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INTRODUCTION 

Much emphasis has recently been placed upon trace elements in 
natural waters, in the context of environmental research, geochemistry, 
hydrogeochemical exploration and geothermal water research. Hence, 
an increasing impetus exists to know the chemical nature of the pro-
cesses that trace elements undergo in water, and to understand the 
chemical speciation of trace elements in natural waters. 

Application of the relevant thermodynamic calculations is at present 
hampered because numerous published thermodynamic data are dis-
persed in the literature and often present in books, internal reports or 
less accessible journals, and are not always expressed in an obvious or 
similar form. 

The aim of the present article is to provide, in a most user-friendly 
form, a homogeneous compilation of equilibrium constant values, 
gathered from over 50 literature sources, for trace element equilibria 
which are of interest in natural water studies. 

SELECTION OF THE DATA 

Evaluating all published thermodynamic data and choosing the 
"best" values is a task of such magnitude that most of the NBS pub-
lications / I I on the topic, which comprise 7 volumes for the last decade, 
present selected data only. Therefore, the present compilation of equi-
librium constants for trace elements in natural waters is partially ex-
tracted and adapted from existing critical reviews on thermodynamic 
data, including the four-volume series of Smith and Martell /5/, the 
two volumes of Sillen and Martell /9/, that of Naumov et al. Ill, of 
Baes and Mesmer \1\ for cation hydrolysis, of Barner and Scheuerman 
13/ and of Robie et al. /6/ for numerous minerals. In addition, however, 
data were used from a number of less well-known publications, 
scattered throughout the literature. 

The considered homogeneous and heterogeneous chemical equilibria 
are those that seemed relevant with respect to trace elements in natural 
waters. 

The equilibria for major elements such as Na, Mg, Al, Si, Κ and Ca 
were not included explicitly, since these data are rather easy to find. 
The choice of the specific trace elements was determined by their 
importance from an environmental or geochemical point of view or 
their relevance for geothermal waters, and also partially based on our 
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experience with the detectable element range for natural waters of 
commonly applied trace analysis techniques such as neutron activation 
analysis, atomic absorption analysis, X-ray fluorescence, spark source 
mass spectrometry, and emission spectroscopy. 

PRESENTATION OF THE DATA 

For all the considered equilibria, the literature values for log K° are 
presented in Table 1, with reference to the literature source from 
which they were extracted. These K°-data are for standard temperature 
and pressure, and for zero ionic strength. When relevant, different 
oxidation states are considered. 

The elements are ordered according to their atomic number. 
For each element, the reactions are given in the following order: 
(1) Equilibria between the reference ion and solid phases, of which 

the mineral is mentioned if possible. 
(2) Equilibria between the reference ion and inorganic ions in 

solution. 
(3) Equilibria between solid phases and polynuclear complex 

ions. 
Common ways of using the K°-data in Table 1 to calculate chemical 

speciation, solubility and saturation index, and procedures for correct-
ing the data for the influence of ionic strength and temperature, will be 
outlined below. 
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TABLE 1. Equilibrium constants for the reactions of ions and solid and dissolved 
compounds of 44 elements, that are of interest in natural waters. 

Equilibrium reactions 

under consideration 

Literature values of i 0 g K° 

(and references) 

Lithium 

L1F(s) * »= L1+ + F~ -2.76 (2) 

L12C03(S) « 2 L1 + + CO3" -2.7.1 (2) 

L1A1(S104)(S) + 4 H+ 

Eucryptlte 

== L1+
 + A l 3 + + H4 S10° 16.6 (2) 

L i A l ( S i 2 0 6 ) ( s ) + 2 H20 + 

Spodumene. 

4 H+ == L1+ + Al 3+ + 2 H4Si0° 10.2 (2) 

L i + + OH" =» L10H° 0.18 (9) 

+ F" « LiF° -0.37 (3) 

+ S O ^ - « LiS0~ 0.64 (5)(9) 

+ P 2 O < " " L1P203- 3.4 (5) 

+ ΗΡ20^" « LiHP2o|" 2.0 (5) 

+ N0- =» L1N0° -1.45 (9) 

M (s) refers to the so l i d phase. 
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Eeryl1ium 

BeO(s) + H20 « Be2+ + 2 OH~ -21.6 (1), -20.9 (2), 

Bromel1ite -21-5 (3), -25.9 (4), 

-19.7 (11), 

Be(OH)-(s) 

BeF2(s) 

== Be2+ + 2 OH" -21.4 (1), -21.3 (2), 

-21.4 (3), -26.0 (4). 

-21.3 (5), -21.1 (9), 

-21.3 (9), -25.7 (9), 

-21.6 (11). 

== Be2+ + 2 F " -7.38 (1), -7.40 (3), 

-0.75 (11). 

BeC03(s) == Be2+ + CO2" "6.84 (2), -6.55 (11), 

BeS04(s) == Be2+ + SO2- 5.34 (1), 5.45 (2), 
5.42 (3), 2.18 (4), 

Be3(P04)2(s) ==• 3 Be2+ + 2 Pof -37.7 (9), 

Be2Si04(s) + 4 H
+ = = 2 Be2+ + H4SiO° 7.62 (1), 7.30 (2), 

Phenaclte 

Be(A102)2(s) + 8 H
+ == Be2+ + 2 Al3+ + 4 H20 21.1 (1), 23.9 (2), 

Chrysoberyl 27.0 (11), 
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BeZ+ + OH" == BeOH+ 8.60 (5) 

+ 2 OH" « Be(OH)| 14.4 (5) 

+ 3 OH" « Be(0H)3 18.6 (2) 

+ 4 OH" == Be(OH)*" 18.4 (2) 

+ 2 OH" == BeO*" + 2 H+ -3.73 (4) 

+ F" « BeF+ 6.00 (2) 

+ 2 F" " BeF£ 9.94 (2) 

+ 3 F" « BeFj 12.7 (2) 

+ 4 F" « BeF "̂ 15.0 (2) 

+ OH" + F" « Be(0H)F° 12.3 (40) 

+ 2 OH" + F" « Be(OH)2F" 17.0 (40) 

+ OH" + 2 F" == Be(OH)F2 13.8 (40) 

+ CI" == BeCl+ 0.32 (29) 

+ 2 CI" == BeClI "0-54 (29) 

+ CO2" == BeC0| 5.13 (29) 

+ 2 CO2" == Be(C03)^" 26.5 ((44) 

+ OH" + CO3" == Be(OH)COj 24.0 (44) 

+ SO2" == BeSOJ 1.95 (1)(5) 

+ 2 SO2" == Be(S04)|" 3.56 (29) 

+ 3 SO2" == Be(S04)^" 3.08 (29) 

+ NO" « BeNOj -0.60 (5) 

Ζ Be(OH)2(s) " Be202+ + H20 + 2 OH' -30.7 (4) 

2 Be(OH)g(s) « Be20f + H.,0 + 2 H+ -27.1 (4) 

3 Be(OH)2Cs) " Be3(0H)|+ + 3 OH" -30.7 (1) 

6 Be(OH)2(s) == Beg(0H)g+ + 4 OH" -41.9 (5)(1) 
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Boron 

B F 3 ( S ) + 3 H 2 0 == B ( 0 H ) | + 3 H + + 3 F " - 3 . 7 8 (2) 

NaBF 4 ( s ) + 3 H 2 0 == B(0H)° + 3 H + + Na + + 4 F " - 1 8 . 1 (2 ) 

F e r r u c i t e 

K B F 4 ( s ) + 3 H 2 0 == B(0H)° + 3 H + + K + + 4 F " - 2 2 . 9 (2 ) 

A vogad r i t e 

C a ( B 0 2 ) 2 ( s ) + 2 H 2 0 + 2 H + == 2 B ( 0 H ) | + C a 2 + 1 6 . 1 (2) 

C a l c l b o r i t e 

P b ( B 0 2 ) 2 ( s ) + 2 H 2 0 + 2 H + == 2 B (0H)° + P b 2 + 7 .60 (2 ) 

C a B 4 0 ? ( s ) + 5 H 20 + 2 H + == 4 B (0H)° + C a 2 + 13.2 (2) 

B (0H)° == H 2 B0 j + Η - 9 . 1 8 (4) 

== HBOj" + 2 H + - 2 1 . 9 (4 ) 

== BOj" + 3 H + - 3 5 . 7 (4) 

B (0H)° + OH" « B(0H)~ 4 .75 (2) 

+ 2 OH" == B ( 0 H ) 2 " 6 .45 (2 ) 

+ 3 OH" « B (0H )| " 7.04 (2) 

B (0H)° == B0 2 + H 2 0 + H + - 2 . 8 4 (4) 
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4 B(OH): 

B(OH)° + F" 

H2B40° + 5 H20 

ΗΒ40^ + 5 H20 + H
+ 

B40^" + 5 H20 + 2 H
+ 

== BF(OH)^ 

5.35 (1) 

-0.73 (1) 

-15.5 (1) 

-0.29(41) 

+ 2 F" == BF 2(OH)J + OH" - 6 . 4 0 ( 4 1 ) 

+ 3 F" == BF 3(OH)" + 2 OH" - 1 3 . 3 ( 4 1 ) 

+ 3 F" == BF° + 3 OH" - 3 8 . 7 ( 1 ) 

+ 4 F" == B F 4 + 3 OH" - 2 1 . 9 ( 4 1 ) 

Scandium 

S c 2 0 3 ( s ) + 3 H 2 0 = = 2 S C 3 + + 6 OH" - 7 2 . 5 ( 1 ) , - 6 7 . 4 ( 2 ) , 

- 7 2 . 6 ( 7 ) , 

ScO(OH) (s) + H20 « Sc3+ + 3 OH" -32.7 (5), -32.7 (7), 

S C ( 0 H ) 3 ( S ) == S c 3 + + 3 OH" - 3 0 . 7 ( 1 ) , - 2 9 . 7 ( 2 ) , 

- 2 7 . 1 ( 4 ) , - 2 9 . 7 ( 7 ) , 

- 3 3 . 0 ( 7 ) , - 2 7 . 0 ( 9 ) , 

- 2 9 . 7 ( 9 ) , 

SC F 3 ( S ) " S c 3 + + 3 F" - 2 3 . 2 ( 1 ) , 
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S c 3 + + OH" 3 = SC(0H) 2 + 9 .24 (7 ) 

+ 2 OH" SS Sc(0H)+ 18.3 ( 5 ) ( 7 ) 

+ 3 OH" ,= Sc(0H)° 27 .2 (7 ) 

+ 4 OH" SB Sc(OH)^ 3 2 . 1 (7 ) 

+ F" SS SCF2+ 7 . 0 9 ( 2 ) ( 5 ) 

+ 2 F" SS ScF+ 12 .9 ( 2 ) ( 5 ) 

+ 3 F" SS ScF| 17.3 (2 ) 

+ 4 F" „ ScF; 20 .2 (2 ) 

+ 6 F" = = ScF3" 15.7 ( " ) 
+ CI " S3 SCC12+ 0 . 9 2 (29) 

+ 2 C I " SS ScCl 2 1 .57 (9 ) 

+ Br" S3 ScBr Z + - 1 . 7 2 ( 1 ) 

+ 2 B r " = = ScBr* - 1 . 4 7 ( 1 ) 

• c o 2 " = = SCCO3 1 0 . 1 (29) 

+ s o 2 " ScSO* 4 . 4 0 (29) 

+ 2 SO2" = = Sc(S04)"2 6 .33 (29) 

+ NO" S3 
2+ ScNOg - 1 . 4 0 ( 1 ) 

2 Sc (OH) 3 ( s ) « Sc2 (0H>2+ + 4 OH" - 3 9 . 3 (5 ) 

3 S C ( 0 H ) 3 ( S ) Sc 3 ( 0H) j i + + 4 OH" - 3 8 . 2 ( 5 ) 
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Titanium IV 

T 1 0 2 ( s ) + H20 == T10 2 + + 2 OH" - 4 1 . 1 ( 2 ) , - 4 0 . 9 (11 

R u t i l e 

T i 0 2 ( s ) + H20 == T i 0 2 + + 2 OH" - 3 9 . 9 ( 2 ) , - 3 5 . 9 ( 1 1 

Anatase 

T i 0 ( 0 H ) 2 ( s ) == T i 0 2 + + 2 OH" - 2 9 . 0 ( 9 ) , - 2 9 . 0 (9) 

- 2 9 . 2 ( 1 1 ) , 

C a T i 0 ( S i 0 4 ) ( s ) + 4 H+ == T i 0 2 + + Ca 2 + + H4SiO° - 3 . 7 7 (2) 

Sphene - T i t a n i t e 

T i 0 2 + + OH" == TiO(OH)+ π . 7 ( 2 g ) 

+ 2 OH" == TiO(OH)| 23 .2 (29) 

+ 3 H 2 0 == Ti(OH)° + 2 H+ - 1 . 1 ( 9 ) 

+ 2 OH" == HTiOj + H+ 1 1 . 2 ( 4 ) 

+ 6 F" + 2 H+ == H F 2 " + H20 I8 .4 ( 1 1 ) 

+ SO2" == TiOSO" 2.50 (5) 
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Vanadium I I I 

V 20 3(s) + 3 H20 

Karelianite 

V(0H)3(S) 

V 3 + + OH" 

+ 2 OH" 

== 2 V3+ + 6 OH" 

== V 3 + + 3 OH" 

== V(OH)2+ 

- V(OH)t 

-74.2 (2), -69.9 

-33.1 (4), 

11.1 (2)(4) 

21.5 (2) 

Vanadium IV 

V 20 4(s) + 2 H20 == 2 V02+ + 4 OH" -47.4 (1), -47.4 

Paramontrosite -46.2 (4), 

V0(0H)2(s) == V02+ + 2 OH" - 2 1 . 6 ( 4 ) , 

Duttonite 

V02+ + H20 + OH" == V(OH)j 8.63 (2) 

+ F" == VOF+ 3.29 (2) 

+ 2 F" == VOF2 5.48 (2) 

+ 3 F" == VOFj 7.15 (2) 

+ SO^" == VOSO° 2.48 (2) 



Vanadium V 

V 2 0 5 ( s ) + 3 H20 

Vanadiumochre 

== 2 VO^" + 6 H+ - 58 .3 (1 ) , - 57 . 0 (2 ) , 

VO^" + H+ 

+ 2 H+ 

+ 3 Η 

+ 4 H+ 

·+ 4 H+ 

+ 2 H+ 

V 2 0 5 ( s ) + 2 H20 

+ 2 H20 

+ 2 H20 

5 V 0 5 ( s ) + 3 H20 

+ 3 H20 

+ 3 H20 

3 V 2 0 5 ( s ) + 3 H20 

2 -== HVO' 

» h 2 vo 4 

" h3vo° 

" V(OH)J 

« V02 + 2 H20 

« V03 + H20 

== V2n^" + 4 H+ 

== H V ^ " + 3 H+ 

" H3V2°7 + H + 

" HV1002
5" + 5 H+ 

" H2V10°28 + 4 H+ 

- V10°28 + 6 

== 2 V30^" + 6 H+ 

13.3 (1 

21.3 (1 

24.6 (2 

30.1 ( 

28.4 ( 

21.3 ( 

- 29 .2 ( 

- 16 .5 ( 

- 3.97 ( 

-18 .7 ( 

-15 .1 ( 

-24 .5 ( 

-35 .4 ( 
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Chromium III 

Cr203(s) + 3 H?0 == 2 Cr3+ + 6 OH" -73.2 (1), -73.5 (2), 

Escolaite -69.2 (3), -67.2 (4), 

-68.5 (6), 

Cr(0H)3(s) == Cr3+ + 3 OH" -30.0 (2), -37.4 (4), 

-30.0 (7), -30.2 (9), 

Cr3+ + OH" « Cr(0H)2+ 10.0 (2) 

+ 2 OH" == Cr(OH)+ 18.4 (2) 

+ 3 OH" == Cr(0H)3 24.0 (7) 

+ 4 OH" == Cr(OH)"4 28.6 (7) 

+ 2 OH" == CrO^ + 2 H+ - 0.02 (2) 

+ 3 OH" == CrO3" + 3 H+ -14.7 (4) 

+ F" == CrF2+ 5.00 (1) 

+ 2 F" == CrF^ 9.31 (29) 

+ 3 F" " CrF° 11.9 (29) 

+ CI" == CrCl2+ 0.60 (2) 

+ 2 CI" == CrCl* - 0.11 (2) 

+ SO2" « CrSO+ 4.61 (29) 

2 Cr(OH)3(s) == Cr2(OH)2
+ + 4 OH" -37.0 (7) 

3 Cr(0H)3(s) == Cr3(OH)^
+ + 5 OH" -42.1 (7) 
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Chromium VI 

CrOj(s) + Η?0 == CrOf + 2 Η 

CrO?" + H+ == HCrO 4 " 

2C r 04 

4 

+ 2 H+ == H,CrO° 

+ Na+ « NaCrO. 

