed to the influence of each cause 

We have to mention that any scientist has to take preventive measures. 

Thus, the quality of the data has to be examined before jumping to 

conclusions. This is valid for any kind of data and especially for numeric data 
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with previously verified quality. It is a waste of time trying to apply straight 
methods of calculation to process primary data that seem to be wrong. 

1.2 Localization and scattering indicators 

Having a measurement made at more than one time and the results of the 
measurement divided into two groups of study yields two sets of data. There 
are two typical fundamental values on which those two sets of data vary 
statistically: 

(1) varying in level, meaning that central value around which the other 
values gravitate; 

(2) varying in the amplitude of spreading observed values around the 
central value; 

The indicators of first type, of level or position of localization are called 
means. Indicators of second type are called measure scattering indicators. 

There are three forms of mean used more often: arithmetic mean, median 
and mode. Means like: geometric and harmonic are rarely used. 

Let the row of measurements be X h X 2 , . . . ,XN 

The arithmetic mean (or average) is the number M(X) given by: 

The median is the central value of the variable when its values are 
arranged in the order of their size or that value that has the property that 
smaller and bigger values appear in equal frequencies. We note X's median as 
m(X). 

Let:{l,...,N}{l,...,N} be the permutation which arranges the 
measurements in increasing order: 

m ( X ) = ( X , ( N / 2 ) + Χ π ( 1 + Ν / 2 ) ) / 2 else m ( X ) = Χ π ( ( Ν + 1 ) / 2 ) (1.3) 

(1.1) 

X. ( S , * X*(i+ . ) > i = l , N - l (1.2) 

Then, If Ν is even, 
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Observations: comparing between the average and the median, the easier 

operation is calculating the median; considering the fluctuations in selection, 

the average is more stable, but there are cases when the median is preferable. 

Mode is the value of a variable that corresponds to the maximum of an 

ideal curve that gives the best fit possible to the real repartition. It represents 

the most frequent value, which is in fact "in vogue". When the repartition of 

values has a complicated form, there can be more then one mode. Those 

repartitions are called multimodes. The average and the median are unique for 

even this kind of repartitions. The mode is usually noted with a w sign on 

top of the variable: 

X = | X j I f j > f j , j = 1 , N , f j f r e q u e n t s o f X j ' s a p p a r i t i o n j (] .4) 

the frequency of the appearance of X . 
An empiric relation has been established between those three measures, 

with a sufficient approximation for moderately lop-sided repartitions. It is 
valid for a large number of cases: 

X s M ( X ) - 3 · ( M ( X ) - m ( X ) ) (1.5) 

The geometric mean is the number given by 

( Ν I£lg( X i ) 
G ( X ) = Π χ ί = 1 0 O · 6 ) 

V i=l J 

The harmonic mean is the number H(X) given by 

1 1 N 1 
— = - Σ — ο · 7 ) 

H(X) N ^ X j 

It can be seen that when we calculate the average of a set of values of a given 

measurement it is extremely important what kind of measurement we use for 

the considered values. An example as illustration is finding the arithmetic 

average, geometric average, and harmonic average of a large amount of 

records for a thermometer, expressed in Celsius, Kelvin and Fahrenheit 111. 
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There are three indicators of spreading frequently used: the standard 

deviation, the average deviation, the quartilic deviation (the semiquartilic 

amplitude). 

The standard deviation (the square average ) is the number σ (Χ) given by: 

σ ( Χ ) = Α ^ Σ ( Χ . - Μ ( Χ ) ) 2 Ο· 8 ) 
• Ν w 

The value σ 2 (Χ) is called dispersion. 

The average deviation is the number am(X) given by: 

= (1.9) 
Ν tt 

In the case of symmetrical or moderately lop-sided repartitions, we have: 

4 
a m ( X ) s - a ( X ) (1.10) 

In the same way as the median, Q i ( X ) and Q3(X) are defined to be 

medians of the intervals [Xmin> m W ] a n d [m(X), Xmax]· Q l ( X ) is called 

inferior quartile and Qß(X) is called superior quartile. So Q i ( X ) , m(X), 

Q3(X) divide the area of values observed in four equal groups of frequencies. 

The measure Q(X) is given by: 

Q ( X ) j q ( X ) - Q ( X : ( U I ) 

and is called quartilic deviation. The quartilic deviation Q(X) has two 

advantages as compared to σ 2 (Χ) and am(X): it is easy to calculate and it has 

a clear and simple sense; however in other ways it has drawbacks: it has no 

simple algebraic proprieties and its behavior through fluctuations of selection 

is hard to forecast. That is why it is recommended only when other deviations 

are difficult or impossible to calculate. 

The absolute measures of spreading (independent f rom the measurement 

units) are obtained dividing a deviation measure by an average. An example 

413 



Vol. 18, No. 6, 1999 Some Applications of Statistics in Analytical Chemistry 

of this kind of measure would be σ(Χ)/Μ(Χ). Those proportions allow 
analogies between measurements of different natures. 

There is also the coefficient of variation, defined as: 

v(X) = 100σ(Χ)/Μ(Χ) (1.12) 

Corrado 111 proposed two measures of spreading which present some 
advantages as compared to the standard deviation: 

the coefficient of the average difference Δι(Χ): 

ι Ν k*j 
Δ, ( χ ) = — — y y i x . - x J - f . - f , (i.i3) 

and the coefficient of average difference with repetition Δι (X): 

Δ ' . ( χ ) = ^ Σ Σ I X k - x M - f j 0 . 1 4 ) 
Ν j=l k=l 

These coefficients are much more difficult to calculate than the deviations, 

but they have a theoretical attraction: they depend on the variables value 

difference and not on the spreading of the values around a random point, such 

as the arithmetic average or the median. They measure the intrinsic spreading 

of values, being independent of the origin of the calculation or of the level of 

repartition. In addition, if module function is placed instead of square 

function in the expression of Δ | ' (Χ) and it is noted with Δ2 ' (Χ) we have: 

Δ'2(Χ) = 2·σ2(Χ) (1.15) 

For the symmetrical or moderately oblique repartitions we have the 

relations: 

am(X) =0,8; Q(X) =0,67 (1.16) 

For the majority of the repartitions 99% of the values are situated in an 

interval of 6χσ(Χ) or 7,5xam(X) or 9xQ(X). 
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The oblique of a repartition is its distance from symmetry. It is of interest 
in the case when the measures are referring to the same size, being an 
indicator of the quality of the measurement. There are two valid numeric 
characterizations for oblique: 

= ( Q 3 - m ) - ( m - Q i ) 
Ü W " ( Q 3 - m ) + ( m - Q l ) ' 

and respectively, (117) 
M ( X ) - X 

ObPearson(X) : 

σ(Χ) 

The statistical parameters shown above are giving a qualitative measure of 
the experimental determination, and thus can serve /3,4/ as preliminary values 
in much more complex processing of the measured data or the experimental 
values. 

1.3 The propagation of errors in calculation 

For an analyst the propagation of errors is a very important matter because 
the errors made can affect the logical reasoning based on them. Let us 
consider a multiplicative expression like E(A,B)=constAB where a and Β 
are experimental sizes affected by errors; in this case the absolute error is 
obtained from the reasoning: 

8(E)=E(A+8A,B+5B)-E(A,B)=const(B5A+A5B+5A5B)=const(B6A+A5B) 

and the relative error is: 

ε,<Ε)=ε(Ε)/Ε=δΑ/Α+δΒ/Β=εΓ(Α)+εΓ(Β) (1.18) 

so the final relative error is the sum of the individual relative errors. 
Let us take the expression of a sum like: E(A,B)=A+B; the absolute error 

ε(Ε)=Ε(Α+δΑ,Β+δΒ)-Ε(Α,Β)=(Α+δΑ)+(Β+δΒ)-Α-Β=δΑ+δΒ=ε(Α)+ε(Β)( 1.19) 
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and so the final absolute error is the sum of the absolute individual 

errors. 

