Complexes of *Bis*(Dialkyldithiocarbamato)Arsenic(III) with Alkyldithiocarbonates: Synthesis and Characterization

H.P.S. Chauhan*, Kavita Kori, N.M. Shaik and U.P. Singh

School of Chemical Sciences, Devi Ahilya University, Takshshila Campus, Khandwa Road,
Indore – 452 017, India
hpsc@rediffmail.com

ABSTRACT

The reactions of [R₂NCS₂]₂AsCl with KS₂COR' in 1:1 molar ratio at room temperature readily gave mixed derivatives of the type [R₂NCS₂]₂AsS₂COR' [where, R = CH₃ and C₂H₅; R' = Et, Prⁿ, Prⁱ, Buⁿ and Buⁱ]. These derivatives are yellow crystalline solids. All these newly synthesized derivatives are soluble in common organic solvents like benzene, chloroform, carbondisulphide, acetone and dichloromethane etc. These derivatives have been characterized by melting points, elemental analysis (C, H, N, S and As) as well as spectral IR, NMR [¹H and ¹³C] studies. On the basis of these studies tentative structures for these derivatives have been proposed.

Keywords: Arsenic; dialkyldithiocarbamate; alkyldithiocarbonate; IR spectra; ¹H and ¹³C NMR spectra.

INTRODUCTION

The structural diversities in dialkyldithiocarbamates /1-17 /and alkyldithiocarbonates /15-23/ ligands is quite remarkable due to their bonding/coordination patterns with transition as well as main group metals /1-9,15-18/. Although a number of inorganic arsenic(III) dithiolates have been isolated and several of them characterized fully by single crystal x-ray analysis /1,5,12,15-19,21-23/, relatively less attention has been paid to mixed 1,1-dithiolato ligands with arsenic(III). In continuation of our interest in studies on group 15 elements /7-11,16,24-26/, some new mixed with sulphur ligands we report herein the bis(dialkyldithiocarbamato)arsenic(III) complexes with alkyldithiocarbonates of type $[R_2NCS_2]_2AsS_2COR'$ [where, $R = CH_3$ and C_2H_5 ; R' = Et, Pr^n , Pr^i , Bu^n and Bu^i].

EXPERIMENTAL

Materials and Methods

All the experiments were carried out under moisture free conditions. Solvents (benzene, alcohols, hexane, carbon disulphide, diethylether and dichloromethane etc.) were purified and dried by standard methods /27/. Sodium salt of dimethyldithiocarbamate (Fluka), sodium salt of diethyldithiocarbamate (BDH), arsenic trioxide (Merck) were used as received without further purification. Thionyl chloride (Merck) was distilled before use.

The alkyldithiocarbonates/28/, *tris*(dialkyldithiocarbamato)arsenic(III)/12/ and *bis*(dialkyldithiocarbamato)arsenic(III) chloride /12/ were prepared by reported methods. Arsenic trichloride was prepared by the reaction of arsenic trioxide and thionyl chloride /29/. Sulphur was determined gravimetrically as barium sulphate /30/. Arsenic was determined iodometrically /31/.

Melting points were determined on B10 Tech India Melting Apparatus and are uncorrected. Elemental analysis (C, H and N) was performed on a Heraeus Carlo Erba 1108 C, H, N analyzer. Infrared spectra were recorded on Perkin Elmer Model 557 as KBr disc in the range 4000 – 200 cm⁻¹. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solutions on Bruker DRX300 (300 MHz FT NMR) spectrometers; chemical shift values ¹H and ¹³C are expressed in δ ppm relative to TMS.

Preparation of bis(diethyldithiocarbamato) arsenic(III) isopropyldithiocarbonate

Equimolar amounts of bis(diethyldithiocarbamato)arsenic(III) chloride (1.10 g, 2.70 mmol) and potassium salt of isopropyldithiocarbonate (0.47 g, 2.70 mmol) in anhydrous benzene and carbondisulphide mixture (1:1) were stirred for ~ 4 hours at room temperature. Precipitated potassium chloride (0.19 g) was removed by filtration. Filtrate was concentrated to ~ 5 ml under reduced pressure. The yellow viscous liquid thus obtained was crystallized by adding 4-5 drops of anhydrous hexane and keeping it overnight in a refrigerator; the pale yellow solid thus obtained was dried on a vacuum pump. Yield -1.08 g; 79%; M.P. -1.08 C (Table I). All the other derivatives were prepared by adopting the above methods. Pertinent analytical and physicochemical data for these complexes are listed in (Table I).