+ K+ == KCrO~ 

2 Cr03(s) + H20 == Cr2°7~ + 2 H+ 

•4.83 (11) , 

6.50 (2) 

5.52 (2) 

0.70 (29) 

0.80 (29) 

7.13 (?) 
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MnO(s) + H 20 == Mn 2 + + 2 OH" -10.1 (1), -9.70 (?), 

Manqanosite -10.0 (3), -10.2 (4), 

-10.1 (6), -9.60 (19), 

Mn(OH)£(s) == Mn 2 + + 2 OH" -12.7 (1), -12.5 (2), 

Pyrochroite -13.0 (4), -12.« (5), 

-12.Β (7), -12.4 (9), 

-12.7 (9), -12.8 (9), 

-11.6 (11), -12.8 (19), 

MnC03(s) == Mn 2 + + CO2" -10.6 (1), -10.3 (2), 

Rhodochrosite -10.6 (3), -10.0 (4), 

-9.30 (5), -10.6 (6), 

-9.30 (9), -10.1 (19), 

-10.6 (48), 

MnS(s) + H + « fn 2 + + HS" -0.43 (1), -0.04 (2), 

Alabandite -0.44 (3), 1.09 (4), 

-0.40 (6), 0.06 (19), 

MnS04(s) == Mn 2 + + SO 2" 2.67 (1), 2.77 (2), 

2.71 (3), 2.39 (4), 

2.42 (6), 2.25 (10), 

2.87 (11), 3.43 (19), 

Mn3(P04)2(s) == 3 Mn 2 + + 2 PO^" -21.7 (4), -27.3 (19), 

MnSiOj(s) + H 20 + 2 H
+ == Mn 2 + + H4SiO£ 11.7 (1), 10.9 (2), 

Rhodonite 10.3 (19), 

Mn2Si04(s) + 4 H + == 2 Mn 2 + + H ^ i O J 24.6 (1), 24.2. (2), 

Tephroite 24.5 (19), 
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Mn 2 + + OH" == MnOH+ 3.41 (2) 

+ 2 OH" == Mn(OH)° 5.80 (7) 

+ 3 OH" » Mn(OH)~ 7.81 (2) 

+ 4 OH" =« Mn(OH)2" 7.70 (7) 

+ 2 OH" = s HMnO^ + H + -6.37 C ) 

+ F" == MnF+ 0.85 (1) 

+ CI" « MnCl + 0.61 (1) 

+ 2 CI" HnCl° 0.04 (1) 

+ 3 CI" == MnClg -0.30 (1) 

+ co | " == MnCO° 4.10 (29) 

+ HCO" MnHCOj 1.80 (5) 

+ S2°3~ 
« HnS20° 1.79 (4) 

+ SO2" = = MnSO° 2.26(10)(37) 

+ NO" « MnNot 0.20 (5) 

+ 2 NO" == Hn(N0 3)| 0.60 (5) 

2 Mn(OH)2(s) « Mn 2(0H)
3 + + 3 OH" -22.2 (5) 

2 Mn(OH)2(s) Mn2(OH)J + OH" -7.50 (5) 
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Iron II 

FeO(s) + H20 == Fe2+ + 2 OH~ -13.2 (2), -15.6 (3), 

Wustite - H . 4 (4), - W . 6 (6), 
-14.3 (33), -14.5 (19), 

Fe(OH)2(s) == Fe2+ + 2 OH" -16.3 (1), -15.1 (2), 

-16.4 (3), -14.7 (4), 

-15.1 (5), -15.2 (7), 

-14.8 (9), -15.0 (9), 

-15.1 (9), -15.1 (36), 

FeCOg(s) == Fe2+ + CO2- -10.5 (1), -10.5 (2), 

Siderite "10.6 (3), -10.7 (4), 

-10.7 (5), -10.6 (6), 

-10.7 (10), -10.7 (36), 

FeS(s) + H+ == Fe2+ + HS- -5.89 (1), -3.55 (2), 

Pyrrhotite -5.94 (3), -4.20 (5), 

-6.06 (6), -4.30 (9), 

-4.38 (9), -4.42 (9), 

-4.99 (10), -4.52 (19), 

FeS04(s) « Fe2+ + SO2- 0.45 (1), 2.73 (2), 

0.51 (3), -0.48 (4) 

2.65 (19), 

Fe3(P04)2.8H20 == 3 Fe2+ + 2 Pojj" + 8 H ?0 -36.0 (5), -36.0 (19), 

Vivianite 

FeSiOj(s) + H20 + 2 H
+== Fe2+ + F4?10£ 5.06 (4), 14.8 (19), 

Ferrosilite R-2fi (33)» 

Fe2Si04(s) + 4 H
+ == 2 Fe2+ + H4SiO° 16.7 (1), 20.1 (2), 

Fayalite 15.5 (4), 19.8 (19), 
19.7 (33), 
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CaFe(S i0 3 ) 2 ( s ) + 2 H^O + 4 H+ == Fe 2 + + Ca2 + + 2 H^SiO" 20.3 (33), 

Hedenbergite 

Fe 3 S i 2 0 5 ( 0H ) 4 ( s ) + 6 H+ = = 3 Fe 2 + + H20 + H^SiO» 26.4 (27), 

Greenalite 

Fe 3 S i 4 0 1 0 ( 0H ) 2 ( s ) + 4 H20 + 6 H+ = = 3 Fe 2 + + 4 H4SiO° 16.0 (27), 

Minnesota!te 

KFe 3 (A l S i 3 0 1 0 ) ( 0H ) 2 ( s ) + 10 H+ == 3 Fe 2 + + K+ + A l 3 + + 3 H4SiOJ 

Annlte 32.8 (27), 31.8 (33) 

CuFeS2(s) + 2 H+ == Fe 2 + + Cu2+ + 2 HS~ -30.8 (2 ) , -35.3 (3) 

Chalcopyrite -33.7 (10), 
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Fe Z + + OH" == Fe(OH)+ 5.70 (10)(36) 

+ 2 OH" == Fe(OH)° 7-40 (5) 

+ 3 OH" == Fe(OH)j 10.0 (?) 

+ 4 OH" =s-Fe(OH)^" 9.60 (2) 

+ 2 OH" == HFeO^ + H + -2.74 (1) 

+ 2 OH" == FeO^" + 2 H + -10.8 (1) 

+ F" == FeF+ 1.42 (29) 

+ 2 F" == FeF° Π.00 (1) 

+ CI" == FeCl+ 0.32 (29) 

+ 2 CI" == FeCl2 0.00 (1) 

+ 2 Br" == FeBr° 0.00 (1) 

+ CO3" == FeCO° 4.73 (29) 

+ IICO3 == FeHCO* 2.60 (S3) 

+ 2 HS" == Fe(HS)° 8.95 (?) 

+ 3 HS" == Fe(HS)j 11.0 (?) 

+ S 20
Z" == FeS20° 4.36 (1) 

+ S0Z" == FeSO° 2.20 (2) 

+ H 2PO^ == FeH2PO^ 2.70 (5) 

+ HPO^" == FeHPO° 3.60 (5) 

3 Fe(OH)2(s) == Fe3(OH)^
+ + 2 OH" -34.7 (19) 

315 



Iron III 

Fe203(s) + 3 H?0 «« 2 Fe3+ + 6 OH" -87.7 (1), -83.1 (2), 

Hematite -87.7 (3), -85.4 (4), 

-85.4 (5), -87.9 (6), 

-85.4 (9), -83.6 (33), 

-83.8 (19), 

FeO(OH)(s) + H20 == Fe3+ + 3 OH" -41.7 (2), -41.5 (5), 

Goethite -43.7 (6), -42.0 (19), 

Fe(0H)3(s) == Fe3+ + 3 OH" -38.6 (1), -39.4 (2), 

-38.6 (3), -37.2 (4), 

-38.3 (5), -36.9 (9), 

-37.5 (9), -38.6 (9), 

-39.4 {9), -38.4 (19), 

Fe2S3(s) + 3 H
+ = = 2 Fe3+ + 3 HS" -49.3 (2), -49.3 (19), 

Fe2(S04)3(s) == 2 Fe3+ + 3 SO*" 3.58 (2), -3.44 (3), 

-1.92 (6), 2.89 (19), 

FeP04(s) == Fe3+ + PO3" -26.0 (2), -17.9 (4), 

Heterosite -24.9 (19), 

FeP04.H20(s) == Fe3+ + PO3" + H?0 -25.3 (1), -25.7 (2), 

Strengite -26.4 (5), -26.4 (19), 

Fe2Si401Q(0H)2(s) + 6 H
+ + 4 H?0 == 2 Fe

3+ + 4 H4S10| -9.11 (27) 

Ferric Minnesotalte 
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C a 3 F e 2 S i 3 0 1 2 ( s ) + 12 H + « 2 F e 3 + + 3 C a Z + + 3 H 4 S 1 0 ° 3 4 . 1 ( 3 3 ) , 

A n d r a d i t e 

C a 2 F e A l 2 S 1 3 0 l 2 ( 0 H ) ( s ) + 13 

E p l d o t e 

H + == F e 3 + + 2 C a Z + + 2 A T S + + H , 0 + 2+ 3+ 

F e 3 + + OH 

+ 2 OH" 

+ 3 OH" 

+ 4 OH" 

+ F " 

+ 2 F " 

+ 3 F " 

+ C I " 

+ 2 C I " 

+ 3 C I " 

+ 4 C I " 

+ B r " 

+ 3 B r " 

C 0 3 ~ 

s 2 o f 

so 

+ 2 SO 

H 2 P O 4 

HPO?" 

N O , 

2+ F e ( O H ) 

F e ( O H ) 2 

F e ( O H ) ° 

F e ( O H ) ; 

2+ == F e F 

== F e F 2 

- F e F " 

== F e C l 

" F e C l I 

== F e C l S 

== F e C l J 

== F e B r 

== F e B r ' 

== FeCO' 

2+ 

2+ 

+ 

F e S 2 0 3 

== F e S O T 

F e ( S 0 4 ) " 

F e H 2 P 0 | + 

F e H P O 

F e N O ? 

3 5 . 3 ( 3 3 

1 1 . 8 

2 1 . 2 

3 2 . 9 

3 4 . 5 

P . 04 

1 0 . 9 

1 4 . Q 

1 . 4 8 

2 . 1 3 

1 . 1 3 

- 0 . 7 9 

0 . 6 6 

0 . 0 4 

9 . 7 2 

1 7 . 4 

4 . 1 5 

5 . 6 7 

3 . 5 0 

8 . 3 0 

1 . 0 2 

3 P 4 S i 0 ° 

2 ) 

2) 

2 ) 

2 ) 

2 ) 

23) 

2 3 ) 

1 0 ) 

1 0 ) 

1 0 ) 

1 0 ) 

3 ) 

1 9 ) 

2 9 ) 

1 ) 

2) 

1 ) 

12) 

12) 

1 ) 
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2 F e ( 0 H ) 3 ( s ) 

3 Fe (OH) j ( s ) 

2 Fe (OH) 3 ( s ) + 3 SO2 ' 

Cobalt 

CoO(s) + H 20 

Co(OH)2(s) 

T r a n s v a a l i t e 

CoC0 3 ( s ) 

Sphe rocoba l t i t e 

CoS(s ) + H + 

J a i p u r i t e 

CoS0 4 ( s ) 

Fe 2 (0H)2 + 4 OH 

5+ 

Fe 3 ( 0H ) 4 + 5 OH 

== F e 2 ( S 0 4 ) ° + 6 OH' 

- 5 2 . 0 (1) 

- 6 8 . 5 (5) 

- 78 .4 (1) 

- 1 4 . 1 ( 1 ) . - 1 4 . 3 ( 2 ) , 

- 1 4 . 4 ( 3 ) , - 1 3 . 0 ( 4 ) , 

- 1 4 . 5 ( 6 ) , - 1 4 . 6 ( 9 ) , 

- 1 5 . 2 (°). - 1 5 . 5 ( 9 ) , 

- 1 4 . 0 ( 1 1 ) . 

- 1 5 . 0 ( 1 ) . - 1 5 . 0 ( 2 ) , 

- 1 5 . 4 ( 4 ) , - 1 4 . 9 ( 5 ) , 

- 1 4 . 9 ( 9 ) , - 1 5 . 4 ( Π ) , 

- 1 4 . 9 ( 36 ) , 

- 9 . 8 4 (?). - 1 2 . 1 ( 4 ) , 

- 9 . 9 8 ( B ) . - 9 . 9 8 ( 9 ) , 

- 1 2 . 8 ( 9 ) , 

- 7 . 0 9 ( 2 ) , - 7 . 0 4 ( 3 ) , 

- 7 . 34 C ) , - 5 . 3 5 ( 11 ) . 

2 .91 ( 1 ) , 2.84 ( 2 ) , 

2.86 ( 3 ) , 7.36 ( 4 ) , 

Co 2 + + 2 OH" 

Co 2 + + 2 OH" 

Co 2 +
 + CO, 

Co 2 + + HS 

Co 2 + + SO 
2-

CoS0 4 .H 2 0 (S) == Co + SO)j" + H20 - 1 - 0 2 ( 2 ) . 

COS0 4 .6H 20(S) == CO2 + + SO 2 " + 6 H ? 0 - 2 . 1 8 ( 2 ) , 
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CO S0 4 . 7H 2 0 (S ) == CO Z + + SO 2 " + 7 H.,0 - 2 . 3 3 ( 2 ) , 

B i ebe r i te 

C o 3 ( P 0 4 ) 2 ( s ) « 3 Co 2 + + 2 - 3 3 . 9 ( 1 ) , - 3 4 . 7 ( 9 ) , 

C o 2 + + OH" == Co(0H) + 4 . 35 (29) 

+ 2 OH" == Co(OH)° 9 .19 ( 2 ) ( 7 ) 

+ 3 OH" · » Co(OH)j 10.5 ( 2 ) ( 7 ) 

+ 4 OH" == Co(OH) 2 " 9 . 70 (7) 

+ 2 OH" « HCoO^ + H + 6 .75 (1 ) 

+ F " == CoF + 1.02 (29) 

+ C I " == CoC l + - 0 . 1 4 ( ? ) 

+ 2 C I " == CoC l j - 0 . 0 3 (1) 

+ 2 B r " == CoBi"2 0 . 00 (1) 

+ CO 2 ' == CoCO| 4 . 9 1 (29) 

+ HCO3 == CoHCO* 1 .39 (49) 

+ HS" == Co (HS ) + 5 . 70 (2) 

+ 2 HS" == Co(HS)° 8 .76 (2) 

+ S 2 0 2 " == CoS 2 0° 2.04 (2) 

+ S 0 4 " == CoSO° 2 .36 (37) 

+ NOj == C0NO3 0 .20 (6) 

+ 2 N0 3 == Co (N0 3 ) ° - 0 . 0 1 (1) 

2 C o ( 0 H ) 2 ( s ) == C o 2 ( 0 H ) 3 + + 3 OH" - 2 8 . 4 (5 ) 

4 Co (OH) 2 ( s ) == CO 4 (OH) 4
+ + 4 OH" - 3 6 . 9 ( 5 ) 
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'2V 
,2+ 

Nickel 

NiO(s) + H 20 == Ni 2 + + 2 OH" -15.5 (1), -15.6 (2), 

Bunsenlte -15.5 (3), -15.6 (4), 

-15.5 (6), -15.7 (7), 

-14.5 (11), 

-15.3 (1), -17.4 (2), 

-15.8 (4), -15.2 (5), 

-14.9 (9), -15.0 (9), 

-15.2 (9), -15.5 (9), 

-15.1 (11), 

NiCOj(s) == Ni Z + + CO2" -6.84 (1), -6.85 (2), 

-6.78 (4), -6.87 (5), 

-6.87 (9), -6.82 (11), 

NiS(s) + H + == N1 2 + + HS" -8.P5 (1), -8.14 (2), 

Millerite -8.02 (3), -6.73 (4), 

-9.24 (6), -6.72 (11), 

-7.64 (11), 

NiS04(s) == Ni 2 + + SO2" 5.33 (1), 4.50 (2), 

5.42 (3), 2.91 (4), 

1.73 (11), 

N1 3(P0 4) 2(s) == 3 Ni 2 + + 2 PO*" -30.6 (1), 

N1 2P 20 7(S) + H 20 == 2 N1 2 + + 2 H + + 2 PO^" ,32.8(1), 

Ni2S104(s) + 4 H + == 2 N1 2 + + H4S10» 14.5(2), 
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Ni .•2+ OH 

+ 2 OH" 

+ 3 OH" 

+ 4 OH" 

+ 2 OH 

+ F" 

+ 2 F" 

+ CI" 

+ 2 CI" 

C 03 

S2°3~ 

+ so; 

+ 2 so; 

+ NO 

+ 2 HO: 

3 

2 Ni(OH)2(s) 

4 Ni(OH)2( s) 

== Ni(OH)+ 

« Ni(OH)2 

== Ni(OH)j 

- - Ni(OH)^" 

== HNiO^ + H+ 

« NiF+ 

== NiF° 

== Ni Cl + 

== NiCl° 

== Ni CO| 

== NiS20° 

== NiSOi 

«" N1(S04)|" 

== NiNOl 

== Ni(N03)» 

3+ == Ni2(0H)° + 3 OH 

4+ 
" N1 4(0H)^ + 4 OH 

4.14 (7) 

10.2 (2) 

13.0 (2) 

12.0 (29) 

-2 .39 (4) 

1.12 (29) 

0.01 (1) 

0.18 (5) 

-0 .03 (1) 

5.37 (29) 

1.83 (1) 

2.32 (10) 

3,20 (29) 

n.40 (5) 

0.06 (1) 

-31.5 (5) 

-41.3 (5) 
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Copper I 

C u 2 0 ( s ) + H20 == 2 Cu+ + 2 OH" - 2 9 . 5 ( 1 ) . - 2 9 . 9 ( 2 ) , 
C u p r i t e - 2 9 . 6 ( 3 ) , - 2 9 . 7 ( 4 ) , 

- 2 9 . 6 ( 6 ) , - 2 9 . 6 ( 7 ) , 
- 2 9 . 1 (11 ) , - 3 0 . 2 (19 ) 

CuOH(s) == Cu+ + OH" - 1 4 . 7 ( S ) , - 1 4 . 7 ( 9 ) , 
- 1 4 . 7 (19 ) 

Cu 2 S(s ) + H+ == 2 Cu+ + HS" - 3 4 . 7 ( 1 ) . - 3 4 . 7 ( 2 ) , 
C h a l c o c i t e - 3 4 . R ( 3 ) , - 3 4 . 9 ( 4 ) , 

- 3 4 . 9 ( 6 ) , - 3 4 . 7 ( 1 0 ) , 
- 3 5 . 4 ( 1 1 ) , - 3 3 . R (11) 
- 3 5 . 3 ( 1 1 ) , - 3 5 . 6 (19 ) 

C u 2 S 0 4 ( s ) «= 2 Cu+ + SO?" 4 - 1 . 9 5 C ) , - 1 . 4 9 ( 1 1 ) , 
- 1 . 9 5 ( 1 3 ) , 

Cu+ + C l " == CuCl0 2 . 7 0 ( 5 ) 

+ 2 C I " == CuCl 2 4 . 9 4 (10 ) 

+ 3 C l " == CuCl 5 . 1 4 (10 ) 

+ s 2 ° 3 " == CuS2Oj 10 .4 ( 5 ) 

+ 2 S-,02" == C U ( S 2 0 3 ) 3 " 1 2 . 3 ( 5 ) 

• 3 S-,02" == c u ( s 2 o 3 ) ! j " 13 .7 (5 ) 

+ SO2" == CuSOj 7 .R1 ( 1 ) 

+ 2 SO2" « C u ( S 0 3 ) | " 8 . 6 1 ( 1 ) 

+ 3 SO2" Cu (S0 3 ) 5 - 9 . 3 5 ( 1 ) 

2 Cu(OH)(s ) + SO2" == Cu2SO° + 2 OH" - 2 9 . 4 ( 1 ) 

2 Cu(OH)(s ) + 4 Cl" ' == C u 2 C l ^ " + 2 OH" - 1 6 . 3 ( ? ) 

2 CuS(s) + S3" + 3 S4" == 2 C u ( S 4 ) | " + S 2 " - 1 . 3 0 (17 ) 

2 CuS(s) + 3 S 2 " + S 2 " == 2 CuS^Sj?" + S 2 " - 6 . 4 4 (17 ) 
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Copper II 

CuO(s) + H 20 == Cu 2 +
 + 2 OH" -20.6 (1). -20.3 (2), 

Tenorite -20.7 (3), -20.1 (*). 
-20.4 (5), -20.6 (6), 

-19.9 (9). -19.7 (9), 

Cu(0H)2(s) == Cu 2 +
 + 2 OH" -18.8 (4). -19.3 (5), 

-18.2 (9). -IP.3 (9). 