For example, if determinations are made of the molar concentration c m 

and the volume of a solution V with a maximum precision of 4 decimals, then 

the number of moles v=c M V can be obtained with a precision pr(v 

)=pr(cM)+pr(V)=10*4+10"4=210"4 , i.e., not more then three numbers, because 

there exists the possibility that the error will destroy the value of the 4th exact 

number /5/. Sometimes in error minimization it is useful to apply neuronal 

networks 161. 

1.4 The criteria for eliminating the doubtful measurements 

Consideration of the statement from the previous paragraph is required to 

make a better preliminary analysis of the measured values. Such an analysis, 

concluded by eliminating the questionable values (given by casual errors), 

can be considered a successful analysis 111. W e continue with the presentation 

of the elimination criteria of questionable data: /8/ 

"k" Criterion 

The X and σ parameters are determined without the value of X<j 

(considered doubtful); the k parameter is determined from: 

l x d - x l / Σ ( χ , - χ ) 2 

N - 2 
k = - where σ = (1,20) 

In the case of k > kP f rom the table then X j must not be contained in the 

final calculation of the average value. When k<kP , then we have no reason to 

consider it questionable for the given probability P % and η (observation 

number without the questionable value). 

Table 1.1. 

Value of parameter k as function of η determinations, n, 

and deviation probability 

η 95% 99% 99,73% η 95% 9 9 % 99,73% 

9 4.42 7.48 11.49 25 3.84 5.14 6.25 

10 4.31 6.99 10.26 30 3.80 5.00 5.95 

12 4.16 6.38 8.80 40 3.75 4.82 5.56 

15 4.03 5.88 7.68 50 3.73 4.70 5.34 

20 3.90 5.41 6.73 100 3.76 4.48 5.07 
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Chauvenet Criterion 
According to this criterion, any value from an array of η determinations 

has to be eliminated if its deviation from the mean has a value such as to 
make the probability of appearance, for all deviations equal to or greater than 
this one, not higher than n/2. 

We determine h (the precision modulus) and s (the deviation or the 
standard error of an observation): 

= α 2 Ι ) 

According to the relation (22) (hxj) and (xj/s) are determined. Those 

values of Xj can be admitted as non-questionable which verify at least one of 

the relations: 

(x, /s)<(x/s) t a b | e ; (x,h)<(xh) t a b l e (1.22) 

where (x/s)tab]e and (xh),abie are obtained from Table 1.2. 
It should be mentioned that if the value of Xj, which has the biggest 

deviation from the average, is not eliminated, then none of the other values of 
the variable X must be eliminated. 

"R" Criterion 
In the same way, for the application of R criterion we calculated: 

&F 
S = V η - ϊ ( ' - 2 3 ) 

For each observation we calculated: 

Χ; = X , - X and then R , = — (1.24) 
s 

In the case Ri^Rtable (Table 1.3), then the observation i is admitted in the 

final calculation of the medium value, not being a questionable value. 
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"r" Criterion 
This criterion is based on the statistical hypothesis of the r value normal 

distribution, given by: 

r = 
x i l 

I " - 1 
; where S = J — and X; = X ( - X , 

V n - 1 

a normality with (n-2) degrees of freedom. The questionable value Xj, with an 
r-value lower than rlab|C, is eliminated. Considering the same principle, the r 
admissible values, for a probability p=95%, are given. 

Table 1.2 
Value of (xh) and (x/s) for divert value of η 

η (xh) (x/s) η (xh) (x/s) η (xh) (x/s) η (xh) (x/s) 
5 1,16 1,68 9 1,35 1,92 18 1,56 2,20 26 1,66 2,35 

6 1,22 1,73 10 1,39 1,96 20 1,58 2,24 30 1,69 2,39 

7 1,27 1,79 12 1,44 2,03 22 1,61 2,28 40 1,77 2,50 

8 1,32 1,86 14 1,49 2,10 24 1,63 2,31 50 1,82 2,58 

Table 1.3 
Value of parameter R for η determinations and divert probability 

η 95% 99% η 95% 99% η 95% 99% η 95% 99% 

4 7,71 16,27 7 3,98 5,88 10 3,54 4,75 14 3,36 4,28 

5 5,08 9,00 8 3,77 5,33 11 3,48 4,58 16 3,32 4,17 

6 4,34 6,85 9 3,63 4,98 12 3,42 4,45 18 3,30 4,08 

Table 1.4 
Value of parameter r for η determinations and P=95% 

η 95% η 95% η 95% 

3 1,397 7 1,640 11 1,649 

4 1,559 8 1,644 21 1,649 

5 1,611 9 1,647 22 1,648 

6 1,731 10 1,648 40 1,648 
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"Q" Criterion 
This criterion, even simpler, is statistically correct, and gives better results 

than the previous did. The row of measurements is ordered, i.e., the 
permutation π:{1,...,Ν}-»{1,...,Ν} is found so that the order is: 

Χπ ( 0^Χπ ( ί + 1 ) , i = l , N - l 

We determined the value: 

Q i = — ; if Ql>Qp,table. Χπ(ΐ> is eliminated from the set 
π(Ν) — 

adjusting the indices in the row, and the procedure is repeated until Qi< 
QP ,abie Then we determined the value: 

Y — V ^ π(Ν) π(Ν-1) _ _ v . . . . 
Q n = — Γ ί QN>QP,table. Λ π ( Ν ) is eliminated from the 

π(Ν) — it(l) 

row, following the above procedure until Qn^Qp,table 

QP, tab le ' s a n admitted value of QK with the ρ probability, corresponding 

to the value X . as an admissible value. π (Κ.) 

Table 1.5 
Value of parameter Q for divert η value and divert probability 

η p=95% p=99% p=99,5% η p=95% p=99% p=99,5% 

3 0,941 0,988 0,994 11 0,392 0,502 0,542 

4 0,765 0,889 0,926 12 0,376 0,482 0,522 

5 0,642 0,780 0,821 13 0,361 0,465 0,503 

6 0,560 0,698 0,740 14 0,349 0,450 0,488 

7 0,507 0,637 0,680 15 0,338 0,438 0,475 

8 0,468 0,590 0,634 16 0,329 0,426 0,463 

9 0,437 0,555 0,598 18 0,313 0,407 0,442 

10 0,412 0,527 0,568 20 0,300 0,391 0,425 
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Table 1.6 
Value of parameter t for divert η value and divert probability 

η 95% 99% 99,5% η 95% 99% 99,5% η 95% 99% 99,5% 
3 6,31 31,82 63,66 10 1,86 2,90 3,36 17 1,75 2,60 2,95 
4 2,92 6,97 9,93 II 1,83 2,82 3,25 18 1,75 2,58 2,92 
5 2,35 4,54 5,84 12 1,81 2,76 3,17 19 1,74 2,57 2,90 
6 2,13 3,75 4,60 13 1,80 2,72 3,11 20 1,73 2,55 2,88 
7 2,02 3,37 4,03 14 1,78 2,68 3,06 30 1,70 2,47 2,76 
8 1,94 3,14 3,71 15 1,77 2,65 3,01 40 1,68 2,42 2,70 
9 1,90 3,00 3,50 16 1,76 2,62 2,98 60 1,67 2,39 2,66 

"t" Criterion 
This criterion is also called the Student criterion because it uses the t 

variable from the student distribution. We determine the mean of (n-1) from 
η values: 

M i ( X ) = ^ J- (1.25) 
n - 1 

that is, more exactly, the average of all the others, less Xj. We also 

determined the standard error of a measuring as the one from the example: 

n - 2 

Finally, we can determine the t, measure, corresponding to each i 

measurement: 

t : = ] — . ' (1.27) 

S, 
η 

n - 1 

If ti<ttable then the i measurement is accepted as being non-questionable. 