RESULTS AND DISCUSSION

Bis(dialkyldithiocarbamato)arsenic(III) alkyldithiocarbonate derivatives have been synthesised by reacting bis(dialkyldithiocarbamato)arsenic(III) chloride with potassium salts of alkyldithiocarbonate in equimolar ratios in anhydrous benzene and carbondisulphide (1:1) mixture by stirring at room temperature for ~ 4 hours.

[R₂NCS₂]₂AsCl + KS₂COR'

Benzene + CS₂

[R₂NCS₂]₂AsS₂COR' + KCl
$$\downarrow$$

(where, R = CH₃ and C₂H₅; R' = Et, Prⁿ, Pr^l, Buⁿ and Bu^l)

Physical and analytical data of bis(dialkyldithiocarbamato) arsenic(III) complexes with alkyldithiocarbonates

ပ	Compound	Yield	KCI	M.P.	Colour &		% Fo	% Found (Calculated)	lated)	
No		(%)	Found	$^{\circ}$	State					
			(Calc.)			As	S	С	Н	Z
l.	[(CH ₁) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₃	82	0.12 g	172	Pale yellow	17.43	43.98	24.59	3.66	19.9
			(0.12 g)		solid	(17.15)	(44.11)	(24.76)	(3.89)	(6.42)
2.	[(CH ₃) ₂ NCS ₁] ₂ AsS ₂ COCH ₂ CH ₂ CH ₃	83	0.16 g	160	Pale yellow	16.48	42.37	26.58	4.18	6.11
			(0.16 g)		solid	(16.62)	(42.76)	(26.66)	(4.22)	(6.22)
3.	[(CH ₃);NCS ₂] ₂ A ₅ S ₂ COCH(CH ₃) ₂	88	0.15 g	222	Pale yellow	16.68	42.56	26.50	4.11	6.07
			(0.15g)		solid	(16.62)	(42.76)	(26.66)	(4.22)	(6.22)
4	[(CH ₃) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₂ CH ₂ CH	06	0.12 g	195	Pale yellow	16.10	41.37	28.45	4.41	5.81
	3.		(0.12 g)		solid	(16.12)	(41.45)	(28.43)	(4.52)	(6.03)
5.	[(CH ₃) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH(CH ₃) ₂	68	0.13 g	217	Pale yellow	16.07	41.32	28.41	4.37	5.89
			(0.13 g)		solid	(16.12)	(41.45)	(28.43)	(4.52)	(6.03)
.9	[(C ₂ H ₅) ₂ NCS ₂] ₂ A ₅ S ₂ COCH ₂ CH ₃	88	0.21 g	63	Pale yellow	15.23	38.95	31.49	4.98	5.52
			(0.21 g)		solid	(15.30)	(39.10)	(31.69)	(5.07)	(89.5)
7.	[(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₂ CH ₃	16	0.19 g	29	Pale yellow	14.57	37.98	33.15	5.45	5.61
			(0.20 g)		solid	(14.79)	(38.00)	(33.20)	(5.33)	(5.53)
∞.	· [(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₂ COCH(CH ₃) ₂	79	0.19 g	70	Pale yellow	14.64	37.88	33.10	5.20	5.58
			(0.20 g)		solid	(14.79)	(38.00)	(33.20)	(5.33)	(5.53)
9.	[(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₂ C	84	0.23 g	64	Pale yellow	14.24	35.82	34.53	5.62	5.30
	1.13		(0.24 g)		solid	(14.38)	(36.99)	(34.60)	(5.57)	(5.38)
10.	[(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₁ COCH ₂ CH(CH ₃) ₂	87	0.21 g	1117	Pale yellow	14.34	36.78	34.56	5.28	5.13
			(0.22 g)		solid	(14.38)	(36.99)	(34.60)	(5.57)	(5.38)

All these newly synthesized derivatives are pale yellow solids. All these derivatives are soluble in common organic solvents like benzene, chloroform, carbondisulphide, acetone and dichloromethane, etc. The elemental analysis are also in accordance with their molecular formulae.