-19.3 (9), -19.8 (9), 

-19.9 (9). -19.3 (12) 

CU4C12(0H)6(S) == 4 Cu 2 + + 2 CI" + 6 OH" -35.2 (2). 

Atacamite 

CuCOJ(S) « Cu 2 +
 + CO2" -9.70 (2). -9.63 (9), 

-9.63 (19), 

CU2C03(0H)2(S) == 2 Cu 2 + + CO2" + 2 OH" -33.9 (2). -32.0 (3), 

Malachite -33.8 (5), -33.8 (9), 

-33.2 (19), 

CU3(C03)2(0H)2(S) == 3 Cu Z + + 2 CO2" + 2 OH" -47.7 (2), -46.5 (3), 

Azurite -46.0 (5), -46.0 (9), 

-44.7 (19), 

CuS(s) + H + == Cu 2 + + HS" '23.0 (1), -22.9 (2), 

Covellite -23.0 (3), -22.2 (4), 

-22.2 (6), -22.1 (10), 
-23.2 (19), 

CuS04(s) " Cu 2 + + SO2" 3.01 (1), 2.95 (2), 

Chalcocyanite 3.01 (3), 2.65 (4), 

2.72 (6), 3.72 (19), 
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CU3S04(0H)4(S) == 3 Cu2 + + SO2" + 4 OH" - 4 7 . 1 {?.), - 4 7 . 3 (3) , 

Ant ler i te - 4 7 . ? (9) 

CU4S04(0H)6(S) == 4 Cu2 + + SO2" + 6 OH" -68.5 ( 2 ) , -69.4 ( 3 ) , 

Brochantite -68.6 (5) , -68.5 (9) , 

-68.6 (9), -69.0 (9) , 

-69.4 (9), "68-6 ( 19) . 

Cu 3 (P0 4 ) 2 (s) == 3 Cu2 + + 2 PO^" - 3 6 . 1 ( 1 ) , -36.9 ( 1 9 ) , 

Cu 2 P 2 0 ? (s) + H20 == 2 Cu2 + + 2 H+ + 2 PO^" - 3 5 . 2 ( 1 ) , "32.5 (19) 

CuSi03(s) + H20 + 2 H+ == Cu2 + + H4SiO° 6.50 ( 2 ) , 

Oioptase 

CuFeS2(s) + 2 H+ == Cu2 + + Fe 2 + + 2 HS" - 3 0 . 8 ( 2 ) , - 3 5 . 3 ( 3 ) , 

Chalcopyrlte - 3 3 . 7 (10) , 
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C u 2 + + OH" == Cu (OH) + 6 . 0 3 (9 ) 

+ 2 OH" == Cu(OH)° 11 .8 

+ 3 OH" == Cu(OH)2 15 .0 ( ? ) 

+ 4 OH" « C u ( O H ) 2 " 1 5 . 9 ( 2 ) 

+ 2 OH" « HCuOj + H + 1 . 66 ( 1 ) 

+ 2 OH" == CuO* " + 2 H + - 1 1 . 5 ( 1 ) 

+ F " == CuF + 1 . 23 ( 2 ) ( 5 ) 

+ C I " == C u C l + 0 . 0 1 ( 1 0 ) 

+ 2 C I " == CuC l2 O.Fi9 ( 1 0 ) 

+ 3 C I " == CuC l ^ - 2 . 2 9 ( 1 0 ) 

+ 4 C I " == C u C l 2 " - 4 . 5 9 ( 1 0 ) 

+ CO3" == CuCO° 6 . 7 5 (5 ) 

+ 2 CO 2 " « C u ( C 0 3 ) I " 9 . 9 2 ( 5 ) 

+ HCOj == CuHCOj 2 . 1 0 ( 19 ) 

+ 3 HS" == Cu (HS ) 2 25 . 9 ( 2 ) 

+ 4 HS " == C u S f H S ) * " + H + 18 .5 ( 43 ) 

+ NO3 == CuNOj 0 . 5 0 ( 5 ) 

+ 2 NO3 == C u ( N 0 3 ) | - 0 . 4 0 (5 ) 

+ H 2 P 0 ^ == CUH 2P0^ 1 . 5 9 ( 19 ) 

2 C u ( O H ) 2 ( s ) == C u 2 ( n H ) | + + 2 OH" - 2 1 . 3 ( 5 ) 

C u S ( s ) + 2 HS " + H 2 S ° == C u ( H S ) 2 " - 3 . 2 0 ( 8 ) 
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Zinc 

ZnO(s) + H 20 == Zn 2 + + 2 OH" -16.4 (1), -16.Ρ (2), 

Zincite -16.5 (3), -16.1 (4), 

-16.7 (5), -16.8 (6), 

-16.9 (9), -17.1 (9), 

-16.fi (19), 

Zn(0H)2(s) «= Zn 2 + + 2 OH" -16.2 (1), -15.5 (2), 

-15.7 (4), -16.5 (5), 

-15.7 (9), -16.5 (9), 

-16.7 (9), -15.5 (36), 

-15.5 (19), 

ZnC03(s) « Zn 2 + + CO2" -9.92 (1), -10.3 (2), 

Smithsonlte -9.fi? (3), -9.R2 (4), 

-10.0 (5), -10.7 (9), ' 

-9.72 (10), -10.0 (36), 

-10.2 (19), 

ZnS(s) + H + == Zn 2 + + HS" -11.6 (1), -12.0 (2), 

Sphalerite -11.6 (3), -11.2 (4), 

-ll.fi (6), -11.3 (10), 

-11.8 (19), 

ZnS04(s) == Zn 2 + + SO2" 3.01 (1), 3.93 (2), 

Zinkosite 3.01 (3), 3.09 (4), 

Zn3(P04)2.4H20(s) == 3 Zn 2 + + 2 P04" + 4 H ?0 -32.0 (2), -35.3 (5), 

Hopeite -32.0 (12), -35.2 (19), 

ZnSiOj(s) + H 20 + 2 Zn 2 + + H4S10° 2.93 (4), 

Zn2S104(s) + 4 H + == 2 .Zn2+ + H4SiO= 15.3 (1), 13.4 (2), 

Willemlte 13.2 (19), 
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Z n 2+ OH 

+ 2 OH" 

+ 3 OH" 

+ 4 OH" 

+ 2 OH" 

+ 2 OH" 

+ F " 

+ 2 F " 

+ C I " 

+ 2 C I " 

+ 3 C I " 

+ 4 C I " 

+ OH" + C I " 

+ B r " 

+ 2 B r " 

+ 3 B r " 

+ 0 ) 2 " 

+ 2 HS" 

+ 3 HS" 

+ OH" + HS" 

* S 2 n 3 ~ 

+ SO 

+ 2 SO 

+ 3 SO 

== Z n ( O H ) + 

== Z n ( O H ) £ 

== Z n ( O H ) " 

- - Z n ( O H ) ^ " 

== H Z n 0 2 + Η 

== Z n O ^ " + 2 H + 

== Z n F + 

== Z n F ° 

== Z n C l + 

== Z n C l ° 

== Z n C l 

== Z n C l 

== Z n ( O H ) C l ° 

== Z n B r + 

== Z n B r ° 

" Z n B r 3 

« Z n C O ° 

== Z n ( H S ) ° 

== Z n ( H S ) j 

== Z n S H O H " 

== Z n S 2 0 ° 

= * Z n S O ° 

« Z n ( S 0 4 ) | " 

« Z n ( S 0 4 ) ^ " 

5 . 0 4 

1 2 . 9 

1 5 . 0 

1 6 . f i 

- 0 . 7 6 

- 1 3 . 5 

1 . 2 6 

0 . 0 2 

0 . 4 3 

0 . 6 1 

0 . 5 3 

0 . 2 0 

6 . 5 4 

- 0 . 5 6 

- 0 . 9 6 

- 1 . 7 3 

4 . 7 5 

1 4 . 9 

1 6 . 1 

1 9 . 0 

2 . 2 9 

2 . 3 8 

3 . 6 3 

2 . 7 0 

(2) 

( 2 ) 

( 2 ) 

( 2 ) 

( 1 ) 

( 1 ) 

(?) 

d ) 

( 1 0 ) 

( 1 0 ) 

( 1 0 ) 

( 1 0 ) 

( 1 ) 

( 1 ) 

( 1 ) 

( 1 ) 

( 2 9 ) 

( 2 ) 

( 2 ) 

( 3 8 ) 

( 2 ) 

( 1 0 ) 

( 2 9 ) 

( 2 9 ) 
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Zn 2 +
 + NO- == ZnNOj 0.40 (5) 

NO- == Ζη(Ν03)° 0.02 (1) 

h2po" == ZnH2PO+ 1.60 

P2°7~ == ZnP 20
2" 8.70 (5) 

Ρ ο 4" 
2 7 == Zn(P207)6" 11.0 (5) 

,(S) == Zn 2(0H)
3 + + 3 OH" -26.0 (5) 

HS" == ZnHS2 -2.96 (5) 

2 HS" + H2S° == Zn(HS)2" -2.60 (8) 

Gallium 

Ga203(s) + 3 H 20 == 2 Ga 3 + + 6 OH" -105.9 (2), -78.5 (3), 

GaO(OH)(s) + H 20 == Ga 3 + + 3 OH" -39.1 (5), -39.1 (7), 

Ga(OH)3(s) « Ga 3 + + 3 OH" (2), -37.0 (5), 

Söhngeite "37.0 (7), -34.0 (9), 

-36.5 (9), -39.1 (9), 

GaP04(s) == Ga 3 + + PO3" "20.6 (1), -20.4 (2), 

-21.0 (5), 
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OH 

2 OH 

3 OH 

4 OH 

5 OH 

6 OH' 

3 OH 

3 OH' 

F" 

2 F" 

3 F" 

CI 

4 Br 

CO 

SO 

2 SO 

== Ga(OH) 2+ 

== GaiOH)^ 

== Ga(OH)° 

" Ra(OH)· 

== Ca(OH) 2 -

3-== Ga(OH)g 

== H2Ga03 + Η 

== GaOj" + 3 H+ 

== GaF 

== GaF^ 

== GaCl 

== GaBr 

== GaCO 

2+ 

2+ 

4 

« GaSO+ 

aa(so 4 ) " 

11.2 (2) 

21.7 (?) 

31.7 (2) 

38.9 (?) 

42.5 (2) 

44.9 (2) 

19.9 (1) 

-2.04 (1) 

6.19 (?) 

10.7 (2) 

13.5 (?) 

-0 .60 (2) 

-4 .32 (1) 

8.79 (29) 

2.77 (2) 

5.06 (2.) 
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Germanium 

Ge0 2 (s ) + 2 H20 == Ge4+ + 4 OH" -59 .4 ( 2 ) , 

GeS 2 ( s ) + 2 H+ 

4+ 

Ge + OH 

+ 2 OH" 

+ 3 OH" 

+ 4 OH" 

+ 5 OH" 

+ 6 OH" 

+ 4 OH" 

+ 4 OH" 

+ 3 OH" 

+ 3 OH" 

+ 3 OH" 

+ 5 F" 

+ 6 F" 

+ OH" + 4 F' 

Ge4+
 + 2 HS -32 .2 ( 2 ) , 

Ge(0H)3 + 

Ge(OH)2
+ 

Ge(OH)+ 

Ge(OH)° 

Ge(OH)g 

Pe(OH)g~ 

HjGeO^ + H+ 

H2GeO^" + 2 H+ 

H2GeO° + H+ 

HGeOj + 2 H+ 

GeOj" + 3 H+ 

GeF" 

GeF^" 

GeF 4(0H)" 

13.9 (2) 

27.6 (2) 

41.1 (2) 

54.4 (2) 

59.7 (2) 

60.9 (2) 

45.1 (7) 

32.5 (7) 

49.4 (4) 

40.9 (4) 

28.2 (4) 

21.8 (2) 

25.6 (2) 

31.1 (2) 
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A r s e n i c I I I 

A S 2 0 3 ( s ) + 3 H 2 0 == 2 AsOj " + 6 H + ~ 7 0 , 9 

C l aude t i t e 

A s 2 S 3 ( S ) + 6 H 2 0 . . 2 A sOj " + 3 HS" + 9 H + " 1 1 5 · 5 <?>> " 1 1 4 · 7 < 3 1 > > 

Orpiment 

A sO 3 " + H + == HAsOg" 13.4 ( 2 ) 

+ 2 H + == H 2 A s 0 3 25 .5 (2 ) 

+ 3 H + " " 3 A s 0 3 31.5 ( ? ) 

+ 2 H + == AsO + + 2 OH" 1.10 (2) 

+ H + == AsO~ + OH" 10.4 (1 ) 

+ 2 H + == HAsO° + OH" 19.7 (1 ) 

+ 2 H + + H 2 0 == As (OH)^ 25.5 (2+37) 

+ 3 H + + H 2 0 == HAs(OH)^ 34 .7 (2+37) 

A s 2 S 3 ( S ) + H 2 S° == H 2 A S 2 S ° 3 .25 

A S 2 S 3 ( S ) + H S " 1 == HAS 2S^ 1.27 

A s 2 S 3 ( S ) + HS" + OH" « A s ^ j j " + H 2 0 - 4 . 3 2 

A s 2 S 3 ( S ) + H 2 S ° == 2 HAsS 2 -10.(5 (P) 

A s 2 S 3 ( s ) + S 2 " == 2 AsS~ 2 .00 (13) 

A s 2 S 3 ( s ) + 2 OH" == A s S 2 + A s S (OH) " 2 . 1 5 ( 1 3 ) 

A s 2 S 3 ( s ) + 2 S 2 " == AsS~ + A s S 3 " 12.9 (13) 
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Arsenic V 

As205(S) + 3 H20 == 2 H3ASO£ 8.15 (?), 6.71 

AsF5(S) + 4 H20 == H3ASO° + 5 F~ + 5 H
+ 7.13 (2), 

A1As04.2H20(S) + H20 == H3ASO° + Al
3+ + 3 OH" -37.1 (2), 

H3ASO° == H2Asn^ + H
+ -2.24 (7) 

== HAsO2" + 2 M+ -9.20 (7) 

== AsO3" + 3 H+ -20.7 (7) 

+ f" == HAs03F" + H20 44.4 

+ F" == As03F
2" + H20 + H

+ 38.5 

Selenium IV 

Se02(s) + H20 == SeO*~ + 2 H+ -7.87 (2), -6.49 (4), 

Selenolite -7.17 (11), -7.39 (11), 

SeOj" + H+ == HSe0~ (2)0) 

+ 2 H+ .. H2Se05 10-9 (2)(9) 
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Seleni um VI 

Se03(s) + H 20 == SeO^" + 2 H + 21.0 (2), 

SeO^" + H + == HSeO^ 1.66 (2)(9)(29) 

Rubidium 

PbCl(s) == Rb+ + Cl" 1.31 (2), 

RbBr(s) == Rb+ + Br" 1.17 (2), 

Rb2S04(s) == 2 Rb+ + SO^" -0.99(2), 

Rb+ + OH" == Rb(OH)° 0.00 (4) 

+ Cl" == RbCl0 -0.66 

+ I" == Rbl° 0.04 
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Strontium 

Sr(0H)2(s) == Sr2+ + 2 OH" 0.43(4), 

SrF2(s) == Sr2+ + 2 F" -8.36 (1), -8.60 (2), 

-8.43 (3), -9.12 (4), 

-8.54 (5), -8.54 (9), 

-8.61 (9), 

SrC03(s) « Sr2+ + CO2" -9.25 (1), -9.28 (2), 

Strontianite -9.24 (3), -0.15 (4), 

-9.03 (5), -9.03 (9), 

-9.28 (9), 

SrS04(s) == Sr2+ + SO2" -6.46 (1), -6.67 (2), 

Celestine -6.38 (3), -6.13 (4), 

-4.62 (5), -6.46 (9), 

-6.49 (9), -6.53 (9), 

Sr3(P04)2(s) == 3 Sr2+ + 2 PO^" -31.0 (4), 

SrHP04(s) == Sr2+ + HPO2" -3.66 (4), -6.92 (5), 

-6.38 (9), -6.92 (9), 

-7.06 (9), 

SrSi03(s) + H20 + 2 Ht= Sr
2+ + H4SiO° 15.6 (1), 14.5 (2), 

19.1 (4), 

Sr2Si04(s) + 4 H
+ == 2 Sr2+ + H4SiO° 42.8 (1), 41.6 (2), 

52.0 (4), 
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Sr 2 + + OH" == Sr(OH)+ 0.82 (37) 

+ 2 CI" == SrCl£ 0.00 (1) 

+ 2 Br" == SrBriJ 0.00 (1) 

+ CO2" *•= SrC0° 0.00 (1) 

+ S 20
2" == S r S2°3 2 · 0 4 ( 5) 

+ SO2" == ?rSO° 2.31 (5) 

+ NOj == SrNOj 0.82 (5) 

+ 2 NO" == Sr(N03)| 0.80 (5) 

+ P20^" == SrP 20
2" 5.40 (5) 

Yttrium 

Y„0,(s) + 3 H ?0 == 2 Y 3 + + 6 OH" -34.5 (1), -37.1 (2), 
2 3 1 -35.3 (11), 

Y(OH).(s) Y 3 + + 3 OH" -22.0 (1), -24.5 (2), 

-23.2 (5), -22.2 (6), 

-24.2 (9), -24.5 (9) 

-23.0 (11), 

YF,(s) Y 3 + + 3 F" -20.1 (1), -21.1 (?) 