In conclusion, all these tests are efficient, and have been proven to give 

good results, but the best one is that which eliminates a questionable value 

with the highest probability: t criterion. Their use depends on the analyst's 
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choicee in function of the problem complexity which is considered. Some 
papers have approached the same problem by diverse ways /9-12/ 

Example 1 
A standard sample of pooled human blood serum contains 42.Og of 

albumin per litter /13/. Five laboratories (A-E) each do six determinations (on 
the same day) of the albumin concentration, with the following results (g/1 
throughout): 

Labs detl det2 det3 det4 det5 det6 

A 42.5 41.6 42.1 41.9 41.1 42.2 

Β 39.8 43.6 42.1 40.1 43.9 41.9 

C 43.5 42.8 43.8 43.1 42.7 43.3 

D 35.0 43.0 37.1 40.5 36.8 42.2 

Ε 42.2 41.6 42.0 41.8 42.6 39.0 

The following averages are obtained for each laboratory 

L M(L) m(L) G(L) H(L) σ( ί ) a2(L) am(L) 

A 41.90 42.00 41.897 41.895 0.4939 0.2440 0.3667 

Β 41.90 42.00 41.871 41.841 1.7076 2.9160 1.3000 

C 43.20 43.20 43.198 43.196 0.4195 0.1760 0.3333 

D 39.10 38.80 38.987 38.874 3.2520 10.576 2.8000 

Ε 41.53 41.90 41.516 41.498 1.2879 1.6586 0.8444 

The mode is calculated with the determinations from all laboratories, 
because if we consider the determinations of each laboratory the number of 
determinations will be insufficient to decide the mode. The calculated 
frequencies are shown in the next table: 

freq. detl det2 det3 det4 det5 det6 

A 1 2 2 2 1 3 

Β 1 1 2 1 1 2 

C 1 1 1 1 1 1 

D 1 1 1 1 1 3 

Ε 3 2 1 1 1 1 
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The mode is reached in the first determination of laboratory Ε and also the 

sixth determination of laboratories A and D: 42.20. So, L = 42.20. For the 

closer data sets the values of the parameters defined by the relations (1.11)-

(1.18) are obtained: 

L m(L) Q1(L) Q3(L) Q(L) A,(L) A,'(L) Obquan,i(L) Obpearson(L) 

A 4 2 . 0 41 .6 42 .2 0 .30 0 .600 0 .500 -0 .333 -0 .607 

Β 42 .0 40.1 43 .6 1.75 2 .080 1.733 -0 .085 -0 .175 

C 43 .2 42 .8 43.5 0 .35 0 .520 0 .433 -0 .070 + 2 . 3 8 3 

D 38 .8 36 .8 42 .2 2 .70 3 .973 3.311 +0 .259 -0 .953 

Ε 41 .9 41 .6 42 .2 0 .30 1.333 1.111 +0 .000 -0 .520 

Example 2 
Let us consider the measurements taken with a voltmeter that indicates the 

potential with a precision of four decimals /10/: 

E(V)= 1.1125; 1.1124; 1.1124; 1.1125; 1.1125; 1.1124 

We observe that if the modes 1.1124 and 1.1125 are values from the series, 
and so real measurements of the phenomenon, which is an advantage, there is 
still the disadvantage that a single mode (which could be considered the most 
profitable value)is not available. 

The arithmetical mean and the median, even though they have the most 
appropriate value (most frequent), an incontestable advantage, can never be 
obtained as a real measured value, which confers a disadvantage to the 
arithmetical mean. 

2. DATA ANALYSIS BY REGRESSION 

2.1 Regress ion as an invest igat ion tool o f series trends 

The regression analysis can be applied if the characteristics Υ, Xi, X2, ..., 
Xp show a close relationship, almost functional, when they are simultaneously 
studied for a specific type of samples, chemical species or analyzed materials. 

Regression analysis in this case is synonymous with empirical modeling, 
curve fitting or forecasting. 
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The regression analysis allows the creation of a regression equation, that 

is a function that permits the calculation of concentration for one of the 

species, on the basis of the other data, and with measurable errors. 

The confidence in the established equation increases with the increasing 

of the number of points (in the multidimensional space). 

The relationship between the factors affecting the analytical signal is a 

statistical one, due to the random errors that always can appear. The Y values 

can be obtained by using interpolation procedures of the distribution 

Y(X b X 2 , . . . ,X p ) , performing a proximity between the functional relationship 

(ideal) and the statistic one (real). This kind of analysis gives a useful 

mathematical model, which apparently has no physical model as support. 

However, the best results are obtained when a concordance is established 

between the considered physical model and the mathematical one. For 

example, the Lambert-Beer law assures the validity of linear equations for 

spectrometric absorption methods. 

2.2 Regression models 

According to the mathematical model this model can be divided into 

linear and non-linear /11,12/. Taking into account the number of independent 

variables, there are monovariable models ( Y=Y(X) ) and multivariable 

models /13/ ( Y=Y(X l ,X 2 , . . . ,X n) ), which may be regarded as similar if we 

suppose that X=(X|,X2 , . . . ,X„). 

The unidimensional linear regression is frequently used in analytical 

practice and it considers the following model for the phenomenon: 

y = y + ε ; y = b 0 + b , · χ (2.1) 

where: 

x, y are the characteristics measured by the analyst; 
y is the characteristic estimated for y using the model; 

b0 and b | are coefficients estimated with the model; 

and ε is the error of estimation. 

Even in the case of linear regression, there is a broad meaning of the 

linear dependency concept, which can be extended to linear dependency. 

According to this concept, a regression equation is linear if the functional 
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dependency between the considered variables can be linearised /14/. 
Therefore, the following regression equations: 

y=a-log(x)+b; 
y=alog(log(x))+b; 
y=a ( l / x )+b ; (2.2) 

y=a-e"+b 

are linear dependencies and can be associated with the linear model: 

y=a-z+b (2.3) 

where the new independent variable ζ is obtained by substitutions: 

z=log(x); z=log(log(x)); z=l /x or z=ex (2.4) 

Another extension of the linear regression model can be obtained when 

the error factor influences both variables involved in the regression. In this 

case, the formulae for the validation of regression parameters have another 

form/15/ . 

A problem that appears in the case of regression, in general, is the 

parameters' estimation. This problem is solved differently by many authors. 

A well known estimation model for parameters is based /16/ on the 

minimization of risk, defined as the mean of square loops function proposed 

by Kolmogorov, best known under the name of the least squares method. 
The expression which must be minimized is, in this case, given by: 

K ( X , Y , B) = Σ (y - y)2 = Σ ( b0 + b, · X - y)2 (2.5) 

where Χ,Υ,Β are the column vectors of the independent variable X, of the 

dependent variable Y and of coefficients B. 

Other papers /17,18,19,20/ have described different approaches of the 

estimation model based on the least square method. It has to be mentioned 

here that other estimation models based on the loops function and the sum of 

residues has been developed. 