Infra-red Spectra

IR spectra of all these newly synthesised compounds have been recorded as KBr disc in the range 4000 – 200 cm⁻¹ and tentative assignments of the important characteristic bands have been made with the help of earlier publications /7-11,24-26/.

The spectra of arsenic(III) dithiocarbonate derivatives exhibit very strong absorption bands in the regions 1225 – 1240 cm⁻¹ and 1150 – 1170 cm⁻¹ due to (C-O-C) and (C-O) stretching vibration, respectively. All these complexes show medium to strong intensity absorption bands in the region 1020 – 1040 cm⁻¹ due to (C=S) stretching vibrations of both dialkyldithiocarbamate as well as alkyldithiocarbonate moieties indicating the bidentate nature of the both dialkyldithiocarbamate and alkyldithiocarbonate moieties with arsenic. All these derivatives also show medium to strong intensity absorption bands in the region 1425 – 1520 and 320-325 cm⁻¹ due to (C=N) and (As-S) stretching vibrations, respectively.

¹H NMR

The ¹H NMR spectra of *bis*(dialkyldithiocarbamato)arsenic(III) complexes with alkyldithiocarbonates have been recorded in CDCl₃ solutions using TMS as an internal standard.

In the corresponding dimethyldithiocarbamate derivatives, the methyl protons appear as a singlet at 3.39-3.43 δppm thus suggesting the magnetic equivalence of these protons, while the diethyldithiocarbamate derivatives exhibit a triplet at 0.64-0.81 δppm and a quartet at 3.16-3.35 δppm due to CH₃ and CH₂ proton resonances, respectively (Table II).

In addition, these alkyldithiocarbonate derivatives also show expected proton resonances due to alkoxy protons of dithiocarbonate moieties /18-20/. The ethyl protons in ethyldithiocarbonate derivatives (Compound No.1 and 6; Table II) appear as a triplet and quartet at 1.40 δ ppm and 4.62 δ ppm due to CH₃ and OCH₂ proton resonances, respectively for the Compound No.1 (Table II), while for the Compound No.6 (Table II) the CH₃ protons of dithiocarbamate moieties and dithiocarbonate moieties are overlapping and exhibit a set of complex pattern signals in the range 0.64 – 0.78 δ ppm and a quartet at 4.16 δ ppm due to OCH₂ proton resonances. The n-propyldithiocarbonate derivatives (Compound No.2 and 7; Table II) appear as triplet at 0.74 – 0.96 δ ppm due to CH₃ protons, multiplet at 1.74-3.38 δ ppm due to middle CH₂ protons

Table II

¹H, ¹³C and ³¹P NMR spectral data (δppm) of *bis*(dialkyldithiocarbamato)arsenic(III) complexes with alkyldithiocarbonates

C.N	Compound	H ¹ NMR Chemical Shift (δppm) 13C NMR Chemical S		
0.			(бррт)	
1.	[(CH ₃) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₃	1.40, t, 3H (CH ₃ of xan)	0.93 (CH ₃ of xan)	
	,	J = 6.00 Hz	43.10 (CH ₃ of dtc)	
		3.43, s, 12H (CH ₃ of dtc)	70.44 (OCH ₂ of xan)	
		4.62, q, 2H (OCH ₂ of xan)	192.8 (NCS ₂ of dtc)	
		J = 6.00 Hz	216.1 (OCS ₂ of xan)	
2.	[(CH ₃) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₂ CH ₃	0.96, t, 3H (CH ₃ of xan)	10.37 (CH ₃ of xan)	
		J = 6.00 Hz	21.67 (CH ₂ of xan)	
		1.74-1.82,m,2H (CH ₂ of xan)	43.14 (CH ₃ of dtc)	
		3.42, s, 12H (CH ₃ of dtc)	74.9 (OCH ₂ of xan)	
		4.49, t, 2H (OCH ₂ of xan)	192.8 (NCS ₂ of dtc)	
		J = 6.00 Hz	216.7 (OCS ₂ of xan)	
3.	[(CH ₃) ₂ NCS ₂] ₂ AsS ₂ COCH(CH ₃) ₂	1.34, d, 6H (CH ₃ of xan)	0.8 (CH ₃ of xan)	
		J = 6.00 Hz	43.0 (CH ₃ of dtc)	
		3.39, s, 12H (CH ₃ of dtc)	79.2 (OCH of xan)	
		5.62, sep, 1H (OCH of xan)	198.2 (NCS ₂ of dtc)	
		J = 6.00 Hz	217.0 (OCS ₂ of xan)	
6.	[(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₃	0.64-0.78, m, 15H	12.6 (CH ₃ of dtc)	
		(CH ₃ of dtc and xan)	14.0 (CH ₃ of xan)	
		3.16, q, 8H (CH ₂ of dtc)	48.2 (CH ₂ of dtc)	
		J = 6.00 Hz	78.8 (OCH ₂ of xan)	
		4.16, q, 2H (OCH ₂ of xan)	198.8 (NCS ₂ of dtc)	
		J = 6.00 Hz	217.8 (OCS ₂ of xan)	
7.	[(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₂ CH ₃	0.64, t, 12H (CH ₃ of dtc) J = 6.0 Hz	10.49 (CH ₃ of xan)	
		0.74, t, 3H (CH ₃ of xan) J = 7.0 Hz	11.26(CH ₃ of dtc)	
		3.35, q, 8H (CH ₂ of dtc) $J = 6.0 \text{ Hz}$	20.39 (CH ₂ of xan)	
		3.30-3.38,m, 2H (CH ₂ of xan)	42.26 (CH ₂ of dtc)	
		4.19, t, 2H (OCH ₂ of xan) $J = 7.0 \text{ Hz}$	76.33 (OCH ₂ of xan)	
			192.8 (NCS ₂ of dtc)	
			216.0 (OCS ₂ of xan)	