-21.7 (11), 

Y 2(C0 3) 3(s) 2 Y 3 + + 3 CO2" 
-30.6 (5), -30.fi (9) 

V 2(S0 4) 3(s) == 2 Y 3 + + 3 sn2' 
-0.95 (1), 



,3+ + OH 

+ 2 OH 

+ 3 OH 

+ 4 OH 

+ F" 

+ 2 F" 

+ 3 F~ 

+ CI 

+ Br 

+ CO 

+ SO 

+ 2 SO 

== Y(OH) 
2+ 

N03 

h2po-4 

2 Y(OH) 3 (S) 

3 V ( 0H) 3 ( S ) 

== Y(OH)J 

== Y(OH)° 

" Y(OH)· 

2+ 
== YF 

« Y F l 

" Y F 3 

== YC1 

== YBr 

== YCO' 

== YSO' 

2+ 

2+ 
+ 

3 
+ 

" Y (S0 4 ) -

" ™ ° 3 + 

== YH2PO^+ 

4+ 
== Y2(OH)2 + 4 OH 

Y 3(OH) 5 
4+ + 4 OH 

P.30 (5) 

l l . f i (7) 

l f i .O (7) 

19.5 (7) 

4.82 (2) 

8 .55 (2) 

12.1 (2) 

1.27 (2) 

0.70 (1) 

6.94 (29) 

3.24 (2) 

3.99 (2) 

- 0 . 0 1 ( 1 ) 

2.fi5 (5) 

- 30 . 3 (1) 

- 27 . 6 (5+1) 
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Zirconium 

Z r 0 2 ( s ) + 2 H20 == Z r 4 + + 4 OH" " 6 3 · 7 ( 2 ) > - 5 4 · 1 ( 5 ) > 

B a d d e l e y i t e " 5 1 · 1 ( n ) · 

ZrO(OH) 2 ( s ) + H 20 == Z r 4 + + 4 OH" - 5 6 . 3 ( 1 1 ) , 

Zr(OH) . ( s ) « Z r 4 + + 4 OH" - 5 8 . 6 ( 2 ) . - 5 6 . 9 ( 4 ) , 

- 5 4 . 0 ( 9 ) , - 5 7 . 5 ( 9 ) , 

- 5 7 . 2 ( 1 1 ) , - 5 7 . 6 ( 1 1 ) , 

Z r F 4 ( S ) = = Z r 4 + + 4 F " - 2 9 . 0 ( 2 ) , - 1 3 . 7 ( 1 1 ) , 

Z r S i 0 4 ( s ) + 4 H+ - Z r 4 + + H^SiO» - 7 . 3 1 ( 2 ) 

Z i rcon 
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Zr 4 + + OH" == Zr(0H)3+ 14.0 (2) 

+ 2 OH" == Z r ( O H ) 2 7 . 8 (2) 

+ 3 OH" == Zr(OH)j 41.3 (2) 

+ 4 OH" == Zr(OH)° 54.5 (2) 

+ 5 OH' == Zr(OH)g 54.0 (7) 

+ OH" == Zr02+ + H+ 16.1 (4) 

+ 3 OH" « HZrO* + 2 H+ 24.1 (4) 

+ F" == ZrF3+ 8.89 (2) 

+ 2 F" == ZrF2+ 16.4 (2) 

+ 3 F~ == ZrFj 22.2 (2) 

+ 4 F" == ZrF° 27.2 (2) 

+ 5 F" == ZrFZ 31.8 (2) 

+ 6 F" == ZrF2" 35.9 (2) 

+ CI" == ZrCl3+ 1.57 (29) 

+ 2 CI" == ZrCl2+ 1.47 (29) 

+ 3 CI" == ZrCl* 0.80 (29) 

+ Sojj" « ZrS02+ 3.72 (2) 

+ 2 SO2" == Zr(S04)| 6.52 (2) 

+ 3 SO2" " Zr(S04)3
_ 7.63 (2) 

3 Zr(OH)4(s) == Zr3(OH)®
+ + 8 OH" -120.3 (5+2) 

4 Zr(OH)4(s) == Zr4(OH)g
+ + 8 OH" -128.2 (5+2) 
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Molybdenum 

MO03(S) + H 20 == MoO^" + 2 H + -12.1 (3), -12.1 (7), 

Molybdite -10.7 (11), -12.1 (19), 

H2MO04(S) MoO^" + 2 H + -13.4 (19), 

MOS3(S) + 4 H 20 MoO^~ + 3 HS" + 5 H + -68.1 (3), -64.5 (4), 

-66.3 (11), -68.9 (11), 

-78.7 (11), -68.2 (12), 

-70.4 (12), 

MoO^" + H + 

+ 2 H + 

+ 3 Η 

+ 4 Η 

== ΗΜοΟ. 

== Η?ΜοΟ° 

== μοο2(ΟΗ) + n 2n 

== Μο0 2
+ + 2 HgO 

+ 2 HS" + 2 Η + == Mo0 2S 2" + 2 Η 20 

+ 3 HS" + 3 Η + MoOSj" + 3 Η ?0 

+ 4 HS" + 4 Η + == MoS^" + 4 Η ?0 

3.70 (12) 

9.17 (29) 

7.89 (2) 

8.65 (19) 

4.60 (12) 

7.90 (12) 

13.3 (12) 
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Silver 

Ag20(s) + H 20 « 2 Ag + + 2-OH" -15.4 (2), -15.4 (3), 

-15.4 (7), -15.4 (11), 
-15.4 (19), 

AgOH(s) == Aq + + OH" -7.71 (5), -7.56 (9), 
-7.71 (9), -7.73 (9), 
-7.84 (9), -7.95 (9), 
-7.71 (19), 

AqCl(s) « Aq+ + Cl" -9.75 (2), -9.75 (3), 

Chlorarqyrite "9.75 (11), -9.73 (16), 
-9.76 (21), "9.75 (19), 

Ag 2C0 3(s) == 2 Ag + + CO*" -11.1 (?), -11.0 (3), 
-11.1 (5), -11.1 (9), 
-11.4 (9), -11.2 (11), 
-11.1 (19), 

Ag2S(s) + H
+ « 2 Ag + + HS" -36.2 (2), -36.2 (3), 

Acanthite -36.2 (6), -36.1 (10), 
-36.1 (19), 

Ag 2S0 4(s) - 2 Ag +
 + SO^" -4.94 (2), -4.84 (3), 

-4.83 (5), -4.80 (9), 

-4.84 (9), -4.86 (9), 

-4.92 (9), -4.47 (11), 

Aq,PO,(s) - 3 Ag + + PO^" -15.6 (1), -17.6 (5), 
-15.8 (9), "16-0 (19), 
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Ag + OH 

+ 2 OH" 

+ 3 OH" 

OH 

F" 

+ CI 

+ 2 CI" 

+ 3 CI" 

+ 4 CI" 

+ Br" 

+ 2 Br" 

+ 3 Br" 

+ 4 Br" 

2 -+ OT 

+ HS" 

+ 2 HS" 

P2-

S2°3~ 

+ 2 S 2 0 -

+ 3 S 20 3 

+ SO 

+ 2 SO 

+ 3 SÔ  

+ SO 

+ 2 SO' 

== Ag(OH)0 

== Ag(OH)2 

" At)(OH)j" 

== AgO" + H + 

== AgF" 

== AqCl0 

=.= AgCl^ 

"" AgClj" 

== AgCl^" 

== AnBr" 

== AgBr^ 

== AgBr^" 

== AgBrf 

== AaCOj 

== AgHS° 

« Ag(HS)j 

== AaS" 

== AqS 20 3 

== Ag(S 20 3)| 
3-

5-

== AgSOj 

== Ag(S0j)2" 

== Ag(S03)^" 

== AgSO^ 

== Aa(S04)^ 
3-

2.00 

3.99 

-6.19 

- 1 0 . 0 

0.37 

3.31 

5.25 

5.44 

4.19 

4.24 

7.28 

8.71 

9.00 

3.40 

14.1 

18.5 

23.9 

8.60 

13.4 

14.2 

5.37 

8.52 

9.00 

1.30 

0.57 

2 ) 

2 ) 

4) 

2 ) 

1 0 ) 

1 0 ) 

B) 

ß) 

1) 

υ 
1) 

5 ) 

29) 

2 ) 

2 ) 

2 ) 

2 ) 

5 ) 

1) 

4 ) 

5) 

1 0 ) 

29) 
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Ag+ + 3 SO2" 

+ NO-

3 AoOH(s) + H,0 

An, 

« Aq(S04)|" -1.51 (29) 

== AgNO° 0.20 (9) 

H20 " Aaj(OH)^ + H + -18.3 (19) 

HS" == A a ^ H S ) 2 - -3.12 (5) 

Γ + H+ • 2 S2" « 2 Ao(HS)S2' 4.47 (17) 

* " 2 Ag(S4)3" + S 2' -7.67 (17) 

* + 2 S2" -- 2 AgS^Sg" • S2" -8.76 (17) 

+ S02' == Aa2SO| + 2 OH" -6.87 (1) 

+ so2" == Ag2SO° + 2 OH" -14.0 (1) 
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Cadmi um 

CdO(s) + H20 == Cd2+ + 2 OH" -12.9 (1), -12.8 (2), 

Monteponlte -12.9 (3), -12.2 (4), 

-12.9 (6), -13.fi (9), 

-12.9 (19), 

Cd(0H)2(s) == Cd2+ + 2 OH" -14.3 (1), -14.4 (2), 

-13.7 (4), -14.4 (5), 

-14.1 (9), -14.2 (9), 

-14.4 (9), -13.8 (36), 

CdF2(s) « Cd2+ + 2 F~ -2.32(2), 

CdC03(s) == Cd2+ + CO2" -11.2 (1), -12.0 (2), 

Otavite -11.3 (4), -13.7 (5), 

-11.3 (9), -12.0 (9), 

-13.7 (36), -12.0 (19), 

CdS(s) + H+ == Cd2+ + HS" -15.9 (1), -14.3 (2), 

Hawleyite -15.9 (3), -13.2 (4), 

-14.1 (6), 

CdS04(s) Cd2+ + SO2" -0.10 (1), -0.13 (2), 

-0.07 (3), -0.05 (4), 

-0.04 (19), 

CdS04.H20(s) Cd2+ + S04" + H20 -1.68 (2), -1.59 (19), 

CdS04.8/3H20(s) == Cd2+ + S04" + 8/3 H20 -1.89 (2), 
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Cd3(S04)(0H)4(s) == 3 Cd2+ + SO2" + 4 0H~ -33.3 (1), -33.3 (19), 

Cd3(S04)2(0H)2(s) « 3 Cd2+ + 2 SO2" + 2 OH" -21.3 (1), -21.3 (19), 

Cd3(P04)2(s) 3 Cd2+ + 2 PO^" -31.9 (1), -38.1 (19), 

CdS103(s) + H?n + 2 H
+ == Cd2+ + H4SiO° 9.05 (1), 7.93 (2), 

7.63 (19), 
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Cd 2 + + OH" == Cd(OH)+ 3.92 (7) 

+ 2 OH" == Cd(OH)I 7.65 (7) 

+ 3 OH" == Cd(OH)j 8.70 (29) 

+ 4 OH" == Cd(OH)2" 8.65 (7) 

+ 5 OH" == Cd(OH)g" 7.76 

+ 6 OH" " Cd(OH)g" 6.88 

+ 2 OH" == HCdO^ + H + -5.01 (1) 

+ 2 OH" « CdO?" + 2 H + -18.9 (1) 

+ F" » CdF+ 1.08 (29) 

+ 2 F" == CdF° 1.41 (29) 

+ CI" == CdCl+ 2.00 (37) 

+ 2 CI" == CdCl| 2.70 (37) 

+ 3 CI" == CdClj 2.11 (2) 

+ 4 c i " == CdCl2" 2.50 (19) 

+ OH" + CI" == CdCl(0H)° 6.59 (1) 

+ Br" == CdBr+ 2.20 (3) 

+ 2 Br" == CdBr£ 3.00 (5) 

+ 3 Br" == CdBrj 3.00 (5) 

+ 4 Br" == CdBr2" 2.90 (5) 

+ CO2" == CdCOj 4.10 (19) 

+ 3 CO3" == Cd(C03)^" 6.22 (2) 

+ HCOj == CdHCOj 2.10 (19) 

+ HS" == Cd(HS)+ 10.2 (2) 

+ 2 HS" == CH(HS)2 16-5 <2) 
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Cd2+ + 3 HS" == Cd(HS)2 18.7 [Ζ) 
2 -

+ 4 HS" == Cd(HS)4 20.9 (2) 

+ S202" == CdS20| 3.95 (2) 

+ 2 S202" == Cd(S203)2" fi.44 (2) 

+ 3 S 2o|" == Cd(S203)3_ fi.no (43) 

+ 2 SO2" == Cd(S03)2" 5.50 (43) 

+ SO2" == CdSO° 2.4fi (5) 

+ 2 SO2" == CdfSO,,)2" 3.54 (9) 

+ 3 SO2" « Cd(S0^)3" 3.09 (29) 

+ 4 SO2" == Cd(S04)®" -0.72 (29) 

+ NOj « CdNOj -0.32 (2) 

+ 2 NOj == Cd(N03)° -0.00 (1) 

+ P20^" == CdP202" 8.70 (5) 

2 Cd(0H)2(s) == Cd2(OH)3+ + 3 OH' - 2 1 . 1 (5+2) 

4 Cd(OH)2(s) == Cd4(OH)J+ + 4 OH" -?9.3 (5+2) 

Indium 

ln203(s) + 3 H20 == 2 In3+ + 6 OH' -70.5 (2), -71.8 (5), 
-70.6 (7), -71.8 (9), 

In(OH)3(s) == In3+ + 3 OH" -36.9 (2), -36.9 (5), 
Djalindite -36.9 (7), -33.9 (9), 

-36.9 (9) , 

In2S3(s) + 3 H+ ==2 In3+ + 3 HS" -44.3 (1), -44.3 (2), 
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I n 2 ( S 0 4 ) 3 ( s ) 2 In 3 + + 3 SO2" 

InP04(s) == In 3 + + PO3" 

In 3 + + OH" == In(OH)2+ 

+ 2 OH" == In(OH)* 

+ 3 OH" == In(OH)5 

+ 4 OH" == In(OH)^ 

+ F" == InF 2 + 

+ 2 F" == InFj 

+ 3 F" == InF° 

+ 4 F" == InF^ 

+ CI" == InCl 2 + 

+ 2 CI" == InCl2 

+ 3 Cl" == InClJ 

+ OH" + Cl" " InCl(OH)+ 

+ CO2" == IηCOJ 

+ SO^" == InSO* 

+ 2 SO2" == In(S0 4 ) " 

+ 3 SO2" == In (S0 4 ) 3 " 

2 In(OH) 3 ( s j == In2(OH)2+ + 1 OH 

3 In(0H) 3(s) == In3(OH)^+ + 5 ΠΗ 

-1 .68 ( 1 ) , 

-21 .6 ( 5 ) , 

10.4 (2) 

20.2 (2) 

29.0 (2) 

33.9 (2) 

4.60 (2) 

8.10 (5) 

10.3 (5) 

11.5 (5) 

3.26 (29) 

6.38 (29) 

5.83 (29) 

13.4 (7) 

7.60 (29) 

3.04 (2) 

5.00 (2) 

5.52 (29) 

33.7 (9+2) 

60.5 (7+2) 
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Tin I I 

S n O ( s ) + H 20 == S n 2 + + 2 OH" - 2 6 . 7 ( 1 ) , - 2 6 . 7 ( 2 ) , 

- 2 6 . 8 ( 3 ) , - 2 6 . 9 (4 . ) , 

- 2 6 . 2 ( 5 ) , - 2 6 . 2 ( 9 ) , 

- 2 6 . 9 ( 1 1 ) , 

S n ( 0 H ) 2 ( s ) == S n 2 + + 2 OH" - 2 6 . 2 ( 1 ) , - 2 6 . 5 ( 2 ) , 

- 2 7 . 6 ( 3 ) , - 2 6 . 5 ( 4 ) , 

- 2 8 . 1 ( 9 ) , - 2 5 . 3 ( 1 1 ) , 

S n S ( s ) + HT == S n 2 + + HS" - 1 4 . 6 ( 1 ) , - 1 4 . 6 ( 2 ) , 

- 1 4 . 7 ( 3 ) , - 1 2 . 0 ( 4 ) , 

- 1 5 . 2 ( 1 1 ) , - 1 5 . 5 ( 1 1 ) , 

- 1 4 . 4 ( 1 1 ) , 
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Sn 2 + + OH" == Sn(OH)+ 9.90 (51) 

+ 2 OH" == Sn(OH)° 20.1 (51) 

+ 3 OH" == Sn(OH)j 24.5 (51) 

+ 2 OH" == HSn02 + H+ 12.1 (4) 

+ 3 OH" + H ?0 « HSn(OH)^ 19.1 (11) 

+ F" « SnF+ 4.84 (2) 

+ C I " « SnCl + n.73 (51) 

+ 2 C I " " SnC1° 1.08 (51) 

+ 3 C I " " SnCl j 2.06 (2) 

+ 4 CI" == SnCl 2 " 1.50 (5) 

+ OH" + C I " == SnCl(OH)e 11.1 (51) 

+ Br" == SnBr + 0.60 (51) 

+ 2 Br" == SnBr| 1.13 (51) 

+ 3 Br" == SnBrj 1.36 (1) 

+ SO2" == SnSO° 1.29 (51) 

+ 2 SO2" « Sn ( S0 4 ) 2 " 1.65 (51) 

2 Sn (OH) 2 ( s ) == Sn 2 0 2 " + H ?0 + H+ -27 .4 (4) 

2 Sn(OH)2(s) « Sn 2 (0H) 2 + + 2 OH" -29 .3 (7+2) 

3 Sn(OH)2(s) == Sn 3 (0H)^ + + 2 OH" -29.7 (7+2) 
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Tin IV 

Sn02(s) + 2 H20 == Sn4+ + 4 OH 
Cassiterite 

Sn(0H)4(s) == Sn4+ + 4 OH' 

SnS2(s) + 2 H+ « Sn + 2 HS" 
Berndtite 

Sn(S04)2(s) =« Sn4+ + 2 SO2" 

Sn4+ + OH" == Sn(0H)3+ 

+ 2 OH" == Sn(0H)2+ 

+ 3 OH" == Sn(0H)3 

+ 4 OH" « Sn(OH)̂  

+ 6 OH' == Sn(OH)2" 

+ 3 OH" == SnO2" + 3 H+ 

+ 2 OH" == SnO(OH)+ + H+ 

+ 6 F" == SnF2" 6 

+ 2 OH + F == SnO(OH)F° + Η 

+ 4 CI == SnCIJ 

+ SO2" == SnSO2" 

+ 2 SO2" - Sn(S04)° 

SnS2(s) + S2" == sns|" 
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•64.4 (1), -63.7 (4), 
•61.0 (7), -64.2 (11), 

•57.0 (4), 

•46.7 (11), 

•5.30 (4) 

15.5 (29) 

29.3 (29) 

43.7 (29) 

55.1 (7) 

62.7 (4) 

18.5 (4) 

28.4 (1) 

17.7 (4) 

34.6 (1) 

0.01 (1) 

-3.13 (1) 

-0.84 (1) 

5.04 (9) 