Briefly, these functions are: 
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R. Fisher, 1912, maximum verisimilitude method: 

F(X,Y,B) = I Μ - Ί = Σ Ι " 
-(bfl+bi-x-y) 

(2.6) 

J. Newman, A. Waad, minimax method: 

NW(X,Y,B) = X | y - y | (2.7) 

Bayes, 1750, maximum aposteriori probability: 

Σ Γη ν - ν < 

< . 
[ l , y - y > D ( Y " Y ^ 

(2.8) 

By substitution in the multidimensional case of linear regression it 
follows: 

xT=(x°,x',...,xp), x°=i; x=(x,,x2,...,xN); Y=(yi,y2,-,yN); 

Y = ( y 1 , y 2 , . . . , y N ) ; B T = ( b ° , b 1 , . . . , b p ) a n d y is given by: 

y ^ X b ' - x ' (2.9) 
i=0 

Minimizing square of errors (using (2.5)), the loop equation is 
K(X,Y,B)=min, resulting in: 

ν / η \ 2 

K ( x , Y , B ) = X ( y - y ) = Σ I ^ i - y j 
j=l ν i=0 

min (2.10) 

The solution is found using linear algebra by the equation system: 

λ Ν / ρ V 

^ τ Σ Z ^ x J - y j = 0 » k = o , p 
o b H V i=o / 

(2.11) 

which, after rearrangement of the sum is: 

ί=ο Vj=i y j=i 
(2.12) 
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and the solution is given by: 

B=CZ"' (2.13) 

where: 
Ν 

0<k<p J = 1 0<k<p 

Ν 
C T = ( c k ) o s k i p = ( X x i y j ) (2.14) 

In spectral analysis /21/, for ρ samples, each with r compounds and the 

constituents determined having q channels (for example different wavelengths 

in the same spectra) which linearly depend on concentrations, the following 

equation can be written: 

R is the matrix for signals obtained on q channels for each of the ρ 

samples (dimension pxq); 

C is the concentration matrix for r compounds (dimension pxr); 

S is the sensitivity matrix (dimension qxr); 

Ε is the error matrix (dimension pxq). 

Due to the fact that computerized data acquisition is now usual in 

chemical laboratories, such methods based on linear algebra and multilinear 

statistics are being routinely applied to multicomponent quantitative analysis 

/25-32Λ The method was applied for the establishment of functional 

dependencies between the retention factors in chromatography (log k) and the 

molecular parameters of the separate components /18,33/ or for the 

description of the influence of different factors on the chromatographic 

retention /34,35/ or the partition coefficient /36/, (log K). The method was 

also related to the association criteria of some solvents, regarding the 

alkaloids separation and the multidimensional relationship between their 

structure and properties /37,38/. The method will probably be successful, due 

to the diversification and the improvement of the detector instrumentation, 

R = C S T + E (2.15) 

where: 
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which means an improvement of resolution and sensitivity and a decrease of 
noise. The automated data processing has a considerable contribution to 
make, too. 

After establishing the coefficients and the errors that affect the data, using 
the regression equation, the reverse way is followed and the regression 
equations are transferred to calibration equations (the multidimensional 
correspondent of the bidimensional calibration curve). Between these two 
aspects, there are elements that should be clarified in practice /39/. This 
method of data analysis was described in many recent books /13,40/ and 
papers /41 -44/. The multivariate calibration with non-linear equations is also 
used /45/. 

As an auxiliary technical method, Artificial Neural Networks, by W.J. 
Welsh et al. /46/ is used as a preliminary investigation of input experimental 
data. Authors use a computer program: Brainmaker professional (California 
Scientific Software) to fit the neural networks model /47/. The terms of 
"expert systems" are also used for this area of application /43/. 

The equations and regression models have a widespread application 
together with the development of analytical instrumentation. The calibration 
curves are habitual in this field and many analysts use the calibration through 
the regression curves/18,25,31-33,37,48,49/. 

Otherwise, the principal component analysis has recently been applied in 
the multilinear regression analysis /50/. This method is close to factorial 
analysis (see Factorial Analysis and ANOVA), but is related to multilinear 
regression. 

The method is in fact a repeated linear regression for a number of times 
equal to the number of considered main components. The coefficients of the 
considered component are determined for each iteration, having as input data: 

XK: the principal characteristic K; 
YK: the residue obtained from the iteration for the principal component 
K-l 

and as output data: 

YK+P the residue obtained from the regression YK with X K ; 
BK: the vector of coefficients for principal component K. 
The principal component analysis (PCA) is preferred to multilinear 

regression (PLS-partial least squares) for theoretical and practical reasons. 
One of the theoretical reasons is that the BK vectors (K=l,2,.. .) are orthogonal 
in the multidimensional space of principal components. From the practical 
points of view: 
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• the number of principal components it is not fixed from the beginning and 
can be modified without affecting the already calculated principal 
components; 

• it is easier to interpret each component by its projection in the 
corresponding plane; 

• the correlation between rows of data are not influenced by applying 
repeated linear correlation instead of a multiple linear regression /39, 51-
55/. 

In case of optimization, when the number of data sets exceeds the number 
of coefficients /3,4/, the optimization model leads to a regression equation 
system. In this case the sum of errors generated by each equation is 
minimized for obtaining a determinate equations system, the coefficients of 
which are deduced on the basis of the same algebraic principle enunciated in 
multilinear regression. The obtained regression equation is used on to give the 
quantitative interpretations of the studied phenomenon through optimized 
parameters. 

Software development has produced an explosion on the market of 
specialized programs for statistics. The majority of these programs have 
implemented routines for calculus of different regression types. Some of these 
programs are presented in the next paragraph "Useful Programs". 

2.3 Useful Programs 

GraFit; Data Analysis and Graphics Program; Erithacus Software Ltd. 

Slide; Slide Write Plus for Windows; Advanced Graphics Software Inc.; 

MathCad; MathSofit Inc.; Collabra Software Inc.; 

Excell; Microsoft Corporation; Soft Art Dictionary and Program; 

Statistica; Statistica for Windows; StatSoft Inc.; 

Surfer for Windows; Software Package; Golden Software; 

Statistix; Analytical Software; Tallahassee; 

Brainmaker Professional; California Scientific Software; 

3. CORRELATION AND SELF CORRELATION 

3.1 Correlation. Indicators of linear correlation 

Correlation supposes the existence of at least two numerical series, 
ordered by a certain common criterion, usually temporal. For example the 
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series obtained by observing the concentration and the potential measured 
with an electrode concurrently with the titrant volume added in a titrant 
reaction constitutes two numerical series ordered temporally. 

We note the numerical series X(t) and Y(t) where t= tj, t2,. . . , tn are the 
suitable times of observation. The correlation study can be made either by 
graphic or analytic means. If the graphic route is more easy for an analyst, the 
analytic one provides more advantages, both through the development of 
calculation technique and through the automatic analysis (processing) of data 
l\l. 

Graphically, we have two possibilities of investigating the correlation 
between the two series of time: the first, by representing on the same graph 
the dependencies X=X(t) and Y=Y(t) the connection is observed that can be 
established by the representation in a XOY system of Y=Y(x) dependence or 
X=X(y) dependence. In the second case the figure obtained is called field of 
correlation /56/. The functional dependence Y=Y(x) or X=X(y) can be 
inferred from the study of this field of correlation. 

Analytically, the following indicators of the correlation are defined: 

v ( X , Υ ) = M ( X · Y ) = — V X j · Yj (3.1) 
η tt 

μ ( Χ , Υ ) = v ( X , Y ) - M ( X ) · M ( Y ) (3.2) 

where ν is the second-degree moment and so it is the mean of Xj-Yj 
parameters and μ is the second degree moment or covariance or correlation of 
the two data through the numeric series considered previously. 

