CRYSTAL STRUCTURE OF DIPHENYLTIN(IV) BIS(TETRAPHENYLIMIDODIPHOSPHINATE)

Richard A. Varga* and Cristian Silvestru,

Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, RO-400028 Cluj-Napoca, Romania. Fax: 0040 264 590818; Tel: 0040 264 593833; E-mail: richv@chem.ubbcluj.ro

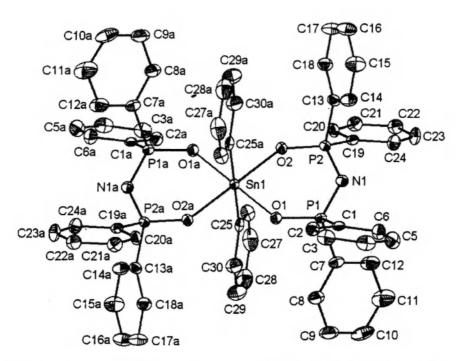


Figure 1. Molecular structure of I (hydrogen atoms are omitted for clarity): Selected bond distances (Å) and angles (°): Sn1-O1 2.182(2), Sn1-O2 2.170(2), Sn1-C25 2.124(4), O1-P1 1.516(3), O2-P2 1.525(3), P1-N1 1.586(3), P2-N1 1.580(3), O1-Sn1-O2 90.88(9), O1-Sn1-O2 89.12(9), C25-Sn1-C25 180.0(3). Symmetry operation given by "a": -x + 2, -y, -z.

COMMENT

Although several Main Group metal derivatives of the tetraphenylimidodiphosphinato ligand, [(OPPh₂)₂N], are known, just a few compounds containing organotin(IV) and organolead(IV) fragments were investigated by X-ray diffraction. The mononuclear organotin(IV) complex $Ph_2Sn[(OPPh_2)_2N]_2$ (I) crystallizes in monoclinic space group $P2_1/n$ and has an inversion centre (Fig. 1). The imidodiphosphinato ligands are isobidentate $[Sn1-O1\ 2.182(2),\ Sn1-O2\ 2.170(2),\ O1-P1\ 1.516(3)$ and $O2-P2\ 1.525(3)$ Å]. In the spirobicyclic $NP_2O_2SnO_2P_2N$ system the trans O-Sn-O angles are $180.0(2)^\circ$, while cis O-Sn-O angles are $90.88(9)^\circ$ (endocyclic) and $89.12(9)^\circ$ (exocyclic), resulting in a co-planar SnO_4 system $[\Sigma(O-Sn-O)=360^\circ]$. The two Sn-C bonds are co-linear $[C25-Sn1-C25a\ 180.0(3)^\circ]$ and perpendicular to the SnO_4 plane (C-Sn-O) range $89.4-90.6^\circ$). The resulting coordination polyhedron of the central tin atom is an almost perfect transoctahedron, similar to those reported for $Bu_2Sn[(OPPh_2)_2N]_2^2$ and $Me_2Sn[(SPPh_2)_2N]_2^5$, but less distorted.

EXPERIMENTAL:

The compound was prepared as in ref. 2. Crystals suitable for single-crystal X-ray diffraction were obtained from a CH_2Cl_2 / n-hexane mixture (1:4 volume ratio). The crystal structure measurement and refinement data for I are given in Table 1. Data for I were collected using a SMART APEX diffractometer ("Babes-Bolyai" University) at 297 K. A graphite monochromator was used to produce a wavelength (Mo- $K\alpha$) of 0.71073 Å. The structure was solved by direct methods (full-matrix least-squares on F^2). All non-hydrogen atoms were refined with anisotropic thermal parameters.

Tabel 1. Crystal data and structure refinement for Ph₂Sn[(OPPh₂)₂N]₂

Empirical formula	C ₆₀ H ₅₀ N ₂ O ₄ P ₄ Sn	Formula mass	1105.60
Crystal system	monoclinic	Space group	P2(1)/n
a [Å]	15.2086(16)	b [Å]	9.6128(10)
c [Å]	18.3934(19)	α [°]	90 ` ´
β [°]	103.615(2)	γ [°]	90
Z	2	$V[A^3]$	2613.5(5)
F(000)	1132	Crystal size [mm]	$0.52 \times 0.29 \times 0.08$
D _{calcd} [g cm ⁻³]	1.405	θ range [°]	1.57 to 26.02
No. of measured data	19924	No. of unique data [R(int)]	5145 [R(int) = 0.0594]
Data/restraints/parameters	5145 / 0 / 322	Absorption correction	multi-scan
$R_1[I > 2\sigma(I)]$	0.0541	$wR_2[I > 2\sigma(I)]$	0.1060
R_1 (all data)	0.0682	wR_2 (all data)	0.1120
Goodness-of-fit on F^2	1.144	Residual density [e-A-3]	1.097 and -0.998
Diffractometer	Bruker AXS SMART	Programs used	SMART, SAINT,
	APEX CCD	_	SHELXTL ⁶ and
			Diamond 37
Deposition number	CCDC-277624		

Acknowledgments

This work was supported by the National University Research Council of Romania (CNCSIS grant, A_T-6/33/2005, and CERES Project, Contract No 32/12.11.2004). We thank the National Center for X-Ray Diffraction ("Babes-Bolyai" University, Cluj-Napoca) for support of the single-crystal X-ray diffraction studies.

REFERENCES

- 1. C. Silvestru, J.E. Drake, Coord. Chem. Rev., 223 (2001) 117.
- 2. C. Silvestru, I. Haiduc, R. Cea-Olivares, A. Zimbron, Polyhedron, 13 (1994) 3159.
- 3. R.A. Varga, J.E. Drake, C. Silvestru, J. Organomet. Chem., 675 (2003) 48.
- 4. R A. Varga, J.E. Drake, M. Venter, K.C. Molloy, C. Silvestru, Rev. Roum. Chim., 47 (2002) 1067.
- 5. I. Haiduc, C. Silvestru, H.W. Roesky, H.-G. Schmidt, M. Noltemeyer, Polyhedron, 12 (1993) 69.
- 6. Bruker(2000).SMART. Version 5.625., Bruker AXS Inc., Madison, Wisconsin, USA; Bruker(2000).SAINT+. Version 6.29, Bruker AXS Inc., Madison, Wisconsin, USA; Bruker(2001).SHELXTL. Version 6.10.12, Bruker AXS Inc., Madison, Wisconsin, USA.
- 7. Diamond Crystal and Molecular Structure Visualization, Crystal Impact K. Brandenburg & H. Putz GbR, Postfach 1251, D-53002 Bonn, 2004.