A n t i m o n y I I I 

S b 2 0 3 ( s ) + 3 H 2 0 == 2 S b ( 0 H ) ° - 9 . 3 5 ( 2 ) , - 8 . 4 8 ( 7 ) , 

• V a l e n t i n l t e - 7 . 9 2 ( 9 ) , - 9 . 4 0 ( 9 ) , 

- 8 . 5 5 ( 1 1 ) , 

S b ( 0 H ) 3 ( s ) == S b ( 0 H ) ° - 4 . 4 0 ( 2 ) , 1 . 0 8 ( 1 1 ) , 

S b 2 S 3 ( s ) + 6 H 2 0 

S t i b n i t e 

== 2 S b ( O H ) 2 + 3 HS" + 3 H+ - 6 0 . 2 ( 1 ) , 

- 6 0 . 2 ( 1 1 ) , 

- 5 4 . 4 ( 3 0 ) , 

S b ( O H ) ^ == S b ( O H ) J + OH" - 1 2 . 8 ( 2 ) 

+ OH" == S b ( 0 H ) ' 4 
2 . 2 0 ( 2 ) 

== H S b 0 ° 2 + H ? 0 - 0 . 0 1 ( 1 ) 

== S b 0 2 + H 2 0 + H+ - 1 1 . 8 ( 1 ) 

== SbO + + H 2 0 + OH" - 1 2 . 8 ( 1 ) 

+ F" == S b ( O H ) ? F ° + OH" - 7 . 2 9 ( 1 ) 

+ F == SbOF 0 + H 2 0 + OH" - 7 . 3 0 ( 1 ) 

+ 4 C I " == S b C l ^ + 3 OH" - 3 9 . 3 ( 2 ) 

+ 2 S 2 " == S b S 2 + 3 OH" 9 . 3 0 ( 4 ) 

+ 3 S 2 " •== S b S 3 " + 3 OH" 9 . 7 4 ( 4 ) 

S b 2 S 3 ( s ) + HS" == HSbjS^ - 2 . 3 3 ( 8 ) 

S b 2 S 3 ( s ) + S 2 " « sb2s2" 2 . 0 5 ( 1 ) 
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Antimony V 

Sb205(s) + 5 H20 = 2 Sb(0H)° -7.40 (7) , 

Sb(OH)g + OH" == Sb(OH)g 11.5 (7+2) 

== SbOj + 2 H20 + H+ 0.37 

+ H+ == Sb02 + 3 H20 -0.15 

6 Sb205(s) + 34 H 2 O " Sb12(0H)^" + 4 H+ -24.1 

6 Sb205(s) + 35 H 2 O « Sb12(OH)|~ + 5 H+ -27.7 

6 Sb205(s) + 36 H 2 O == Sb12(OH)®" + 6 H+ -32.5 

6 Sb205(s) + 37 H 2 O " Sb12(OH)^"7 + 7 H+ -38.3 

Cesium 

CsCl(s) == Cs+ + Γ1" 1 . 47 (2 ) , 

Cs2S04(s) 

Cs+ + F* 

+ CI" 

+ Br" 

+ NO" 

== 2 Cs+ + SO);" 

« CsF° 

== cscr 

== CsBr" 

== CsNO° 

0.62 (2), 

-0.37 (3) 

-0.39 (5) 

0.03 

n.Ol (5) 
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Barium 

Ba(OH)2(s) 

BaF2(s) 

- Ba 2 + + 2 OH" 3.29(4), 

== Ba 2 + + 2 F~ -6.01 (2), -6.82 (3), 
-4.65 (4), -5.76 (5), 
-5.98 (9) 

BaC03(s) 
Wi theri te 

BaS04(s) 
Barite 

?+ 2-« Ba + COj -8.58 (1). -8.33 (2) 
-8.58 (3), -8.74 (4) 
-8.30 (5), -8.29 (9) 
-8.30 (9), -8.31 ( ? ) 

?+ 2-.· Ba + S0 4 -9.98 (1). -9.74 (2). 
-9.89 (3), -8.84 («). 
-9.96 (5), -10.3 (6). 
-9.87 (9), -9.70 (10) 

:= 3 Ba 2 + + 2 P0]j~ -38.3 (1). 

ßaS103(s) + H 20 + 2 H== Ba 2 + + H4S10° 17.5 (1), 16.6 (2), 
28.5 (4)·, 

Ba2Si04(s) + 4 H + = = 2 Ba 2 + + H4SiO° 71-6 (4), 

Ba 2(Si 4n 1 0)(s) + 6 H 20 + 4 H + == 2 Ba 2 + + 4 H4SiO° 20.9 (2), 

Sanbornlte 
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Ba2+ + OH" == Ba(OH)+ 0.64 (37) 

+ 2 F" == BaF° 0.32 (29) 

CI" == BaCl+ -0.13 (5) 

CO2" == BaCOj 2.78 (5) 

S20
2" == BaS20° 2.27 (5) 

S O ^ == BaSO° 2.36 (2) 

2 SO*" == Ba(S04)j|" 3.20 (29) 

NO" == BaNOg 0.90 (5) 

2 NO3 « Ba(N03)° 1.00 (5) 

Lanthanum 

La203(s) + 3 H20 == 2 La3+ + 6 OH' -18.6 (1), -18.7 (3), 

La(0H)3(s) = = L a 3 +
+ 3 0H- -22.5 (2), -20.7 (5), 

-21.7 (7), -21.5 (9), 

-21.7 (9), -22.6 (9), 

-19.0 (11), -26.0 (11), 

LaF-(s) « l a 3 + + 3 F - -17.9(2), 

La2(C03)3(s) == 2 La3+ + 3 CO2' -33.4 (1), -33.4 (5), 

LaP04(s) = = L a 3 +
 + P0

3' -23.2 (2), -22.4 (4), 
-22.4 (9), 
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La 3 + + OH" == La(0H) 2 + 5.50 (5) 

+ 2 OH" « La(0H>2 10.6 (29) 

+ 3 OH == La(OH)° 14.5 (29) 

+ 4 OH" « La(OH)^ 17.2 (29) 

+ F" == LaF 2 + 3.78 (2) 

+ CI" « L a C l 2 + 0 .80 (29) 

+ 2 CI" == LaCl2 - 0 . 2 9 (29) 

+ 3 CI" == L a C l j -0 .01 (1) 

+ CO2" == LaCOJ 6.16 (29) 

+ S 2 0 2 " == LaS^Oj 1.17 (1) 

+ SO^" == LaSO* 3.50 (2) 

+ 2 SO2" == La(S0 4)2 5.67 (1) 

+ P ^ " == laP20- 16.7 (5) 

+ 2 P20^" == L a ( P 2 0 7 ) 2 " 18.6 (5) 

2 La(OH) 3(s) == La 2 (OH) 5 + + 5 OH" -49 .6 (5+2) 

5 La(0H) 3 ( s ) == La5(OH)®+ + 6 OH" -57 .4 (5+2) 

Cerium I I I 

Ce 2 0 3 ( s ) + 3 H20 == 2 Ce3 + + 6 OH" -22 .R ( 1 ) , - 23 .0 (6 ) , 

- 26 . 0 (11) , 

Ce(0H) 3(s) == Ce 3 + + 3 OH" - 21 .2 ( 2 ) , - 20 .8 (4 ) , 

- 21 .2 ( 5 ) , - 21 .2 (9 ) , 
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CeF 3 ( s ) == Ce 3 + + 3 F" - 1 5 . 6 ( 2 ) , 

F l u o c e r i t e 

CeP0 4 ( s ) == Ce 3 + + PO 3 " - 2 1 . 3 ( 2 ) , - 2 1 . 3 ( 9 ) , 

Monazite 

OH" == Ce (0H) 2 + 5.70 (29) 

2 OH" == Ce(OH)* 10.9 (29) 

3 OH" « Ce(0H)° 15.2 (29) 

4 OH' == Ce(OH)^ 18.4 (29) 

F" == CeF 2 + 3.70 (2) 

C I " == C e C l 2 + 0 .79 (1) 

2 C I " == CeCl^ 1.19 (29) 

3 C l " == CeCl° - 0 . 0 1 (1) 

B r " == CeBr 2 + 0.62 (1) 

CO2" == CeCOj 6.78 (29) 

SO 2 " == CeSOj 8.04 (5) 

SO^" == CeSoJ 3.59 (2) 

2 SO 2 " == C e ( S 0 4 ) j 5.45 (1) 

NOl == CeN0 2 + 1.09 (1) 
' 3 " " 3 

0 3 " == CePO° PO3 " == CePO° 18.5 (5) 

H 2 P0 4 == CeH 2P0 2 + 2.33 (5) 

P 2 0^ " == C e P ^ 17.2 (5) 

3 Ce(OH) 3 ( s ) == Ce 3 (0H)g + + 4 OH" - 2 5 . 8 (7+4) 
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Cerium IV 

Ce0 2 ( s ) + 2 H 20 == Ce 4 + + 4 OH" - 6 4 . 1 ( 1 ) , - 6 4 . 3 ( 6 ) , 

Ce r i an i t e - 7 1 . 1 ( 1 1 ) , 

CeF 4 ( s ) « Ce 4 + + 4 F~ - 3 0 . 3 ( 11 ) , 

CeS - ( s ) + 2 H+ == Ce 4 + + 2 HS" - 3 4 . 1 ( 4 ) , - 3 3 . 9 ( 1 1 ) , 

C e ( S 0 4 ) 2 ( s ) == Ce 4 + + 2 - 2 9 . 7 ( 1 1 ) , 

C e 3 ( P 0 4 ) 4 ( s ) == 3 Ce 4 + + 4 PO^" - 9 0 . 1 ( 9 ) , 

Ce 4 + + OH" == Ce(OM) 3 + 21.5 (4) 

+ 2 OH" " Ce(OH)? + 35.2 (4) 
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Neodymi um 

N d 2 0 3 ( s ) + 3 H ? 0 == 2 N d 3 + + 6 OH' - 2 5 . 5 ( 1 ) , - 3 3 . 3 ( 1 1 ) , 

N d ( 0 H ) 3 ( s ) N d 3 + + 3 OH" - 2 3 . 1 ( 2 ) , - 2 3 . 1 ( 5 ) , 

- 2 3 . 1 ( 9 ) , - 2 3 . 3 ( 9 ) , 

" 2 3 . 9 ( 9 ) , 

N d 2 ( C 0 3 ) 3 ( s ) « 2 N d 3 + + 3 CO 2 " - 3 3 . 0 ( 1 ) , - 3 3 . 0 ( 5 ) , 

N d 2 ( S 0 4 ) 3 ( s ) == 2 N d 3 + + 3 S O 2 " - 8 . 8 6 ( 1 ) , 

N d 3 + + OH" == N d ( O H ) 2 + 5 . 5 0 ( 2 ) 

+ 2 OH" == N d ( O H ) 2 1 1 . 1 C ) 

+ 3 OH" « Nd(OH)2 1 5 · 5 ( 7 ) 

+ 4 OH" == Nd(OH)^ 18 - 9 ( ? ) 

+ F " == N d F 2 + 3 . 9 9 ( 29 ) 

+ C l " == N d C l 2 + 0 . 8 0 ( 29 ) 

+ 2 C l " == NdC l 2 " ° · 2 9 ( 2 9 ) 

+ 3 C l " == N d C l 3 P - 0 6 ( 1 ) 

+ CO 2 " == NdCOj 6 . 7 2 (29 ) 

+ S O 2 " == NdSoJ 3 . 4 7 ( 1 ) 

+ 2 S O 2 " == N d ( S 0 4 ) 2 5 . 17 ( 1 ) 

2 N d ( O H ) 3 ( s ) == N d 2 ( O H ) 2
+ + 4 OH" " 3 2 . 1 ( 5+2 ) 
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Samari um 

Sm203(s) + 3 H20 == 2 Sm3+ + 6 OH" -29.7 (1), -29.fi (11), 

Sm(0H)-(s) Sm3+ + 3 OH" -27.8 (1), -25.4 (5), 

-23.9 (9), -25.9 (9), 

-27.4 (11), 

Sm2(C03)3(s) 2 Sm3+ + 3 CO: 2 - -32.5 (1), -32.5 (5), 

Sm3+ + OH" == Sm(0H)2+ 6.10 (7) 

+ 2 OH" == Sm(0H)2 11.4 ( 2 9 ) 

+ 3 OH" == Sm(OH)j 16.2 (29) 

+ 4 OH" == Sm(OH)^ 20.3 (29) 

+ F" « SmF2+ 4.02 (29) 

+ CI* « SmCl2+ 0.80 (29) 

+ 2 CI" == SmCl2 -0.29 (29) 

+ 3 Cl" == SmCIj -0.01 (1) 

+ CO2" « SmCOj 6.86 (29) 

+ SO2" «= SmSO* 3.47 (1) 

+ 2 SOjj" « Sm(S04)2 5.83 (1) 
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Europium 

E U 2 0 3 ( S ) + 3 H 2 0 

E U ( 0 H ) 3 ( S ) 

E U 3 + + OH" 

+ 2 OH" 

+ 3 OH" 

+ 4 OH" 

+ F " 

+ C I " 

+ 2 CI " 

+ 3 C l " 

• co 2 " 

+ so 2 " 

+ 2 SO2" 

+ NO" 

« 2 E U 3 + + 6 OH" - 3 0 . 9 ( 1 ) , - 2 9 . 7 ( 1 1 ) , 

" E u 3 +
+ 3 0H" - 2 6 . 0 ( 1 ) , - 2 6 . 5 ( 2 ) , 

- 2 5 . 6 ( 5 ) , - 2 6 . 5 ( 9 ) , 
- 2 7 . 7 ( 1 1 ) , 

« Eu(OH)2+ 6 .20 (7) 

« Eu(OH)2 11-4 (29) 

« Eu(OH)° 16.4 (29) 

« Eu(OH)^ 20.7 (29) 

== EuF2+ 4 .09 (29) 

« EUC12+ 0 .90 (1) 

« EuCl* 0 .19 (1) 

« EuCl | - 0 . 0 1 (1) 

== EuCOj 6.83 (29) 

« EuSOj 3 .31 (2) 

« Eu(S0„)2 5.32 (1) 

=« EUN02+ 1.23 (5) 
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Ytterbium 

Y b 2 0 3 ( s ) + 3 H 20 == 2 Yb 3 + + 6 OH" - 3 6 . 2 ( 1 ) , - 3 0 . 9 ( 1 1 ) , 

Yb (OH) , ( s ) Y b 3 +
 + 3 OH - 3 2 . 0 ( 2 ) , - 2 5 . 0 ( 5 ) , 

- 2 5 . 1 ( 9 ) , - 2 6 . 6 ( 9 ) , 

- 2 5 . 1 ( 1 1 ) , 

Y b 2 ( C 0 3 ) 3 ( s ) 2 Y b 3 + + 3 CO2" - 3 1 . 1 ( 5 ) , 

Y b 3 + + OH" == Yb (0H ) 2 + 6 .30 (7) 

+ 2 OH" « Yb(0H) 2 12.2 (7) 

+ 3 OH" == Yb(OH)» 17.9 (7) 

+ 4 OH" « Yb(OH)^ 23.3 (7) 

+ F " == YbF 2 + 4.44 (1) 

+ C I " == Y b C l 2 + 0 .70 (29) 

+ 2 C I " == YbC l 2 - 0 . 2 9 (29) 

+ 3 C I " « YbCl° - 0 . 0 1 (1) 

+ CO2" == YbCOj 7.60 (29) 

+ SO 2 " « YbS0+ 3.32 (1) 

+ 2 SO 2 " == Y b ( S 0 4 ) 2 5.05 (1) 

+ P 2 0^ " == YbP ?0^ 17.5 (5) 

+ 2 P 2 0 ^ " == Y b ( P 2 0 7 ) ^ " 19.4 (5) 
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Lutetium 

L U 2 0 3 ( S ) + 3 H 2 0 == 2 LU 3 + + 6 OH 

Lu(OH),(s) LU 3 + + 3 OH" 

Lu 
3+ + OH 

+ 2 OH' 

+ 3 OH' 

+ 4 OH' 

+ F" 

+ C1 

+ 2 CT 

+ 3 C1 

+ CO 

+ SO 

+ 2 SO 

« Lu(OH) 
2+ 

Lu(OH)2 

Lu(OH)5 

LU(OH)"4 

== LuF 
2+ 

== LuCl 

== LuClj 

== LuCl 

== LuCO 

== LuSO 

2+ 

•• Lu(S04)"2 

-52.Β (1), -44.2 (11), 

-29.7 (1), -26.1 (5), 

-27.0 (9), -24.4 (11), 

6.40 (7) 

12.3 (29) 

18.3 (29) 

24.2 (29) 

4.37 (1) 

0.50 (29) 

-0.29 (29) 

-0.09 (1) 

7.57 (29) 

3.69 (1) 

5.17 (1) 
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Hafn ium 

H f 0 2 ( s ) + 2 H 2 0 == H f 4 + + 4 OH" - 6 3 . 8 ( 2 ) , - 5 4 . 8 ( 5 ) , 

H f 4 + + OH" 

+ 2 OH 

+ 3 OH" 

+ 4 OH" 

+ 5 OH" 

+ F" 

+ 2 F" 

+ 3 F" 

+ 4 F" 

+ 5 F" 

+ 6 F" 

+ c i " 

+ 2 C I " 

+ 3 C l " 

+ s°4~ 

+ 2 SO?" 