8.	[(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₂ COCH(CH ₃) ₂	0.81, t, $12H$ (CH ₃ of dtc) $J = 7.0 Hz$	tc) $J = 7.0 \text{ Hz}$ 12.31(CH ₃ of dtc)			
		1.00, d, 6H (CH ₃ of xan) $J = 6.0 \text{ Hz}$	13.68 (CH ₃ of xan)			
	I	3.25, q, 8H (CH ₂ of dtc) J = 7.0 Hz	48.41(CH ₂ of dtc)			
		5.58, sep, 1H (OCH of xan)	78.6 (OCH of xan)			
		J = 6.0 Hz	198.8 (NCS ₂ of dtc)			
			217.8 (OCS ₂ of xan)			
9.	[(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH ₂ CH ₂ CH ₃	0.68, t, 12H (CH ₃ of dtc) J = 6.0 Hz	12.03(CH ₃ of dtc)			
		0.76, t, 6H (CH ₃ of xan) J = 6.0 Hz	14.1 (CH ₃ of xan)			
		0.98-1.10, m, 2H (CH ₂ CH ₃ of xan)	18.9 (CH ₂ of xan)			
		1.29-1.38, m, 2H (CH ₂ CH ₂ of xan)	41.0 (CH ₂ of dtc)			
		3.25, q, 8H (CH ₂ of dtc) $J = 6.0 \text{ Hz}$	46.7 (CH ₂ of xan)			
		4.32, t, $2H$ (OCH ₂ of xan) $J = 6.0$ Hz	74.43 (OCH ₂ of xan)			
			192.8 (NCS ₂ of dtc)			
			217.3 (OCS ₂ of xan)			
10.	[(C ₂ H ₅) ₂ NCS ₂] ₂ AsS ₂ COCH ₂ CH(CH ₃) ₂	0.63-0.72, m (CH ₃ of dtc + xan)	11.8 (CH ₃ of dtc)			
		1.68-1.80, m, 1H (CH of xan)	14.1 (CH ₃ of xan)			
		3.26, q, 8H (CH ₂ of dtc) $J = 7.0 \text{ Hz}$	32.5 (CH of xan)			
		4.16, d, $2H$ (OCH ₂ of xan) $J = 6.0$ Hz	49.1 (CH ₂ of dtc)			
			75.6 (OCH ₂ of xan)			
			198.8 (NCS ₂ of dtc)			
			216.2 (OCS ₂ of xan)			