We can also derive the correlation coefficient given by: 

μ ( Χ . Υ ) _ μ ( Χ . Υ ) (3.3) 

V / D ! ( X ) D 2 ( Y ) σ ( Χ ) σ ( Υ ) 

Among all indicators, the correlation coefficient is the one that is most often 
used for the analytic characterization of the correlation between two 
parameters. 

The higher the μ(Χ,Υ) correlation, the stronger the functional dependence 
between X and Y, and r also becomes higher. When r = 1 the correlation 
reaches the maximum, and X and Y change in directly proportionality. The 
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smaller the μ(Χ,Υ) parameter, the stronger the functional dependence 
between X and Y is stronger, but inversely, when X increases Y decreases. 
When r = -1, the correlation is also at its minimum value, X and Y vary in 
inverse proportionality. 

We must mention that the correlation expression as it is given by the 
connection (l)-(3) between X and Y is a quantitative dependence. Because of 
this many authors call the (l)-(3) correlation linear correlation. 

For this reason, the smaller the μ(Χ,Υ), the weaker the linear dependence, 
and the correlation coefficient is smaller in absolute value. When r=0, we can 
say that there is no linear correlation between X and Y. 

Although a way was proposed to investigate the non-linear correlation 
Y=Y(X), it is not as accessible as linear correlation; therefore when 
correlation is non-linear, regression analysis is preferred instead of correlation 
analysis. 

Some authors are considering r2 as a statistical index of correlation 
between series, and present results in this form /57-60/. 

These authors use the r2 parameter because by squaring a fractional 
number, the first digits of this number become more significant. The r2 

parameter allows one to observe, with the same precision of four digits, the 
changes of the digits of r up to 8th position (see also the error propagation) 
/61/. 

3.2 T h e ranks correlat ion. P a r a m e t e r s 

The ranks correlation is used especially when the series of inputs do not 
have rigorous values, being affected by a large amount of experimental errors 
or by the resulting calculations. An important cause is also when the errors 
that are acting on inputs have a systematic character. Usually in this case a 
great deal of importance can be attached to the resulting values, even though 
the absolute individual values from the numerical series are no longer 
expressing the phenomena observed; still the order connections that are 
established between these values are under the influence of the error factor. 
So, in this case, the only useful parameter is the position of a measurement in 
their ordered row, the parameter which is in fact the one that is used. 

We introduce here the notion of rank: the rank is the measurement 
position in the ordered row of measurements. Let the row be Xi, X2, . . . ,Xn 
and let it be permutated: 
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π:{1, . . . ,Ν}-»{1,. . . ,Ν}: Χ π ( ί ) < Χ π ( ί + 1 ) , i = Ι , Ν - 1 (3.4) 

so as to put measurements in increasing order (see also the first paragraph). 

The rank of Xj is therefore Χ π ( ί ) . 

There are the series X, , X 2 , . . . ,Xn and Yi, Y2, · • · ,Yn and π] and π2 the 

permutations that put the X and Y values in the order: 

Χ π ι ( ί ) < Χ π ι 0 + ι ) , i = Ü N ^ l ; Y Ä j ( i ) < Y „ j ( i + 1 ) , i = l , N - 1 ( 3 . 5 ) 

There is d k = 7 t , ( k ) - 7 t 2 ( k ) where k = 1 , N and also d=Z|dk | . (3.6) 

If d=0 then the considered series are on the same order and there is a 

perfect correspondence of ranks. 

The correlation coefficient of ranks, the so called C.E. Spearman 

coefficient, is obtained by effecting the simple calculations of r(7i!,7i2), and 

taking into account that 

n + 1 6 Σ ά > 
Μ ( π , ) = Μ ( π 2 ) = : Θ ( Χ , Υ ) = Γ ( π , , π 2 ) = (3.7) 

^ η ( η —1) 

Notes: 

(i) when Σδ,2=0, then Σ|ά,|=0 and Θ=1 (the maximum rank correlation) 

(ii) when Z8,2=maxim then E|di|=maxim and θ = -1 (the maximum reversed 

rank correlation) 

(iii) -1 < θ < 1 

In order to define Kendal ' s coefficient we introduce the functions K) and 

K2 given by the relations: 

K , ( i ) = |{k I T i 2 ( k ) < π 2 ( ί ) , u , ( k ) < π , ( ΐ ) , k < i}| ( 3 . 8 ) 

meaning that the rank number Y is smaller than the rank i of Y in the rank 

series of X to rank i; 

K 2 ( i ) = | {k 1 7 i 2 ( k ) > π 2 ( ϊ ) , π , ( k ) < π , ( i ) , k < i}| (3.9) 
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meaning that the rank number of Y is bigger than the rank if of Y in the rank 

series of X to rank i; 

The measures P,= l-n2(i)+Ki(i), Ρί=Ν-π2(ί)-Κ2(ί) are calculated and these 
values Sj=Pj+Qj (3.10) 

The relation gives Kendal's coefficient: 

Ν 

2 · Σ δ , 
κ = — — — (3 i n 

n ( n - l ) ( ' 

Observations: 
(i) k = 1 when both series are in the same order π\=π2 

(ii) k = -1 when both series are in the contrary order π , ° π 2 = 1 N 

The rank correlation is successfully used at Genetic Programming 1221. 

3.3 Self-correlation. The ranks self-correlation 

Stage of correlation. The "stage of correlation" is the time from which 

the moments of time should be counted so that the correlation should be 

maximum as against the other possibilities of counting. In the case where the 

correlation is maximum and attains unity, it is said that the series are in 

synchronism. In this case, in calculating the correlation, only the Ν-φ data 

sets are taking part, where φ is the stage presumed as being the correlation 

stage. 

Self-correlation. The term "Self-correlation" is used when every 
individual numerical series is studied. This is, therefore, different from 
correlation because the series χ and Y represent the same measurement, 
possibly accomplished in another temporal order or with time distance. More 
often, the self-correlation is used with time distance. Self-correlation of 
series at first rank is the name given to correlation between the initial series 
and the initial series moved by one term to the right, so that the correlation 

coefficient suitable is: 
Ν 

Σ 
k=2 

X k " X k - 1 

r , ( X ) = . w (3.12) 

N Σ*; 
k=l 
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and for self-correlation at rank j , the correlation coefficient is: 

Ν 

Σ Χ Κ ' ^ k - j 
k=j+l 

(3.13) 

It can be noticed that the more rank j increases, the number of terms 
involved in correlation wanes and, because of this, when the numerical series 
are studied by the help of self-correlation it is preferred that the number of 
terms be as big as possible. 

Periodicity. For phenomena that are repeated in time, it is important to 
find out the time span after which the system crosses again through the 
vicinity of initial state, repeating almost the same system. The time sequence 
after which the system changes this state is called period. The period is larger 
here: the first j rank to which on j . k ranks the function of self-correlation 
rkj(X) attains local maximum values is called period of self-correlation: 

Rank self-correlation. The series X is replaced with the series π of ranks 
obtained by ordering X series. Coefficients of self-correlation which are 
obtained are: 

P=min{j| rkj(X)>r,(X) Vk, i * k j } (3.14) 

Ν 

P , ( X ) = 
k=2 

( N 2 - 1)(2 - N + 1) ; 

6 

Ν 
2 > ( k ) - 7 l ( k - j ) 

P j ( X ) = 
k=2 

( N - j ) ( N + l ) ( 2 - N + l ) 
(3.15) 

6 
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Example 3 

Multiplex dsDNA fragment size distribution uses intercalation dyes and 
capillary array. Studying electrophoresis by ionic effects on the stability and 
electrophoretic mobility of DNA-dye complexes, Clark and Mathies /63/ 
obtained the effect of DNA/dye ratio on electrophoretic mobility. The sample 
consisted of pBR322 Mspl complexes with TOTO at the indicated bp/dye 
ratios and the standard consisted of ΦΧ174 Haelll with 1 buTOTIN/25bp. 
Size was estimated against a second order polynomial fit to the first eight Φ 
XI74 Haelll peaks. The TO control presents the results when both samples 
were strained on-column by adding 0.1 μΜ TO to the 80mM taps-NPe4, ImM 
H2EDTA, 0.8% HEC, pH 8.4, electrophoresis buffer. All DNA 
concentrations were 25pg/^L in 1/100χΤΑΕ. 