H f ( 0 H ) 3 + 13 .7 (7) 

Hf(OH) 25 . 6 (7) 

H f fOHJg 3 6 . 0 (7) 

H f (OH ) J 4 5 . 3 (7) 

H f (OH)g 5 2 . 8 (7) 

H f F 3 + 10 . 2 (29) 

H f F 2
+ 17 .1 (29) 

HfF$ 25 . 1 (29) 

H fF° 3 1 . 2 (29) 

H f F " 3 6 . 4 (29) 

H f F* " 3 9 . 5 (29) 

H f C l 3 + 1 .65 (29) 

2+ 
H fC l 2 1 .55 (29) 

H f C l J 0 . 8 8 (29) 

HfSO^+ 7 . 16 X29) 

H f ( S 0 4 ) ° 11 .6 (29) 
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told I 

A u C l ( s ) « A u + + C l " - 1 1 . 7 ( ? ) 

A u + + O H " == A u ( O H ) 0 1 4 . 6 ( 4 7 ) 

+ 2 O H " == A U ( 0 H > 2 2 4 . 6 ( 4 7 ) 

+ C l " " A u C l ° 7 . 4 2 ( 4 7 ) 

+ 2 C l " « A u C l 2 9 - 0 0 ( 1 0 ) 

+ O H " + C l " " A u ( O H ) C l " 1 9 . 2 ( 4 7 ) 

+ 2 B r " =»•= A u B r ^ 1 5 . 0 ( 1 + 2 ) 

+ H S " == A u ( H S ) 0 2 2 . f i ( 4 7 ) 

+ 2 H S " == A u ( H S > 2 2 9 . 7 ( 4 7 ) 

+ s 2 " " A u S " 3 9 . 0 

+ S 2 0 2 " « A u S 2 0 j 1 4 . 6 ( 4 7 ) 

+ 2 S 2 0 2 " « A u ( S 2 0 3 ) 3 " 2 8 . 8 ( 4 7 ) 

+ S O 2 " « A u S O ! 1 5 . 0 ( 4 7 ) 

+ 2 S 0 3 

3 " 3 

2 - . . . / e n * 3 -== A U ( S O J ) 2 2 9 . 4 ( 4 7 ) 

2 A u C l ( s ) + 3 H S " == A U 2 ( H S ) 2 S 2 " + 2 C l " + H + 2 6 . 3 ( 4 7 ) 

G o l d I I I 

A U 2 0 3 ( S ) + 3 H 2 0 == 2 A U 3 + + 6 O H " - 1 2 4 . 8 ( 1 1 ) , 

A U ( O H ) 3 ( S ) == A U 3 + + 3 O H " " 5 4 . 4 ( 2 ) , - 5 1 . 6 ( 5 ) , 
- 4 5 . 3 ( 9 ) , 
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ί ι ι Π j ( s ) Α υ 3 + + 3 C I ' - I B . 5 ( ? ) , - 1 5 . Ρ ( 1 1 ) , 

A U 3 + + OH" == A U ( 0 H ) 2 + 1 6 . 0 ( 4 7 ) 

+ 2 OH" == A u ( 0 H ) 2 3 2 . 0 ( 4 7 ) 

+ 3 OH" == A u ( O H ) ° 4 8 . 9 ( 4 7 ) 

+ 4 OH" == A u ( O H ) ^ 5 1 . 1 ( 4 7 ) 

+ 5 OH" « A u ( O H ) g " 5 1 . 8 ( 4 7 ) 

+ 6 OH" == A u ( O H ) g " 4 7 . 0 ( 2 9 ) 

+ 3 OH" == H 2 A u O j + H + 2 6 . 8 ( 4 ) 

+ 3 OH" == HAuOj " + 2 H + 1 3 . 5 ( 4 ) 

+ 3 OH" == A u O 3 " + 3 H + - 2 . 4 8 ( 4 ) 

+ C l " == A u C l Z + 1 1 . 0 ( 4 7 ) 

+ 2 C l " == ^ u C l 2 1 7 . 6 ( 4 7 ) 

+ 3 C l " " A u C l ° 2 1 . 5 ( 4 7 ) 

+ 4 c i " == A u C l ^ 2 6 . 0 ( 1 0 ) 

+ 3 OH" + C l " « A U ( 0 H ) 3 C 1 " 4 5 . 8 ( 4 7 ) 

+ 2 OH" + 2 C l " = = A u ( O H ) 2 C l j 3 9 . 8 ( 4 7 ) 

+ OH" + 3 C l " == A u ( O H ) C l J 3 3 . 0 ( 4 7 ) 

+ 4 C l " + H + == HAuC l° 4 8 . 2 

+ 4 ß r " == A u B r ^ 3 2 . 4 

+ H + + 2 S O 2 " = = H A u ( S 0 4 ) ° 2 1 . 4 2 ( 4 7 ) 
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Mercury 

HgO(s) + H20 « Hg2+ + 2 OH" -25.5 (1), -25.5 (2), 

Montroydite "25.5 (3), -25.4 (5), 

-25.5 (6), -25.7 (36) 

-25.5 (19), 

H g ( O H M s ) == Hg2+ + 2 OH" -25.4 (2), -25.4 (9), 

-25.5 (9), - « . 4 (19), 

H g S ( s ) + H
+ == Hg2+ + HS" -39.3 (1), -39.3 (2), 

metacinnabar (black) -39.2 (4), -38.5 (fi), 

-38.5 (10), -38.7 (19), 

HgS(s) + H + == Hg2+ + HS" -39.8 (1), -39.8 (2), 

cinnabar (red) "39.8 (3), -39.6 (4), 

-39.8 (6), -39.8 (10), 

-39.1 (19), 

HgS04(s) == H q 2 + + SO2" -2.23 (4), -3.34 (19), 

Hg2+ + OH" == Hg(OH)+ 10.4 (2) 

+ 2 OH" « Hg(0H)| 21-9 (2) 

+ 3 OH" == Hg(0H)~ 3 5· 0 (2) 

+ 2 OH" == HHgO^ + H + 7· 0 5 i1) 

+ F" == HgF+ 1-58 (1) 

+ CI" == HgCl+ fi-25 (10) 

+ 2 CI" == HgCl2 1 3· 2 5 <10) 

+ 3 CI" == HgCl" 15.35 (10) 

+ 4 CI" == HgCl2" 15-1 Π ) 
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+ OH + CI == Hg(OH)Cl° 18.1 

+ Br" == HqBr+ 9.05 

+ 2 Br" == HgBr£ 

+ 3 Br" == HgBr3 

17.4 

19.6 

+ 4 Br" == HgBrJj" 21.0 (1) 

+ CO2" == HgC0° 10.9 (29) 

+ 2 HS" == Hg(HS)° 35.6 (2) 

+ S 20
2" == HgS20° 29.2 (2) 

+ 2 S20^" == Hq(S203)^" 30.8 (2) 

+ 3 S2o|j~ == Hg(S203)^" 30.6 (5) 

+ 2 SO3" == Hq(S03)|" 24.1 (5) 

+ 3 SO 2' == Hg(S03)^" 26.0 (5) 

+ SO2" HgSO° 1.41 (1) 

+ 2 SO2" == Hp(S04)2" 3.86 (29) 

Hg 2 + + N0 3 == HqNO* 0.33 (19) 

+ 2 N0 3 == Ηα(Ν0 3)| -1.36 (19) 

2 Hg(0H)2(s) == Hg 2(0H)
3 + + 3 OH" -40.2 (5+2) 

3 Hg(0H)2(s) == Hg 3(0H) 3
+ + 3 OH" -40.8 (5+2) 

HgS(s) + 2 H 2S° HgS(H2S)° -4.31 (8) 

HgS(s) + HS" == HgS(HS)" -5.28 (36) 

HgS(s) + 2 HS" == HgS(HS)2" -3.60 (8) 

HgS(s) + HS" + H 2S° == Hg(HS)~ -3.59 (8) 

HgS(s) + HS" + OH" == HqS2" + HjO 0.31 (8) 
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Thal l ium I 

T l 2 0 ( s ) + H20 == 2 Tl+ + 2 OH" - 0 . 8 9 ( 1 ) , 

T1(OH)(s) T1+ + OH" - 1 . 0 7 ( 1 ) , - 1 .P7 ( 2 ) , 

T l C l ( s ) == T1+ + CI" - 3 . 7 3 ( 1 ) , - 3 . 7 2 ( 2 ) , 

- 3 . 7 4 ( 5 ) , - 3 . 6 6 ( 9 ) , 

- 3 . 7 2 ( 9 ) , - 3 . 7 5 ( 9 ) , 

- 3 . 8 2 (9) 

T l 2 C 0 3 ( s ) == 2 Tl+ + CO3" "3 .85 ( 1 ) , 

T l 2 S ( s ) + H+ == 2 Tl+ + HS" - 7 . 1 8 ( 1 ) , 

T l 2 S 0 4 ( s ) == 2 T l + + SO4" - 3 . 8 3 ( 1 ) , - 3 . 8 2 ( 2 ) , 

OH 

F" 

CI" 

2 CI" 

3 CI" 

HS" 

S2°3~ 

SO 

NO, 

2-

== Tl(OH)0 

== TIF" 

== T1C1° 

== T1CU 

== TICli 

'2 

,2-
' 3 

Tl(HS)0 

" TIS 2O 3 

« T1S0" 

== TINOS 

0 .79 ( 7 ) 

0 .10 (5 ) 

0 . 5 1 (9) 

0 . 16 (1 ) 

- 0 . 9 0 

2 .27 (5 ) 

1 .91 (9) 

1 .37 (5) 

0 .33 (5 ) 
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T h a l l i u m I M 

T l 2 0 3 ( s ) + 3 H 2 0 

A v i c e n n l t e 

2 T l 3 + + 6 OH' 

T 1 ( O H ) - ( s ) = = T l 3 + + 3 OH 

T l 2 S 3 ( s ) + 3 = = 2 T l 3 + + 3 HS' 

T l 3 + + OH" = = T l ( O H ) 2 + 

+ 2 OH" = = T 1 ( O H ) 2 

+ 3 OH" = = T 1 ( 0 H ) ° 

+ 4 OH" « T l ( O H ) ^ 

+ C I " = = T 1 C 1 2 + 

+ 2 C l " = = T 1 C 1 * 

+ 3 CI « T 1 C 1 ° 

+ 4 C l " = = T l C l ^ 

+ OH" + C l " = = T l ( O H ) C l + 

+ S O 2 " = = T 1 S O * 

- 8 9 . 1 ( 1 ) , - 9 0 . 8 ( 2 ) , 

- 9 0 . 4 ( 5 ) , 

- 4 3 . 8 ( 1 ) , - 4 3 . 7 ( 2 ) , 

- 4 3 . 6 ( 9 ) , - 4 5 . 2 ( 9 ) , 

- 9 8 . 0 ( 2 ) , 

1 3 . 4 ( 7 ) 

2 6 . 4 ( 7 ) 

3 8 . 7 ( 7 ) 

4 1 . 0 ( 7 ) 

7 . 7 2 ( 9 ) 

1 3 . 5 ( 9 ) 

1 6 . 5 ( 5 ) 

1 8 . 3 ( 9 ) 

1 9 . 9 ( 7 ) 

4 . 3 8 ( 2 9 ) 
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Lead 

PbO(s) + H 20 == Pb 2 + + 2 OH" -15.2 (2), -15.3 (3), 

Litharge -14.4 (4), -15.2 (5), 

-14.9 (9), -15.2 (9), 

,2+ 

-15.1 (19), 

-19.8 (1), -19.8 (?), 

-18.7 (9), -20.Π (9), 

-14.9 (36), -19.8 (19), 

PbF2(s) == Pb 2 + + 2 F" -6.23 (3), -7.42 (4), 

-7.44 (5), -7.57 (9), 

Pb(OH)CI(s) ·« Pb 2 + + OH" + Cl" -29.3(2), 

Laur1on1te 

PbC03(s) == Pb 2 + + CO2" -12.8 (1), -13.4 (2), 

Cerussite -12.8 (3), -13.0 (4), 

-13.1 (5), -13.1 (9), 

-13.5 (10), -13.0 (36), 

Pb 3(C0 3) 2(0H) 2(s) == 3 Pb 2 + + 2 CO2" + 2 OH" -45.1 (4), -18.8 (36), 

Hydrocerussite "46.7 (19), 

Pb2(C03)Cl2(s) == 2 Pb 2 + + CO2" + 2 Cl" -19.8(2), -19.9(19), 

Phosqenite 

PbS(s) + H + == Pb 2 + + HS" -15.1 (1), -15.1 (2), 

Galena -15.2 (3), -14.2 (4), 

-14.7 (6), -14.7 (10), 

-14.5 (43), -14.6 (19), 
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PbS04(s) == Pb 2 + + SO2" -7.74 (1), -7.76 (2), 

Anglesite -7.70 (3), -7.87 (4), 

-7.79 (5), -7.17 (6), 

-7.75 (10), -7.89 (36), 

-7.79 (19), 

Pb20(S04)(s) + H 20 == 2 Pb 2 + + SO2" + 2 OH" -28.4 (2), -32.5 (19), 

Larnaklte 

Pb 3(P0 4) 2(s) == 3 Pb 2 + + 2 PO 3" -54.1 (4), -43.5 (5), 

-42.1 (9), -44.6 (19), 

PbAl3(P04)(SO4)(OH)6(s) == P b ? + + 3 Al 3 + + P04~ + SO2" + 6 OH" -86.5 (2), 

Hinsdalite 

PbSi03(s) + Η,,Ο + 2 H
+ == Pb 2 + + H4SiO£ 7.32 (1), 6.12 (2), 

Alamosite 7.64 (4), 5.94 (19), 

Pb2Si04(s) + 4 H + = = 2 Pb 2 + + H4SiO^ 19.8 (1), 18.6 (2), 

19.2 (4), 18.5 (19), 
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Pb 2 + + OH" == Pb(OH)+ 6.29 (7) 

+ 2 OH" == Pb(OH)° 10.8 (2) 

+ 3 OH" == Pb(OH)2 13.9 (2) 

+ 4 OH" == Pb(OH)^" 16.-5 (19) 

+ 2 OH" == HPbO^ + H + -0.09 (1) 

+ F" « PbF+ 1.49 (2) 

+ 2 F" == PbFJ 2.70 (2) 

+ 3 F" == PbFj 4.07 (2) 

+ 4 F" == PbF^" 3.20 

+ CI" == PbCl+ 1.60 (10) 

+ 2 CI" «« PbClI 1.78 (10) 

+ 3 CI" == PbClj 1.68 (10) 

+ 4 CI" == PbCl|" 1.38 (10) 

+ Br" == PbBr+ 1.11 (5) 

+ 2 Rr" == PbBr£ 1-44 (5) 

+ 3 Br" « PbBrj 1.19 (5) 

+ 4 Br" == PbBr2" 2.30 (5) 

+ CO2" == PbCOj 7.00 (29) 

+ 2 C03
2" « Pb(COj)2" 8.23 (2) 

+ HCOj == PbHCOj 2.90 (43) 

+ 2 HCOj " Pb(HC03)| 4.77 

+ 3 HCO3 == Pb(HC03)3 5.19 

+ 2 HS" == Pb(HS)° 15.3 (2) 

+ 3 HS" == Pb(HS)3 16.6 (2) 

+ 2 HS" == PbS(HS)" + H+ 7.81 (43) 
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Pb 2+ 
+ S2O2" 

+ 2 $ / { 

• 3 S2O2-

+ 4 S20'3 

+ SO^ 

+ 2 SO* 

+ NO-

+ 2 no : 

2 -HPO 

+ h 2 po 4 

+ P 2 0^-

2 Pb(0H) 2 ( s ) 

2 Pb(OH)2 (s) 

3 Pb(OH)2 (s) 

4 Pb(0H) 2 ( s ) 

6 Pb(OH)2( s ) 

PbS(s) + 2 H2S° 

" P b S 2°5 

. . P b ( s 2 0 3 ) | " 

" P b ( s 2 o 3 ) ^ " 

== Pb(S 2 0 3 )« -

== PbSO° 

" P b ( S 0 4 ) ^ ' 

== PbNO* 

== Pb(N03 )° 

== PbHPO? 4 

== PbH2PO^ 

== PbP20^" 

== Pb 2 (OH) 3 + + 3 

2+ == Pb 2 (0H) 2 + 2 

OH 

OH 

2+ == Pb3 (0H)^ + 2 OH 

== Pb 4 (0H)£+ + 4 OH" 

== Pbg(OH)g+ + 4 OH" 

== PbS(H2S)° 

4.00 (43) 

6 .50 (43) 

6 .40 (43) 

4 .00 (43) 

2 .63 (2) 

4 .51 (29) 

1.07 (1) 

1.40 (5) 

3 .10 (5) 

1.50 (5) 

10.4 (1) 

- 3 2 . 1 (5+2) 

- 1 8 . 1 (26) 

- 2 6 . 9 (1 ) 

- 4 2 . 7 (1 ) 

- 4 9 . 8 (1) 

- 2 . 1 0 (8) 
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Bismuth 

B i 2 0 3 ( s ) + 3 H 20 == 2 B i 3 + + 6 OH" - 7 4 . 8 ( 1 ) , - 7 8 . 0 ( ? ) , 

B i smi te - 6 8 . 1 ( 4 ) , - 7 4 . 8 ( 6 ) , 

- 7 4 . 8 ( 11 ) , 

B iO(OH)(s ) + H 20 == B i 3 + + 3 OH" - 3 7 . 9 ( 1 ) , - 3 7 . 9 ( 11 ) , 

B i ( O H ) , ( s ) == B i 3 + + 3 OH" - 3 5 . 5 ( 2 ) , - 2 8 . 6 ( 4 ) , 

- 31 .5 ( 9 ) , - 3 3 . 4 ( 11 ) , 

B 1 C l 3 ( s ) == B i 3 + + 3 C l " - 1 . 9 3 ( 2 ) , - 0 . 7 2 ( 11 ) , 

B 1 ( 0 H ) 2 C l ( s ) == B i 3 + + 2 OH" + C l " - 3 0 . 7 ( 1 1 ) , 

B iOC l ( s ) + H 20 == B 1 3 + + 2 OH" + C l " - 3 0 . 8 ( 4 ) , - 3 4 . 4 ( 1 1 ) , 

B i smocHte 

B i 2 S 3 ( s ) + 3 H+ = = 2 B 1 3 + + 3 HS" - 6 0 . 0 ( 1 ) , - 6 5 . 3 ( 2 ) , 

B i smuth in i te - 5 7 . 2 ( 4 ) , - 6 0 . 0 ( 11 ) , 

-60.0 (6), 

B i 2 ( S 0 4 ) 3 ( s ) == 2 P i 3 + + 3 SO^" - 9 0 . 3 ( 1 1 ) , 

= = ß i 3 +
 + P 0 3 - - 2 3 . 0 ( 2 ) , 
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Bi 3 + + OH" == Bi(OH)2+ 1?.9 (7) 

+ 2 OH" == Bi(OH)2 25.5 (52) 

+ 3 OH" == Bi(OH)2 33.1 (7) 

+ 4 OH" == Bi(OH)^ 34.2 (7) 

+ OH" == BiO+ + H + 12.6 (1) 

+ 3 OH" + Η ?0 == HBi(OH)^ 33.3 (11) 

+ 3 OH" + 3 H20== H3Bi(0H)° 33.3 (11) 

+ F" == BiF 2 + 2.28 (29) 

+ Cl" == BiCl 2 + 2.85 (29) 

+ 2 Cl" == BiCI2 5.05 (29) 

+ 3 Cl" == Bi Cl2 6-76 (29) 

+ 4 Cl" == BiCT^ 7.38 (29) 

+ 5 Cl" == BiCI2" 7.49 (29) 

+ 6 Cl" == BiClg" 6.51 (29) 

+ Cl" + 2 OH" == Bi(OH) 2Cr 25.0 (52) 

+ 2 Cl" + OH" == Bi(OH)Cl° 16.0 (52) 

+ SO2" == B1S0+ 4.09 (29) 

+ 2 SO2" == Bi(SO-)" 7.11 (29) 

+ 3 SO2" == Bi(SO^)j" 6.33 (29) 

+ 4 SO2" == Bi(S04)®" 6.52 (29) 

+ 5 S04 
2- m l rn , 7" Bi(S04)g 1.90 (29) 

+ NOj == B1NO3 1.70 (5) 

+ 2 NOj == Bi(N03)° 2.50 (5) 
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6 B1(0H)3(S) == B16(0H)J2 + 6 OH" -25.3 