s= singlet, d= doublet, t=triplet, q=quartet, m=multiplet, sep=septet

and a triplet at 4.19-4.49 δ ppm due to OCH₂ proton resonances, respectively. The i-propyldithiocarbonate derivatives (Compound No. 3 and 8; Table II) show doublet and septet in the region 1.00 – 1.34 and 5.58 – 5.62 δ ppm due to CH₃ and OCH proton resonances, respectively. The n-butyldithiocarbonate derivative (Compound No. 9; Table II) show triplet at 0.76 δ ppm due to CH₃ protons, multiplet in the region 0.98-1.10 δ ppm due to CH₂ attached to CH₃ protons, multiplet in the region 1.29-1.38 δ ppm due to CH₂ attached to OCH₂ protons and a triplet at 4.32 δ ppm due to OCH₂ proton resonances, respectively. The i-butyldithiocarbonate derivative (Compound No. 10; Table II) shows multiplet at 0.63 – 0.72 due to overlapping of CH₃ protons of dithiocarbamate and dithiocarbonate moieties as well as a multiplet and a doublet in the range 1.68 – 1.80 and 4.16 δ ppm due to middle CH and OCH₂ proton resonances, respectively.

¹³C NMR

The proton decoupled ¹³C NMR spectra (Table II) of these compounds have been recorded in CDCl₃ solutions using TMS as an internal standard. The ¹³C NMR signals thus obtained are at reported values

without any appreciable shifts. The proton decoupled 13 C NMR spectra of the dimethyldithiocarbamate complexes show a signal in the region 43.0-43.14 δ ppm due to magnetic equivalent methyl carbon. The complexes of diethyldithiocarbamate show two signals, one at 11.26-12.6 δ ppm and the other at 41.0-49.1 δ ppm due to CH₃ and CH₂ carbons, respectively. All these compounds show a signal at 192.8-198.8 δ ppm due to NCS₂ carbon resonances of dialkyldithiocarbamate moieties.

In addition, these alkyldithiocarbonate derivatives also exhibit signals due to alkoxy carbons of dithiocarbonate moieties. The ethyldithiocarbonate derivatives (Compound No. 1 and 6; Table II) exhibit signals at 0.93 – 14.0 and 70.44 – 78.8 and δppm due to CH₃ and OCH₂ carbon resonance, respectively. The n-propyldithiocarbonate derivatives (Compound No. 2 and 7; Table II) exhibit signals at 10.37-10.49, 20.39-21.67 and 74.90-76.33 δppm due to CH₃, CH₂ and OCH₂ carbon resonances, respectively. The i-propyldithiocarbonate derivatives (Compound No. 3 and 8, Table II) exhibit signals at 0.80-13.68 and 78.6-79.2 δppm due to CH₃ and OCH carbon resonances, respectively. The n-butyldithiocarbonate derivatives (Compound No. 9, Table II) exhibit signals at 14.1,18.9,46.7 and 74.43 δppm due to CH₃, CH₂ (attached to CH₃), CH₂ (attached to OCH₂) and OCH₂ carbon resonances, respectively. The isobutyldithiocarbonate derivatives (Compound No. 10, Table II) exhibit signals at 11.8,14.1,32.5,49.1 and 75.6 δppm due to CH₃, CH and OCH₂ carbon resonances, respectively. All these compounds show signals of comparatively weak intensities in the region 216.0-217.8 δppm due to OCS₂ carbon resonances of alkyldithiocarbonate moieties.

STRUCTURAL ELUCIDATION

Although it is quite difficult to comment on the molecular structure of these complexes in solid state without actual X-ray crystal structure analysis of at least one of the products, however, two distinct signals in the region $1020 - 1040 \text{ cm}^{-1}$ due to (C - S) stretching vibrations of dialkyldithiocarbamates as well as alkyldithiocarbonates in these *bis*(dialkyldithiocarbamato)arsenic(III) complexes with alkyldithiocarbonate derivatives indicate the weakly anisobidentate nature of both dithiocarbamate and dithiocarbonate ligands. On the basis of the above spectral data it may be concluded tentatively that these ligands behave as anisobidentate mode of attachment to the metal where one of the sulphur atoms is weakly coordinated, thus leading to a distorted octahedral geometry, with a stereochemically active lone pair of electrons.

Proposed Structure of the Complexes

where, $X = COR^i$, $R = CH_3$ and C_2H_5 , R' = Et, Pr^n , Pr^i , Bu^n and Bu^i .

ACKNOWLEDGEMENT

Financial assistance from the University Grants Commission, New Delhi, is gratefully acknowledged. Elemental analyses as well as spectral studies were carried out at the Sophisticated Analytical Instrument Facility of the Central Drug Research Institute, Lucknow, India.