The table is: 

Table 3.1 

no actual TO 100bp/ 50bp/ 25bp/ 10bp/ 5 bp/ 
size/bp control TOTO TOTO TOTO TOTO TOTO 

(t) 

(X) (YD 

(Y2) (Y3) (Y4) (Y5) (Y6) 

1 67 69 67 65 65 66 67 

2 76 77 74 75 73 73 74 

3 90 86 84 85 85 84 84 

4 110 104 103 104 103 103 103 

5 123 115 114 115 114 114 114 

6 147 139 138 138 138 139 139 

7 160 149 149 148 149 150 150 

8 180 171 171 170 170 170 170 

9 190 185 185 184 184 184 184 

10 201 192 193 191 191 191 191 

11 217 211 211 209 209 208 209 

12 238 233 233 231 231 230 231 

13 242 240 240 238 237 237 237 

14 307 308 308 306 306 305 306 

15 404 414 414 412 410 409 410 

16 527 527 528 526 525 521 524 

17 622 618 616 615 615 603 591 
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Parameters given by (3.1)-(3.11) are: 

Table 3.2 
para-
meter 

X, Y1 Χ, Y2 Χ, Υ3 Χ,Υ4 Χ, Υ5 Χ, Υ6 

V 75050.17 74965.58 74662.11 74556.11 73941.17 73672.11 

μ 23243.81 23294.21 23206.71 23195.20 22823.22 22594.66 
r 0.99950 0.99954 0.99958 0.99967 0.99950 0.99895 

θ 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

κ 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

and parameters given by (3.12), (3.13), (3.15) are (see Table 3.3): 

The series are not periodic because rank j> l local maxim does not exist. 

4. THE DISPERSION AL ANALYSIS AND ANOVA MODEL 

Dispersional analysis is related to a group of statistical methods for 
studying experiments which produce data depending on different factors, 
about the suspected influence of which we are not sure whether or not it must 
be taken into account. The aim of these methods is to establish the main 
factors that will be considered. The analysis does not always produce a 
function (curve or surface), but only the coordinates for determination of the 
proper function on the basis of another experiment. Sometimes, the analysis 
result shows only the factors that must be strictly controlled (kept constant),so 
that the data obtained in two different laboratories should be similar. 

R. A. Fischer introduced the dispersion concept, and used it in the 
determination of qualitative and quantitative factors. Box and Wilson /64/ 
have completed the approach, applying the dispersion for the determination of 
different factor effects. 

The method can be found under different names: "dispersional analysis" 
1651, "experiments projection" /66/, "response surface analysis" 1611 or 
"factorial analysis" /68/. The models which consider only part of the variables 
as random, while another part are kept constant, are well known as ANOVA 
/69/. However, this definition is not always respected. 

The main idea of these methods is that the dispersion of an experimental 
result or of a variable (i.e. partition coefficient) is increasing when the 
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measured value is deviating from the mean, in the presence of the considered 

factor. Two dispersions can be obtained by measuring the dispersion in the 

presence and in the absence of the considered factor. The statistic comparison 

of these two dispersions (performed by statistic tests) can establish if the 

factor has a significant influence or not. If the measured value is a random 

variable with respect to the considered influence factors, the measured value 

usually tends to the mean value. Information regarding the influence of 

significant factors (or insignificant factors) together or apart can be obtained 

by estimating the dispersion of a andom variable in the simultaneous presence 

of factors and in their absence. This means a saving in t ime and materials and 

it avoids the study of some unimportant factors. 

The F test is used for the comparison of dispersion obtained in the 

presence and in the absence of factors (see validation of statistical 

hypothesis). 

Let us assume that Y is a random variable, depending on factors Χ1 , X 2 , . . 

Xp, and having the mean value b°. Usually, the matrix of factor values has a 

finite number of elements, named classes. One of these values is called the 

factor level. 

Different hypotheses can be initially admitted in order to study the factors. 

The most simple and frequently used hypothesis is the one which satisfies the 

condition: 

y = b ° + £ b ' - X 1 + e (4.1) 
i = I 

where e is the error. 

Considering the variable Y = y - b° the following equation can be written: 

Y = ^ b ' - X ' + e (4.2) 
i = l 

where b' are the considered statistic parameters, and X' can be 0 or 1 

according to the null hypothesis or positive factor effect . 

If there are more determinations then Y is the vector of observations and 

the equation (2) can be written: 

Υ = Χ · β + Ε (4.3) 
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where X is the matrix having only 0 and 1 as elements, β - the vector of 

estimated elements (factors), and Ε is the vector of residual variations, that 

means the vector of measurement error contribution to the observations. The 

last ones have a normal distribution and they are independent. 

There are other hypotheses (models) less used, for example non-linear like 

a quadratic or polynomial equation. Even if the model is very complicated, 

the coefficients still remain of first degree and the problem is not complicated 

from a mathematical point of view. 

Finally, the H0 hypothesis is tested: b, = b2 = . . . = bp = 0. This hypothesis 

is verified only when there is no effect of the considered factors that must be 

taking into account. The F test can be applied in two ways (see the statistical 

hypothesis verification): 

a) In the case where we have reason to assume that σι > σ2 , the F test verified 

only one confidence limit, the superior one: 

F 
CXP Si 

> F, V,,v2 ,a (4.4) 

where: 

- Si2 and s2
2 are the simple dispersions (the largest and the smallest) from 

which we estimated the theoretical dispersions σ, 2 and σ2
2 ; 

ν , and v2 is the number of degrees of freedom; 

Fcxp is the calculated value from experimental data; 

Fv, v2a is the theoretical value (tabulated) of F distribution for chosen v,, 

v2 and incertitude a . 

If we obtained Fexp < F v ^ a then the two dispersions would be 

significantly different. 

b). If there are no reasons to proceed at point a then the bilateral F test will be 

applied. In these cases, the hypothesis σ , > σ2 is rejected if either of the 

following inequalities is satisfied: 

S, „ 
α 0 Γ - < F f t a) (4.5) 
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Actually the ratio between the biggest and the lowest dispersion is 
compared with the tabulated F , , value. 

v „ v 2 ( l - f ) 

If Fex < F ( , then the dispersions are considered equal and the 
v . . v , ( l - f j 

considered factor has an insignificant effect. Usually, two levels are used; one 
inferior and the other superior for the considered factor reported to the start 
level (zero). The factor can be pH, temperature, the analyte nature /70,71/ etc. 
If there are η factors, 2" experiments are necessary. For example, if η = 4 then 
16 experiments are necessary. The experiment can be repeated for minimum 
three times in order to minimized the random errors. If η = 2 the experiment 
should be performed according to the following scheme /76/: 