6 B1(OH) 3(S) == BIGOG(OH)J + + 6 HJO + 3 OH" 7.70 

9 B1(0H) 3(S) == B1G(OH)2Q + 7 OH" -13.4 

9 B1(0H) 3(S) == B1 G(OH)|J + 6 OH" -12.9 (11) 

9 B1(OH) 3(S) == B1 G(0H)22 + 5 OH" - 1 . 5 2 ( 1 1 ) 

6 BI(OH) 3( s) == B1 GO®
+ + 6 H 2 0 + 6 OH" -33.0 (11) 

Thorium 

T h O o( s) + 2 H 2 0 « T h 4 + + 4 OH" "50.9 (2)', -49.3 (3), 

Thorianite -«-5 (4), -49.7 (5), 
-49.1 (11), -54.2 (22), 

TH(0H),( s) « T h 4 + + 4 OH" " « . I (?), -39.2 (4), 

-44.7 (5), -39.2 (11), 

-46.6 (22), 

THF-( s) =· T H 4 + + 4 F" -27.7 (2), -13.3 (11), 

-30.2 (22), 

TH(S0 4) Z( s) « T H 4 + + 2 S O F -14.6 (3), -13.9 (11), 
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T h 4 + + OH" == T h ( O H ) 3 + 1 0 . 8 ( 5 ) 

+ 2 OH" == T h f O H ) ^ 2 1 . 1 ( 5 ) 

+ 3 OH" == T h ( O H ) j 3 0 . 3 ( 7 ) 

+ 4 OH" == T h ( O H ) ° 4 0 . 1 ( 7 ) 

+ 5 OH" == T h ( O H ) j 3 7 . 3 ( 2 ) 

+ 6 OH" == Th(OH)g" 3 7 . 3 ( 2 ) 

+ F" == T h F 3 + 8 . 0 3 ( 2 2 ) 

+ 2 F" == T h F ^ + 1 4 . 3 ( 2 2 ) 

+ 3 F" == T h F j 1 8 . 9 ( 2 2 ) 

+ 4 F" == ThF^ 2 2 . 3 ( 2 2 ) 

+ C I " == T h C l 3 + 1 . 0 9 ( 2 2 ) 

+ 2 C I " == T h C l 0 . 8 0 ( 2 2 ) 

+ 3 C I " == T h C l j 1 . 6 5 ( 2 2 ) 

+ 4 C I " == T h C l ° 1 . 2 6 ( 2 2 ) 

+ COj" « T h C O j + 1 1 . 0 ( 2 9 ) 

+ SO*" == ThSO* + 5 . 4 5 ( 2 2 ) 

+ 2 SO*" == T h ( S 0 4 ) ° 9 . 7 3 ( 2 2 ) 

+ 3 SO*" == T h ( S 0 4 ) * " 1 0 . 5 ( 2 2 ) 

+ 4 SO*" == T h ( S 0 4 ) 4 " 8 . 4 8 ( 2 2 ) 

+ NO3 == T h N 0 3 + 0 . 9 4 ( 2 2 ) 

+ 2 NOj == T h ( N 0 3 ) 2 + 1 - 9 7 ( 2 2 ) 

+ HPO?" == T h H P 0 4
+ 1 0 . 8 ( 2 2 ) 

+ 2 HPO*" == T h ( H P 0 4 ) ° 2 2 . 8 ( 2 2 ) 

+ 3 HP04" == T h ( H P 0 4 ) | ~ 3 1 . 3 ( 2 2 ) 
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T h 4 + + H2PO^ == T h H 2 P 0 4
+ 4 . 5 2 ( 2 2 ) 

+ 2 H 2 PO; · • T H ( H 2 P 0 4 ) 2 + 8 . 8 8 ( 2 2 ) 

+ H 3 P O ° 4 == T h ( H 3 P 0 4 ) 4 + 1 . 9 1 ( 2 2 ) 

2 T h 0 2 ( s ) + 4 H 2 0 == T h 2 ( 0 H ) 2
+ + 6 O H " - 8 6 . 5 ( 2 2 ) 

4 T h 0 2 ( s ) + 8 H20 == T h 4 ( 0 H ) j j + • 8 O H " - 1 2 5 . 9 ( 2 2 ) 

6 T h 0 2 ( s ) + 12 H 2 0 == T t y O H ) * + 9 O H " - 1 5 1 . 9 ( 2 2 ) 

U r a n i u m IV 

U 0 2 ( s ) + 2 H ? 0 

l l r a n i n i t e 

== U 4 + + 4 OH" - 5 2 . 2 ( 3 ) , • 

- 5 2 . 2 ( 6 ) , 

U ( O H ) 4 ( S ) == U 4 + + 4 OH" - 5 2 . 0 ( 1 2 ) , 

== U 4 + + 4 F - - 1 9 . 7 ( 1 4 ) , 

U ( H P 0 4 ) 2 . 4 H 2 0 ( S ) = = | J 4 + + 4 H 2 0 + 2 H P O 2 " - 2 6 . 8 ( 1 2 ) , 

C a U ( P 0 4 ) 2 . 2 H 2 0 ( s ) 

N i n g y o i t e 

U 4 +
 + C a 2 + + 2 H 2 0 + 2 P O ^ " - 5 4 . 3 ( 1 2 ) , 

U S i 0 4 ( s ) + 4 H+ 

C o f f i n i t e 

« U 4 + + H 4 S 1 0 ° - 8 . 8 2 ( 1 4 ) 
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U 4 + + OH" « . U ( O H ) 3 + 1 3 . 4 ( 1 4 ) 

+ 2 OH" = = U ( O H ) | + 2 5 . 7 ( 1 4 ) 

+ 3 OH" = = U ( 0 H ) 3 3 7 . 1 ( 1 4 ) 

+ 4 OH" = = U ( O H ) ° 4 7 . 5 ( 1 4 ) 

+ 5 OH" = = U ( O H ) ~ 5 6 . 8 ( 1 4 ) 

+ F " = = U F 3 + 8 . 9 3 ( 1 4 ) 

+ 2 F " = = U F i ; + 1 5 . 1 ( 1 4 ) 

+ 3 F " = = U F j 2 0 . 0 ( 1 4 ) 

+ 4 F " = = UF£ 2 4 . 9 ( 1 4 ) 

+ 5 F " = = U F j 2 6 . 8 ( 1 4 ) 

+ 6 F " = = U F g " 2 9 . 5 ( 1 4 ) 

+ C I " = = U C 1 3 + 1 . 3 4 ( 1 4 ) 

+ S O ^ " = = U S O ) j + 5 . 5 9 ( 1 4 ) 

+ 2 s o j j " « « U ( S 0 4 ) ° 1 0 . 0 ( 1 4 ) 

+ N O j = = UNO3 4" 1 . 6 0 ( 5 ) 

+ HPO^" = = UHPO^ + 1 2 . 0 ( 1 4 ) 

+ 2 HPO^" " U ( H P 0 4 ) ° 2 2 . 0 ( 1 4 ) 

+ 3 H P 0 4 " = = U ( H P 0 4 ) ^ " 3 0 . 6 ( 1 4 ) 

+ 4 H P 0 4 " = = U ( H P 0 4 ) 4 " 3 8 . 7 ( 1 4 ) 

6 U 0 2 ( s ) + 1 2 H 2 0 = = U 6 ( 0 H ) j 5 + 9 OH" - 1 7 0 . 9 ( 1 4 ) 
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Uranium VI 

U0 3 (s ) + H20 == υθί;+ + 2 OH" - 1 5 . 1 (3 ) , -20.3 (14), 

U0 2 (OH) 2 (S ) « Uo j j + + 2 OH" -21.9 (2 ) , -22.4 ( 5 ) , 

Ianth ln i te -17.2 (9 ) , -20.9 (9 ) , 

-22.4 (14), 

U0 2 (0H) 2 .H 20(S) == U02
+ + 2 OH" + H20 -22.0 (2 ) , -22.6 (14), 

Schoepite 

U 0 2 F 2 ( S ) == + 2 F" -5 .89 (2) , 

U0 2C0 3(s) == U0ij+ + Co|" -14 .2 (2) , -10.5 (4 ) , 

Rutherfordine -14 .5 (14), 

( , J 0 2 ) 3 ( P 0 4 ) 2 ( s ) " 3 U0*+ + 2 PO^" -46.7 (2), -49.7 (5 ) , 

-49.3 (14), 

KU02P04(s) == \)θγ + K+ + PO^" -22.4 (2) , -24.2 (14), 

K-Autcinite 

Ca( t l0 2 ) 2 (P0 4 ) 2 ( s ) == 2 U0^+ + C a ? + + 2 PO^" - 4 4 . 5 ( 1 4 ) , 

Autunite 
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+ OH" = » U 0 2 ( 0 H ) + 8 . 8 4 ( 2 ) 

+ 2 O H " = = U 0 2 ( 0 H ) ° 1 5 . 6 ( 2 ) 

+ 3 O H " = = U 0 2 ( 0 H ) 3 1 8 . 4 ( 2 ) 

+ 4 O H " « U 0 2 ( 0 H ) ^ " 1 8 . 2 ( 2 ) 

+ F ~ = = U 0 2 F + 4 . 9 3 ( 2 ) 

+ 2 F " " U 0 2 F | 9 . 2 9 ( 2 ) 

+ 3 F " = = U 0 2 F j 1 1 . 9 ( 2 ) 

+ 4 F " = = U 0 2 F ^ " 1 3 . 2 ( 2 ) 

+ C I " « U 0 2 C 1 + 0 . 2 1 ( 2 ) 

+ C O 3 " = = U 0 2 C 0 ^ 1 0 . 1 ( 1 4 ) 

+ 2 C O * " = = U 0 2 ( C 0 3 ) 2 " 1 8 . 1 ( 2 ) 

+ 3 C O 3 " = = I I 0 2 ( C 0 3 ) ^ " 2 2 . 4 ( 2 ) 

+ 2 C O 3 " + 2 H 2 0 = = U 0 2 ( C 0 3 ) 2 ( H 2 0 ) | " 1 4 . 5 ( 4 ) 

+ S 2 0 ^ " = = U 0 2 S 2 0 ° 1 . 8 5 ( 2 ) 

+ S 0 | ~ = = U 0 2 S 0 ^ 2 . 7 2 ( 2 ) 

+ 2 S 0 4 " = = U 0 2 ( S 0 4 ) ^ " 4 . 2 0 ( 2 ) 

+ 3 S o j j " = = U 0 2 ( S 0 4 ) ^ " 4 . 7 0 ( 2 9 ) 

+ H P 0 4 " = = U 0 2 H P 0 ° 8 . 4 0 ( 1 4 ) 

+ 2 H P O j j " = = U 0 2 ( H P 0 4 ) ^ " 1 8 . 6 ( 1 4 ) 

+ H 2 P 0 4 = = U 0 2 H 2 P 0 4 3 . 0 3 ( 1 4 ) 

+ 2 H 2 P 0 4 = = U 0 2 ( H z P 0 4 ) | 5 . 4 7 ( 1 4 ) 

+ 3 H 2 P 0 4 = = U 0 2 ( H 2 P 0 4 ) 3 7 . 1 8 ( 1 4 ) 

2 U 0 2 ( 0 H ) 2 ( s ) = = ( U 0 2 ) 2 ( O H ) | + + 2 O H " - 2 1 . 6 ( 2 ) 

3 U 0 2 ( 0 H ) 2 ( s ) = = ( U 0 2 ) 3 ( 0 H ) ^ + O H " - 1 3 . 0 ( 1 4 ) 
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It should be borne in mind that the accuracy o f calculations based 

on thermodynamic data is limited by several factors : 

( 1 ) Although for most of the reactions, reliable equilibrium con-

centrations may be estimated, it is not always certain that kinetically, 

these reactions will proceed. 

( 2 ) It is implicitly assumed that all solid phases under considera-

tion can be treated apart , but in practice, adsorption processes, c o -

precipitation and the formation o f solid solutions cannot always 

be ruled out. In order to perform exact quantitative calculations, 

it would be necessary to know the composit ion o f such solids, the 

distribution coeff icients and the activity coefficients in the solid 

phases. 

( 3 ) As can sometimes be seen in Table 1, the thermodynamic 

data are not always sufficiently accurate. This is particularly true 

for the solubility products , which may differ by several order o f mag-

nitude in different compilations. Another case in point, for anoxic 

waters, is the dissociation constant o f H S " ^ H + + S 2 ~ , which is not 

well known (see Table 2) . Therefore, it is important to use the same 

value for the second dissociation constant o f H 2 S as did the author 

who reported the K ° - v a l u e for a certain sulfide reaction; otherwise, 

large and unnecessary errors may be introduced. 
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TABLE 2. Dissociation constants for acids that are of interest in natural waters. 

Equilibrium reaction under 

consideration 

0 
Literature values of.log Κ 

(and references) 

V ° 3 H + + HCO" -6.36 (1)(2)(9)(19)(20), -6.37 (4)(6), 

-6.30 (3), -6.35 (5)(9)(10)(37), -6.45 (9), 

-6.46 (9). 

-6.339 (34), 

HCO- H + + co3
2" -10.33 (1)(2)(3)(4)(5)(9)(19)(20), -10.34 (6), 

-10.36 (9), -10.41 (9), -10.32 (10)(37), 

-10.329 (34), 

HGS0 H + + HS" -6.99 (1)(2)(9)(10)(11)(!7), -7.00 (4)(9), 

-6.96 (3)(9), -7.02 (5)(9)(19), -7.04 (9), 

-6.97 (9), -6.91 (9), -7.07 (9), -6.79 (9), 

-7.06 (9), -7.01 (18), -6.90 (38), 

HS" H + + s 2- -12.91 (1)(2)(11), -12.90 (3)(9), -13.89 (4), 

-13.90 (5)(9)(10), -12.92 (6)(9), -10.8 (8), 

-14.92 (9), -15.00 (9), -12.89 (9), -14.00 (9), 

-12.20 (9), -13.48 (38), 

H4SIO3 - H + + HJSFO" -9.80 (2)(20), -9.89 (4), -9.86 (5)(7)(29), 

-9.82 (14), -9.70 (19), -9.84 (24), 

Η,ΡΟ; 3 4 H + 4 H2 P 04 
-9.48 (1), -2.15 (2)(5)(14)(19), -5.35 (3), 

-2.13 (4), -2.10 (9), -1.74 (11), -2.16 (9), 

-1.98 (9), -2.12 (9), -2.11 (9), -2.20 (29), 

-2·. 15 (37), 

H2PO" H + + HPO 2 ' 0.125 (1), -7.20 (2)(5)(11)(14)(19), 0.07 (3), 

-7.18 (4), -7.23 (9), -7.15 (9), -7.13 (9), 

-7.06 (9), -7.22 (9), -7.21 (9), -7.17 (29), 
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Η Ρ Ο * " " Η + + Ρ 0 * ~ - 1 2 . 3 4 ( 1 ) ( 2 ) , - 1 2 . 3 1 ( 3 ) , - 1 2 . 0 2 ( 4 ) , 

- 1 2 . 3 5 ( 5 ) ( 1 9 ) ( 2 9 ) , - 1 2 . 3 0 ( 9 ) , - 1 2 . 6 6 ( 9 ) , 

- 1 2 . 3 6 ( 9 ) , 

Η4Ρ2°7 " Η+ + Η3Ρ2°7 -1.54 (1)(3)(11), -0,80 (5)(19), 

Η3Ρ20; « Η+ + Η2Ρ20^" -2.27 (1)(3)(9)(11), -2.20 (5), -2.28 (19), 

Η 2 Ρ 2 0 ^ - „ Η + + Η Ρ 2 θ 2 · - 6 . 6 7 ( 1 ) ( 3 ) ( 1 1 ) , - 6 . 7 0 ( 5 ) ( 1 9 ) , - 6 . 5 7 ( 9 ) , 

- 6 . 6 3 ( 9 ) , 

ΗΡζΟ*" « Η+ + Ρ?0*~ -9.31 (1)(3)<10), -9.40 (5), -9.62 (9), 
- 9 . 2 9 ( 9 ) , - 9 . 5 3 ( 9 ) , - 9 . 4 1 ( 1 9 ) , 

CALCULATION OF CHEMICAL SPECIATION 

Equilibrium concentrations of the various chemical species of an 
element can be calculated on the basis of their equilibrium constants. 
Let us consider the reactions in solution for a cation Μ in the presence 
of k ligands L. Omitting charges, one can write: 

[ML, ] 
Μ + L, ^ ML, with K ( 1 ) l = 

[M] [Lj ] 

Μ + 2L, * M ( L l ) 2 K ( 1 ) 2 = [ M ( L l ) * ] , 
[M] [Li ] 
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[ M ( L l ) n ] 
Μ + nL , - M ( L J ) n K ( i ) = n" 

[M] [ L , ] 

[ M ( L k ) n ] 
Μ + N L k ^ M ( L k ) „ K ( k ) n 

[M] [ L k ] " 

For the total concentrat ion of the element Μ in solution, the mass 

balance is given by: 

[M] tot = [M] + [ M L , ] + [ Μ ( Μ 2 ] + . . . + [ M ( L , ) n ] + · • · 

. . . + [ M ( L k ) n ] = [Μ] 1 + Σ Σ K(j ) n [ L j ] r 

( n = l i = l 

where 
[M] : the uncomplexed and/or hydrated Μ ion concentra t ion 
[M(L;) n ] : concentrat ion of the n th order complex between Μ and 

the ith ligand L 
[Lj ] : the f ract ion of total [L j ] t o t ) present in the fo rm Lj 
k : total number of ligand types included in the model 
K(i)n : the overall stability constant for the complex M ( L ; ) n 

The side reaction coefficients « Μ and consti tute quanti tat ive 
representations of all the competing side reactions which tend to reduce 
the extent to which the main coordinat ion reaction proceeds: 

[Μ] I n k r 

similarly: 

[ L x ] 

[ L x ] 
with 1 < χ < k 

tot 

and with [Lxhot the ligand in all dissolved forms, except in the com-
plexes with M. 

Important complexing agents L; in natural waters are humic and 
fulvic matter , for which data are not well known and not very useful 
anyway, in view of the complexi ty and variability of these materials. 
Other major complexing agents are anions of inorganic acids (H 2 C 0 3 , 
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H 2 S, H4S1O4, phosphoric acids). In order to aid in the calculations 
of the chemical speciation, the dissociation constants for these acids 
are given in the auxiliary Table 2. 

CALCULATION OF SOLUBILITY AND SATURATION INDEX 

For the solubility equilibrium one can write: 

ML x (s ) - Μ + L x with 1 < χ < k, 

and the solubility product is given by: 

KS 0 = [M] [L x ] 

In order to make solubility predictions, all side reactions, those 
of dissolved cationic elements with inorganic and organic ligands, 
of anionic elements with cations and both cationic and anionic ele-
ments in various redox states, have to be considered. The involvment 
of so many species may lead to rather complicated calculations re-
quiring the use of suitable computer programs e.g. WATEQ (54), 
MINEQL (55), WATSPEC (56) and SIAS (57). 