REFERENCES

- 1. R. Bally, Acta Crystallorg. 23, 295 (1967).
- 2. D. Coucouvanis, Prog. Inorg. Chem. 11, 233 (1970); 26, 301 (1979).
- 3. G.E. Manoussakis, M. Lalia-Kantouri and R.B. Huff, J. Inorg. Nucl. Chem 37, 2330 (1975).
- 4. G.E. Manoussakis, C.A. Tsipis and A.G. Christophides, Z. Anorg. Allg. Chem. 417, 235 (1975).
- 5. C.L. Raston and A.H. White, J. Chem. Soc. Dalton Trans. 791 (1976).
- 6. C. Burschka and M. Wieber, Z. Naturforsch. 34B, 1037 (1979).
- 7. S. Chourasia, B. Nahar and H.P.S. Chauhan, Phosphorus, Sulfur and Silicon 119, 77 (1996).
- 8. H.P.S. Chauhan and B. Nahar, Phosphorus, Sulfur and Silicon 128, 119 (1997).
- 9. H.P.S. Chauhan, S. Chourasia, B. Nahar and R.K. Singh, *Phosphorus, Sulfur and Silicon* 134/135, 345 (1998).
- 10. H.P.S. Chauhan, B. Nahar and R.K. Singh, Synth. React. Inorg. Met-Org. Chem. 28(9), 1541 (1998).
- 11. H.P.S. Chauhan, R.K. Singh and Kavita Kori, Main Group Metal Chemistry 25(8), 511 (2002).
- 12. C.L. Raston and A.H. White, J. Chem. Soc. Dalton Trans. 1975, 2425 and references therein.
- 13. R. Cea-Olivares, R.A. Toscano, M. Lopez and P. Garcia, *Monatsh Chem.* 124, 177 (1993); *Heteroatom Chem.* 4, 313 (1993).
- 14. R. Cea Olivares, R.A. Toscano, C. Silvestru, P. Garcia, M.L. Cardoso, G.B. Amador and H. Noth, J. Organomet. Chem. 493, 61 (1995).
- 15. S.S. Garje and V.K. Jain, Coord. Chem. Rev. 236, 35 (2002).
- 16. H.P.S. Chauhan, Coord. Chem. Rev. 173, 1 (1998).
- 17. V.K. Jain, Coord. Chem. Rev. 135, 809 (1994).
- 18. B.F. Hoskins, E.R.T. Tiekink and G. Winter, Inorg. Chim. Acta 99, 177 (1985).
- 19. M.R. Snow and E.R.T. Tiekink, Aust. J. Chem. 40, 743 (1987).
- 20. S.R. Rao, Xanthates and Related Compounds, Marcel Dekker, New York (1971).
- 21. C.A. Peri, Gazz. Chim. Ital. 89, 1315 (1959).
- M. Nagasawa, K. Nagamizu, S. Imamia and T. Maeda, *Ihara Agricultural Chemical Co. Ltd., Japan*, 17, 132 (1960).
- 23. R.K. Gupta, A.K. Rai and R.C. Mehrotra, Indian J. Chem. 24A, 752 (1985).
- 24. H.P.S. Chauhan and S. Lunkad, Main Group Metal Chemistry 17(5), 313 (1994).
- 25. H.P.S. Chauhan, B. Porwal and R.K. Singh, Indian J. Chem. 39A, 880 (2000).
- 26. H.P.S. Chauhan, Kavita Kori and M.S. Nagulu, Main Group Metal Chemistry 25(11), 659 (2002).

- 27. J.A. Riddick and W.B. Bunger, *Techniques of Chemistry*, Organic Solvents, 2nd edn., Wiley Interscience, New York (1970).
- 28. A.I. Vogel, Practical Organic Chemistry, Longmans Green, London, 664 (1978).
- 29. S. Chourasia, Ph.D. Thesis, Devi Ahilya University, Indore, India (1997).
- 30. Vogel's Textbook of Quantitative Chemical Analysis, 5th Ed., Bath Press Ltd., Great Britain, 490, 1989.
- 31. H.P.S. Chauhan, G. Srivastava and R.C. Mehrotra, Polyhedron 2(5), 359 (1983).