No experiment Factor Response 

xo X1 *2 
1 + 1 + 1 + 1 yi 
2 + 1 -1 +1 yi 
3 + 1 +1 -1 ys 
4 +1 -1 +1 Y4 

where the inferior level is +1 and the superior level is - 1 . Obviously, the 
order of experiments is not 1, 2, 3, 4 but the order given by random numbers. 
The scheme is equilibrated if all experiments are performed. A non-
equilibrated scheme can be used as well, but the methods need special 
instructions /73/. The identification techniques of significant parameters can 
be dealt with by neuronal networks ΠΜ. Also, the ANOVA technique can be 
used together with a verification method of linearity and a statistic test (F) 
Π5Ι 

5. VALIDATION OF STATISTIC HYPOTHESIS 

The classical distributions are often models for physical and chemical 
phenomena. The advantage of using the distribution theory in the physical -
chemical sciences is that the studied phenomenon causes the beginning of an 
analytical study in which the distributions are deeply studied 1161. 
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The most widely known distributions are: 

beta cauchy chi squared exponential F gamma 
log normal logistic normal student's t uniform weibull 

Their analytical expressions and representations in different particular 
cases are presented in the appendix. An application of the distribution 
functions is also of use in checking the statistical hypotheses (see t, F, ζ, χ 2 

tests etc.). 
Sometimes it is useful to use a modified form of a distribution function 

1111 in order to model the studied phenomenon. Also, some authors use the 
distribution in a technique known as "pattern-recognition" where, besides 
distributions, they use the neural networks /78/. A distribution model is often 
combined with an overlapping technique /79,80/. 

5.1 The Fischer F Statistics 

Fl : Indicates the significance level of the regression equation. The F 
estimator is calculated with the relation: 

F = S S r e g (5 1) 
S S e / ( n - k ) 

where SSreg is the sum of squares for errors attributed to regression: 

S S r e g = X ( y . , c a l c - y ) 2 ( 5 · 2 ) 
i 

and SSe is the sum of squares for residuals: 

SS e = X ( y i , c a l c - y i ) 2 (5.3) 
i= l 

The calculated F value is compared (with eq. (4.1)) with the tabulated F 
value (depending on degree of freedom), corresponding to the needed 
significance level. If Fca|c > Ftab, the result must be considered as significant. 
As a function of significance level, the quality of regression equations is 
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considered (significance level / regression quality) >99% / excellent; =99% / 
very good; 97.5 - 98% / good; 95% / satisfying; 90% / weak; <90% / 
unsatisfying /81/. 

Generally, high values of F parameter indicate a good regression equation 
/81 /. 

F2: The F Test is also used /82/ to test whether one equation fits a set of 
data significantly better than does a second equation /75,83/. Before using 
this test it is necessary to fit the same data set using two different equations. 
List the results and note the reduced (chi-squared) values. By comparing these 
values it is possible to calculate the probability that the fits are the same 
/85,86/. A low probability value indicates that one of the two equations (that 
giving the lower reduced values) fits the data significantly better than the 
other. To be significant the probability should be lower than 0.1, and 
preferably lower than 0.05. 

Suppose that we have a function: 
FTEST(arrayl, array2) 

where: 
Array 1 is the first array or range of data. 
Array2 is the second array or range of data. 

and 
FTEST the return value of the F-Test. 

In this case the F-test yields the one-tailed probability that the variances in 
array 1 and array2 are not significantly different. Use this function to 
determine if two samples have different variances. Let us use: 

FTEST({6,7,9,15,21},{20,28,31,38,40}) equals 0.648318 

Example 4. 
Suppose we have a series of numbers giving an amount: 

Time 1 2 3 4 5 6 
Amount 110 80 60 45 35 28 

The precedent data were used, and fitted to a single exponential decay 
equation, and to an equation for a single exponential decay including a 
background offset. 
Single exponential decay: 

y = Ae"kt (5.4) 
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Single exponential decay including offset: 
y = A-e'kt + offset (5.5) 

When fitted to a single exponential decay, the reduced chi-squared is 2.92; 
fitted to a single exponential decay including a background offset the reduced 
chi-squared is 0.09189. The second value is lower, but the difference between 
the two equations is not great, as is shown below: 

Parameter According to According to 
Equation (5.4) Equation (5.55) 

Reduced /value 2.82 0.09189 

Number of parameters 2 3 

Degrees of freedom 3 2 

and: F statistic = 30.6889 Probability = 0.0634443 
The probability that the two fits are equally appropriate is 0.06, which is 

low. We can therefore be reasonably confident that it is more appropriate to 
fit the data using the equation that includes a background offset (providing 
there is a theoretical or experimental justification for using this equation). 

5.2 "t"-Student Statistics 

Student's t-Test is used /87/ to compare two sets of data and to test the 
hypothesis that a difference in their means is significant. The data are tested 
with two underlying assumptions: 

- They represent two independent normal distributions 
- The values of their variances are equal 

The t-Test is used in two ways: Independent and Paired. 

Independent t-Test 
The Independent t-Test can be used when two groups are thought to have 

the same overall variance but different means. It can provide support for a 
statement about how a given population varies from some ideal measure, for 
example how a treated group compares with an independent control group. In 
this case the t-test can be performed on data sets with an unequal number of 
points. 
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Paired t-Test 
The Paired t-Test takes a paired approach, assuming that the variance for 

any point in one population is the same for the equivalent point in the second 

population. This test can be used to support conclusions about a treatment by 

comparing experimental results on a sample-by-sample basis. For example, to 

compare results for a single group before and after a treatment. This approach 

can help to evaluate two data sets whose means do not appear to be 

significantly different using the Independent t-Test. This test is only 

performed if the two data sets have an equal number of points. 

In general, a t-test yields the probability associated with a set of data. The 

t-Test is used to determine whether two samples are likely to have come from 

the same two underlying populations that have the same mean. 

As an extension, the t-test can be used to study the slope and the intercept 

/88/. In the case of regression the t estimator also indicates the signification 

level of the coefficients bj; it is calculated by following equation /81/: 

Ν 
t : = — (5.6) 

where a b j is the standard error of the bj regression coefficients. 

The validation or invalidation of the x,j variable contribution at global 

correlation is realized by comparison of the calculated tj values with a 

tabulated value (for an imperative significance level, which is a function of 

the degree of freedom for regression). 

Multicollinearity means the existence of some g functional relationship 

between ζ variables from a total of m considered predictor variables, 

2 < ζ < m : 

X i j = g ( x i , J + i v . . , X i , j + z - , ) i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , m (5.7) 

Actually, the predictor variables are orthogonal if any two of them are 

orthogonal, namely when the regression equations: 

Xy = axjk + ß, i = l,2,...,n; j,k = l,2,...,m; j * k 

(5.8) 
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are characterized by r2 < 0.40. The physical significance of a regression 
equation is compromised by the presence of multicollinearity. Therefore it is 
better to obtain a regression equation of good quality with a smaller number 
of predictor orthogonal values. In this case a good way is orthogonalizing the 
given set of variables /81 /. 

With Microsoft Excel, the t-tests are calculated as follows: 

TTEST(arrayl, array2, tails, type) 

where: 
Array 1 is the first data set. 
Array2 is the second data set. 
Tails specifies the number of distribution tails. If tails = 1, T-Test uses the 

one-tailed distribution. If tails = 2, T-Test uses the two-tailed distribution. 
Type is the kind of t-test to perform. 