In order to simplify the calculations, the concept of "conditional 
constants", that is, equilibrium constants that hold only under given 
experimental conditions (e.g. at a given pH and temperature), has 
been introduced by Schwarzenbach (64). The resulting expression 
for the conditional solubility product P s , for instance, simply quan-
tifies the modification of the main reaction by the side reactions: 

% ' < * L X 

The saturation index, Ω , of Μ with respect to a slightly soluble 
compound (ML x (s)) is defined as the ratio of the measured concen-
tration, [ M ] e x p , to the calculated maximum concentration of Μ 
which can be in equilibrium with that slightly soluble compound, 
[MJcaic, irrespective of the chemical form of Μ but at a specified pH, 
temperature and in a given environment: 

Ps 
[MJcalc = [MJtot = 7 7 — r -

l χ J tot 
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and 

[ M ] e x p 

M ~ [MJcaie 

INFLUENCE OF THE IONIC STRENGTH 

Equilibrium constants are defined in agreement with the units in 
which reactants and products are expressed. If equilibrium constants 
are defined as concentration constants, however, they have the dis-
advantage to change with changing ionic strength and therefore may 
only be used in systems of the same ionic strength in which they were 
determined. If they are expressed as activities, the equilibrium con-
stants are activity constants. These are true constants that hold for 
solutions of any ionic strength. These constants have the disadvantage 
that many reactants and products consist of ionic or molecular species 
whose activities are difficult or impossible to measure. The data in 
Table 1 are for an assumed zero ionic strength. 

Ionic Strength 

Ionic strength (μ) is defined as: 

μ = a s q z f 
i 

where C; is the concentration in mol · L" 1 of an ion i, Z; is the valency 
of that ion. (A convenient and direct way of estimating the ionic 
strength of a solution is to measure its electrical conductivity. Griffin 
and Jurinak /58/ defined the following empirical relationship: 

μ = 0.013 EC 

where EC is the electrical conductivity expressed in mS · c m " 2 ) . 

Activity Coefficients 

Only in infinitely dilute solutions are activities and concentrations 
equal. The ratio of the activity of an ion i, aj, to its concentration, 
q , is defined as the activity coefficient, 7 ; : 
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These activity coefficients can be estimated using different equations. 
Up to an ionic strength of about 0.001 M, the simple Debye-Hückel 
relation gives a good approximation of the actual activity coefficients: 

log7j = - A Z? μ 

where A is the molal Debye-Hückel parameter which is a function 
of the density, the dielectric constant and the temperature of the 
water. 

By extending the Debye-Hückel equation to account for the ef-
fective size of the hydrated ions, a more precise relation is obtained 
which holds up to ionic strengths of about 0.2M: 

log 7 i = - A Z ? 
1 + B d j ^ 

where A and Β are the molal Debye-Hückel parameters and dj is 
the effective distance of closest approach in cm. Values for A and 
Β are again dependent upon the density, the dielectric constant and 
the temperature of the water. Values for the molal Debye-Hückel 
parameters A and Β for temperatures from 25 to 300°C can be found 
in Table 3 /59/ . Values of d j for selected ions, were calculated by 
Kielland /60/ and can be found in Table 4. They do not change ap-
preciably with temperature. If d; is unknown for a certain species, 
Guntelberg suggested to use a value of 3 · 10~8 cm. The extended 
Debye-Hückel equation gives values for that are often too small 
for many electrolytes. Therefore Da vies /61/ proposed the following 
equation: 

log γ. = - A Z ? - 0 — - 0 .3μ 
1 + μ 

This relation is of ten used in preference to the extended Debye-Hückel 
equation because it is more amenable for computer use. Table 5 gives 
single ion activity coefficients for 25°C, calculated from the extended 
Debye-Hückel relation /19/ . 
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INFLUENCE ON THE TEMPERATURE 

The data, given in Table 1, are only valid for a temperature of 25°C 
and at atmospheric pressure. The pressure dependence of hydrothermal 
equilibria is negligible below 300°C /10/ and, therefore, will not be 
considered in the present work. The influence of a different tempera-
ture can be taken into account as follows. 

The basic thermodynamic equation describing the temperature 
dependence of an equilibrium constant (at constant pressure) is given 
by: 

Δ H j J 2 
1 0 8 K T = 1 0 g K T o - I 5 Ö 3 R ^ - f - J -

/ AC (T)dT + — - i — / — £ - - d T (1) 
2.303 R T T P v ' 2 .303R x , to to 

with: 
Δ Η Τ ο = standard enthalpy of a chemical reaction for the re-

ference temperature (T0 = 298.15 K) 
ACp(T) = heat capacity of the reaction for a temperature T. 

ο 
To solve this equation, one needs values for A C p (T), which in many 

cases are not available. The relation between the heat capacity and 
temperature is usually described by the Maier-Kelley /63/ empirical 
power funct ion (2): 

c V ( T ) = at + bjT + CjT-2 + . . . 

where aj , b j and q are constants, characteristic for the substance i 
being considered. Values for a, b and c are mentioned by Naumov 
et al. 12/. 

The change in heat capacity as the result of a chemical reaction is 
then given by: 

or 

A C p C O = Σ£ρ,products Σ Cp.reactants 

ACp (T) = Aa + AbT + A C T " 2 + . . . 

For the conversion of enthalpy and entropy from one temperature to 
another, one can write: 
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TABLE 3. Molal values of the Debye-Hückel electrostatic parameters A and B. 
The values of the dielectric constant e /65/ and density ρ /66/ of 
water employed in the calculations. 

Temperature Α Β ε„ n ρ 
. -3 H?U ίο ί 

25 0.5095 0.3284 78.420 0.9968 
30 0.5144 0.3292 76.618 0.9956 
40 0.5244 0.3310 73.125 0.9919 
50 0.5354 0.3329 69.800 0.9882 
60 0.5471 0.3347 66.629 0.9833 
70 0.5596 0.3366 63.604 0.9779 
80 0.5729 0.3386 60.718 0.9720 

90 0.5871 0.3406 57.965 0.9656 
100 0.6019 0.3425 55.336 0.9580 
110 0.6180 0.3447 52.826 0.9512 
120 0.6347 0.3468 60.427 0.9428 
130 0.6525 0.3490 48.134 0.9346 
140 0.6715 0.3512 45.939 0.9259 
150 0.6915 0.3536 43.838 ,0.9169 
160 0.7129 0.3559 41.824 0.9076 

170 0.7354 0.3583 39.ε91 0.8974 
180 0.7595 0.3608 38.033 0.8870 
190 0.7851 0.3632 36.244 0.8758 
200 0.8127 0.3659 34.519 0.8645 
210 0.8427 0.3686 32.852 0.e530 

220 0.8746 0.3714 31.238 0.8401 

230 0.9099 0.3744 29.671 0.8274 

240 0.9484 0.3775 28.145 0.8140 

250 0.9907 0.3807 26.655 0.7993 

260 1.0385 0.3845 25.196 0.7852 
270 1.0905 0.3879 23.762 0.7679 
280 1.1502 0.3919 22.347 0.7506 
290 1.2185 0.3962 20.947 0.7321 
300 1.2979 0.4010 19.557 0.7126 
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TABLE 4. Values for the effective distance of closest approach, dj, in cm, after 
Kielland /60/. 

10 d. 

ino rgan ic ions charge 1 

9. H+ 

6. l i + 

4. - 4 .5 Na+, CdCl+, ClOj, IOj , HCOj, H2PO^, HSOj, H2ASO^ 

3.5 OH", F", NCO", HS" , C10", C10^, BrOj, 10^ , MnO ,̂ NCS" 

3. K+, CI", Br" , I " , CN", NO" NO" 

2.5 Rb+, Cs+ , NH*, T l + , Ag+ 

inorgan ic ions charge 2 

8. Mg2+, Be2+ 

6. Ca 2 + , Cu 2 + , -Zn 2 + , r 2+ 2+ r 2+ .,,2+ Sn , Mn , Fe , Ni , Co2+ 

5. S r 2 + , Ba 2 + , Ra 2 + , Cd 2 + , Hg2 + , S 2 " , S 2 0 2 " , WO2" 

4 .5 
2+ 2- 2-Pb , COj , SOj , MoO2", Co(NH3)Cl2", Fe(CN)5N02" 

4. Hg2 + , S 0 2 \ S 2 0 2 " S 2 0 2 " , SeO2", CrO2", S 
?- 2-

2°6 • H P n 4 

inorgan ic ions charge 3 

9. Al 3 + , F e 3 + . C r 3 + , S e 3 + , Y 3 + . l a 3 + , I n 3 + , Ce 3 + , P r 3 + , Nd3 + , Sm3+ 

4. P 0 f , Fe(CN)3", Cr(NH 3) 3 + , Co(NH3)3+, Co(NH3)5 .H203 + 

inorganic ions charge 4 

11. 4+ , 4 + - 4+ Th , Zr , Ce , Sn4 + 

6. CO(S203)(CN)^" 

5. Fe(CN)g" 

inorgan ic ions charge 5 

9. CO(S03)2(CN)5" 
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TABLE 5. Single ion activity coefficients calculated from the extended Debye-
Hückel relation, after Lindsay /19/ . 

i o n i c s t r e n g t h (y) 

0 .001 0.0025 0 .005 0 .010 0.025 0 .030 0.050 0 .100 

Ion ic charge 1 

0.967 0 .950 0.934 0 .914 0 .881 0 .874 0.854 0 .826 

0.966 0.950 0 .933 0 .911 0.877 0 .870 0.848 0 .817 

0.966 0 .949 0 .931 0.909 0.873 0 .865 0.841 0.807 

0 .966 0 .948 0 .930 0 .907 0 .868 0 .860 0.834 0 .796 

0 .965 0.947 0 .928 0 .904 0 .863 0.854 0.826 0 .783 

0 .965 0 .946 0.927 0 .902 0 .858 0 .848 0.817 0 .770 

0 .965 0 .946 0 .925 0 .899 0 .852 0 .841 0.807 0.754 

Ion ic charge 2 

0.872 0 .813 0.756 0 .690 0.592 0 .572 0.517 0 .445 

0.871 0 .810 0.752 0 .683 0 .581 0 .559 0.500 0.424 

0 .870 0 .808 0 .748 0 .676 0.568 0 .546 0.483 0 .401 

0.869 0 .805 - 0 . 7 4 3 0 .668 0 .555 0 .531 0.464 0 .377 

0 .867 0 .803 0 .738 0 .661 0 .541 0 .516 0.445 0.351 

Ion ic charge 3 

9 . 0.737 0 .632 0 .540 0 .443 0 . 321 0 . 299 0. 242 0 .178 

6 . 0 .731 0.619 0 .520 0.414 0 . 280 0. 256 0 . 194 0.128 

5. 0 .728 0.614 0 .513 0.404 0. 266 0. 241 0 . 178 0 .111 

4. 0 .726 0 .610 0 .505 0 .394 0. 251 0 . 226 0 . 161 0 .095 

Ion ic charge 4 

11. 0 .587 0 .452 0 .348 0. 252 0 .151 0 .135 0 098 0 .063 

6. 0 .572 0 .426 0.312 0. 209 0.104 0 .089 0 054 0.026 

5. 0 .569 0 .420 0.305 0. 200 0 .095 0 .080 0 047 0.020 
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Δ Η χ = AaT + 0.5 AbT 2 - A c T ' 1 + χ 

A S j = AalnT + AbT - O . S A c T 2 + y 

where χ and y are integration constants that can be calculated knowing 
Δ Η 0 and AS 0 for any single temperature (for instance 298.15 K). 
Hence: 

AGx = A H j - T A S t 

= χ + ( A a - y ) T - A a T l n T - O.SAbT2 - O .SAcT" 1 

and 

- A G j 
logKT = — (2) T 2 .303 R T 

In the absence of individual heat capacity data or heat capacity 
power functions, one of ten uses the integrated form of the Van't Hoff 
equation: 

A H-T- ι ι 
logK T = logK T o - [ Τ ~ To ^ <3> 

which assumes AH 0 to be independent of temperature (equivalent 
to state AC p (T) is zero in equation (1)). 

The assumption that A C p ( T ) is constant, is usually far superior to 
assuming that it is zero. Equation (1) then becomes: 

A H T 0 ι 1 

2.303 R Τ 

,o 
I I In Τ / 

(4) 

log Κ j = l o g K T o - _ _ [ _ - _ ] + 

A C 
+ — P 

R 
j ' T 0 , τ I j ' 

Τ + 1 0 8 T o ! I 2.303 Τ + 1 0 8 T o ! 

Equilibrium constants for a number of solids and aqueous species 
are known experimentally over a limited temperature range. Assuming 
that Δ Η χ is a linear function of temperature, one can solve equation 
(4) for ACp over that temperature interval, and then re-enter this 

ο 
value (constant A C P ) to calculate logK at higher temperatures. 

ο 
Errors introduced by the assumption that A C p is zero (equation 

(3)) , depend on the relative sizes of the enthalpy and heat capacity 
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terms. I f A C p ( T ) is insignificantly small as compared to Δ Η Τ ο , a fair 

agreement is expected between estimated and true values o f logKi· at 

elevated temperatures. When the standard enthalpy is smaller than 

about 8 k J (e.g. some aqueous complexes such as sulfates), the A C p ( T ) 

is zero assumption commonly introduces serious errors which increase 

with increasing temperature. 

The assumption that A C p ( T ) is a constant may also lead to errors. 

Indeed, tabulated dissociation or equilibrium constants in the literature 

may differ seriously, resulting in divergent A C p values and conse-

quently erratic l o g K j values. Ambiguities and uncertainties, resulting 

from the assumptions A C p ( T ) is zero or constant (especially when 

dealing with high temperatures ( > 2 0 0 ° C ) ) , can be avoided b y adapt-

ing one o f the following approaches: 

( 1 ) Prediction o f dissociation constants when no heat capacity 

data o f any kind (products, reactants) are available; despite this handi-

cap, dissociation constants of ten can be closely approximated up to 

a 2 0 0 ° C by evaluating /37/: 

^ S T 0 \ θ 
l o S K T = l m i D T T 0 [1 - e x p ( e x p ( b + a T ) - c + 

2 . 3 0 3 R T ( ω 

) Δ Η γ 
+ ( T - T o ) / 0 ) ] > ( 5 ) 

v J n ) 2 . 3 0 3 R T v ' 

where θ , ω , a, b and c are temperature independent constants charac-

teristic o f the solvent; for aqueous solutions, they have values 2 1 9 . 0 , 

1 . 0 0 3 2 2 , 0 . 0 1 8 7 5 , - 1 2 . 7 4 1 and 7 . 8 4 Χ 1 0 " 4 respectively. Equation 

( 5 ) can be rewritten as: 

. „ 0 . 0 5 2 2 3 , v . _ o A U o 
l o g Κ χ = — ( X A S T o - Δ Η Τ ο ) 

with X : variable dependent upon temperature: 2 9 8 . 1 5 ( 2 9 8 . 1 5 K ) , 

3 8 8 . 0 5 ( 3 7 3 . 1 5 K ) and 4 5 1 . 1 4 ( 4 1 3 . 1 5 K ) and with Δ Η ^ and A S y 0 

and R expressed in k J · m o l " 1 , J • m o l " 1 · Κ Γ 1 and J - m o l " 1 K " 1 res-

pectively. 

( 2 ) Calculation from average heat capacities. 

( 3 ) Calculation from a combinat ion o f actual and average heat 

capacities. The alternative l o g K j computat ions for higher temperatures 

are described b y Helgeson /10, 37/. 
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We prefer to use equat ions (2) and (3) for calculating l o g K j values. 
In Fig. 1, we plo t ted for several sulfide compounds and for some 
sulfur complexes, the available solubility p roduc ts K S o : l o g K 4 1 3 1 5 

data versus logK 2 9 8 15 . Data were taken f rom Naumov et al. \1\ and 
Helgeson /10/ . The slope of the curve (obtained b y best fit th rough 
all the points) can be calculated as follows. For an MS or M 2 S 3 com-
pound (M = metal ion), one can write for l o g K 4 [ 3 l s according to 
equat ion (3): 

K298 15 _ ΔΗ298.15 1 ] 

° ß K4 1 3 .1 5 ~ 2 .303 R 1 413 .15 ~ 298 .15 J 

The slope between NiS and ZnS, for instance, will be given by Ay/Δχ 
with: 

Δ χ = logK 2 9 8 15 - l o g K 2 9 ( u s 

where 1 and 2 refer to NiS and ZnS respectively; and with: 

Λ Η 0 ' , „ 1 ΔΗ298.15 1 1 , 
Ay = l o g K 2 9 f U 5 -

2 .303 R 1 413 .15 298 .15 

o2 

2 Δ Η 2 9 8 15 ι 1 

° g 2 9 8 ·1 5 + 2 .303 R 1 413 .15 ~ 298 .15 ' 

= logK 2 9 8 15 - logK2 9 8 .1 5 + 

+ I — ( — ) ( Δ Η 2 9 8 1S - Δ Η 2 9 8 ,s ) ] l 2 . 3 0 3 R 413 .15 298.15 M 2 9 8 15 2 ' 1 

Hence: 

o2 o1 

^ = 1 - 2 .040 X 1 0 - [ A H T ' 5 " Δ Η 2 Τ ] (6) 
Δ χ logK2 9 8 . ,5 - logK 2 9 8 15 

For the couple NiS-ZnS, with Δ Η ° 9 8 . ^ (NiS) = 61 .13 k J - m o l - 1 and 

with logK 2 9 8 15 (NiS) = - 2 1 . 0 and ΔΗ 2 9 8 . 1 5 (ZnS) = 87 .80 kJ m o l " 1 

and logK 2 9 8 15 (ZnS) = - 2 4 . 9 for the following reactions: 

NiS(s) ^ Ni2 + + S 2 -

ZnS(s) ^ Zn 2 + + S 2" 

395 



Fig. 1. Relation between log Ks0 at 298.15 and 413.15 Κ for some sulfide com-

pounds. Odata from Naumov et al. 121. »data from Helgeson/10/. 
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we obtain a slope of 0.666. It appears that a fair agreement (except for 
FeS and CoS) is found between slope values calculated by means of 
equation (6) and equation (2). For oxides, hydroxides, fluorides, . . . 
similar figures can be drawn. 

Data for ΔΗ2 9 8 1S can be found in the NBS technical notes / l / , 
Naumov et al. /2/, Robie et al. /6/, Sillen and Martell /9/ , Helgeson 
/10/, and Karapet'yants and Karapet'yants /11/. 
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