A t-test of types 1, 2, 3 is performed in the following cases: 
1 Paired 

2 Two-sample equal variance (homoscedastic) 

3 Two-sample unequal variance (heteroscedastic) 

Example (calculated with Microsoft Excel): 
TTEST({3,4,5,8,9,1,2,4,5},{6,19,3,2,14,4,5,17,1},2,1) equals 0.196016 

If the t-test is performed with Slide Write, it will perform independent and 
paired t-tests on your data. The paired test is not performed if the columns do 
not have the same number of points. Slide Write reports the following results: 
T-Statistic Measures the significance of the difference of the means, 
p-Value The actual probability that the absolute value of the t-Statistic 

takes on its value or larger by chance. 
Hypothesis SlideWrite compares the p-Value with the alpha Level and 

reports its conclusion: 
When Hypothesis reports: 

p-Value < alpha Level then there is Difference 
p-Value > alpha Level then there is No Difference 
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5.3 Z-Test 

The z-test generates a Standard score for χ with respect to the data set, 
arrays, and returns the two-tailed probability for the normal distribution. You 
can use this function to assess the likelihood that a particular observation is 
drawn from a particular population. The Z-Test may be calculated as follows: 

π — χ 
Z t e s t ( a r r a y , x ) = 1 - d n o r m ( — — 1 = ) (5.9) 

σ / ν η 

Example (calculate with Microsoft Excel): 
ZTEST({3,6,7,8,6,5,4,2,1,9},4) equals 0.090574 

where: {3,6,7,8,6,5,4,2,1,9} is the array of data against which to test x; and 4 
is the value to test (x); 

Instead of σ the population the known standard deviation s value (the 
sample standard deviation) may be used. 

5.4 χ2 - test 

The previous tests described have, in general, been concerned with testing 
whether the mean of several observations differs significantly from the value 
proposed by the null hypothesis. The data used have been on a continuous 
scale. In contrast, χ2 is concerned with frequencies (i.e. the number of times a 
given event occurs /13/. The χ2 - test is a test for independence. We can use 
the x2-test to determine if results based on a hypothesis are verified by an 
experiment /89/. The most frequent application of the %2-test is the quality of 
fit test which compares an observed distribution with a theoretical 
distribution. Suppose a function, named CHITEST with the following syntax: 

CHITEST(series_actual, series expected) 
and where: 

actual_series is the series of data that contains observations to test against 
expected values; 

expected_series is the series of data that contains the ratio of the product 
of row totals and column totals to the grand total. 

The function returns the value from the chi-squared (χ2) distribution for 
the statistic and the appropriate degrees of freedom. The χ2 test first 
calculates a χ2 statistic and then sums the differences of actual values from 
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the expected values. The equation for this function is CHITEST=p( Χ>χ 2 ), 
where: 

ι c 

i=l j=l ^ i j 

and with: 
Aij = actual frequency in the i-th row, j-th column 
Eij = expected frequency in the i-th row, j-th column 
r = number or rows 
c = number of columns 

Observations: if CHITEST returns the probability for a χ2 statistic and 
degrees of freedom df, then df is given by df := (r - l)(c - 1). 

Example 5 
Thin layer chromatography and liquid chromatography of 200 compounds 

was performed. The results are grouped in 10 classes and the class width is 
0.1 Rf units. The observed frequencies are: 

η 1 2 3 4 5 6 7 8 9 10 

TLC 17 22 25 16 15 21 12 23 29 20 

iq 18 20 23 19 18 21 14 17 22 18 

Now we test with χ 2 statistics if the observed frequencies correspond to a 
rectangular distribution. Using (5.10), the χ 2 statistic for the data above is 
17.384 with 9 degrees of freedom. 

CHITEST(A,E) equals 0.083018 

5.5 Other tests 

Chromatographic Resolution Statistic is a response function among the 
various response functions used to numerically assess the quality of a 
separation //90-92/. There is a deeper concern for peak distributions /93/. The 
next tests can be used for the verification of peak characteristic /94/ of any 
distribution (see appendix): 
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Kurtosis Test 
Yields the kurtosis of a data set. Kurtosis characterizes the relative 

peakedness or flatness of a distribution compared to the normal distribution. 
Positive kurtosis indicates a relatively peaked distribution. Negative kurtosis 
indicates a relatively flat distribution. 

Kurtosis is defined as: 

n ( n + l ) y / X , - M ( X ) y | 3 ( n - l ) 2 

( n - l ) ( n - 2 ) ( n - 3) V s ; 

where: s is the sample standard deviation. 

Example (calculated with Microsoft Excel): 

KURT(3,4,5,2,3,4,5,6,4,7) returns -0.1518 

Skew Test 

Yields the skewness of a distribution. Skewness characterizes the degree 

of asymmetry of a distribution around its mean. 

Positive skewness indicates a distribution with an asymmetric tail 

extending towards more positive values. Negative skewness indicates a 

distribution with an asymmetric tail extending towards more negative values. 

The equation for skewness is defined as: 

( n - l X n - 2 ) Σ Χ , - Μ ( Χ ) λ 3 

(5.12) 

Example (calculated with Microsoft Excel): 

SKEW(3,4,5,2,3,4,5,6,4,7) equals 0.359543 

A less known test, Wilk's lambda is combined with the analysis of main 

components to calculate the discrimination power of variables /95/. The 

statistical tests are described in detail by many books and papers /51 /. 
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Appendix 1. Statistical distr ibutions and their analytical forms. 

Γ( si _ s2 ) Sl- I . . ,s2._ I dbeta(x) = — x ( 1 - x) 
Γ( sl )T( s2) 2 

dchisq(x) 

/ A exp( 

1 d\ 2 Γ 
-2 o.i 

dchisql χ) 

d =8 
χ-=0,0.1. .25 

dexp(x) =r exp( r x) 

r ·ϊ 1 
x.= 3,.2.9..4 

sl - 3 
s2 - 2 
χ =0,0.01.. 1 

dcauchy (x) - π s- 1 x -+ — 

s =2 
1 - 5 
x. = 0,0.5.. 8C 

dbetai χ) 1 

Ü.Ol 
dcauchy χ) 

de.\p( χ) 10 
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dl d2 
2 _ n 2 d l · l!2 d l - 2 

d l 1 d 2 2 1" 

dl + d2 d l ρ / d 2 \ 
; — r r ! — ί 2 
\ 2 / \ 2 / ( d 2 » d l x ) 

d l = 3 

d2 - 4 

χ . - 0 , 0 05 . . 8 

d g a m m a ( x ) = * ' ° X p ( ( X ) ) 

T ( s ) 

0 . 6 

dft x) 0.4 

0.2 

0 

0.4 

s = 3 

χ = 0 , 0 . 0 5 . . 10 dgamma ( x ) 0.2 

- — ( l n ( x ) - μ ) 

2 · σ 

exp i 

d l o g i s ( x ) - — 0.15 

0.1 

dlogis( χ ) 

0.05 

d l n o r m ( χ ) = — — • e x p 

\J2 π · σ · χ 

σ = 2 

χ - 0 . 1 , 0 . 1 2 . . 4 . 5 

dlnorm ( χ ) 
2 
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d n o r m ( x ) • - — — e x p 

^2-11 d 

m = 0 

d 1 

χ = 5, 4.9 . 5 

(x- m) 

2 d 2 

dnorm ( χ) 

5 "2.5 0 2.5 5 

d + 1 

dt(x) 

' * ± l \ / 2 \ 2 
, χ Κ 2 

d\ , π-d \ 

d : : 5 

\ 5 , 4.9. . 5 

dt(x)0.2 

d u n i f ( x ) 
b - a 

a = 6 

b - 9 

x - 6 , 6 . 1 . . 9 

dunif( x) 0.5 

d w e i b ( x ) =S-Xs ' exp l χ ) 

s - = 5 

χ = 0 , 0 . 0 1 . 2 
dweib( χ) 1 
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