# The X-Ray Structure of $[\{Sn(\eta-C_5Me_5)\}\}$ $\{Sn(\eta-C_5Me_5)(O_3SCF_3)_2\}]$

Geraldo M. de Lima\* and H. G. L. Siebald

Laboratório de Química de Coordenação e Organometálica do Estanho -Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte - MG - Brasil, CEP 31270-901 <GMLima@dedalus.lcc.ufmg.br>

This paper reports the interesting structure of an ionic aggregate which exists as proposed only in the solid state. Once in solution it dissociates into  $Sn(\eta-C_5Me_5)^+$  cations and  $CF_3S$   $O_3^-$  anions. Solid state NMR spectroscopic results give support to the proposed observation.

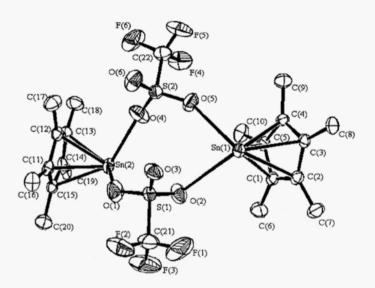



Figure 1: The molecular structure of [ $\{Sn(\eta-C_5Me_5)\}\{Sn(\eta-C_5Me_5)(O_3SCF_3)_2\}$ ] 1 and atom numbering scheme with selected bond lengths (Å) and angles (°): Sn(1)-M(1) 2.181(4), Sn(1)-C(1) 2.536(4), Sn(1)-C(2) 2.510(4), Sn(1)-C(3) 2.474(3), Sn(1)-C(4) 2.457(4), Sn(1)-C(5) 2.495(4), Sn(1)-O(2) 3.074(3), Sn(1)-O(5) 2.781(3), Sn(2)-M(2) 2.199(4), Sn(2)-C(11) 2.445(4), Sn(2)-C(12) 2.424(4), Sn(2)-C(13) 2.514(4), Sn(2)-C(14) 2.609(4), Sn(2)-C(15) 2.548(4), Sn(2)-O(4) 2.585(3), Sn(2)-O(1) 2.574(3); M(1) denotes the centroid of the ring C(1) to C(5), M(2) denotes the centroid of the ring C(11) to C(15).

### **COMMENT**

The X-ray crystallographic determination revealed that 1 is formed by an anionic and cationic aggregation of  $\{Sn(\eta-Cp^*)\}^+$  and  $[Sn(\eta-Cp^s)(OSO_2CF_3)_2]^-$  fragments. It is because the Sn atoms interact unequally with the O atoms of both triflate groups. There are two distinct Sn-O interactions, Sn(1)-O(2), Sn(1)-O(5) av. 2.927 Å and Sn(2)-O(1), Sn(2)-O(4); av. 2.579 Å, respectively. Each triflate group interacts more strongly with Sn(2) than Sn(1), which is weakly coordinated by a second oxygen atom of each triflate group leading to interaction. With respect to the Sn-cyclopentadienyl interactions, the cationic Sn(1)-centroid distance, 2.181(4) Å, is considerably shorter than the Sn-centroid distances observed for Sn(2)-centroid 2.217(6) Å. The solid state <sup>119</sup>Sn NMR spectrum of 1 confirmed the X-ray results since two resonances, were observed,  $\delta_{iso}$  -2097, -2283, which were assigned to the cationic Sn(1) and to the anionic Sn(2), respectively. In solution only one resonance at  $\delta$ -2170 was observed in the <sup>119</sup>Sn NMR spectra, suggesting that compound 1 behaves differently in solution and in the solid state.

#### **EXPERIMENTAL**

*Preparation:* Compound 1 was prepared according to the procedure published by us previously /1/ and based on other works /2/. Yield 68%. (0.95g, 2.36 mmol). Mp 136-138 °C.  $^{1}$ H NMR (C<sub>6</sub>D<sub>6</sub>, 400.13 MHz), δ 1.8;  $^{13}$ C{ $^{1}$ H} NMR (C<sub>6</sub>D<sub>6</sub>, 100.61 MHz), δ 121 (q,  $^{1}$ J<sub>C-F</sub> 320 Hz), 118.9 ( $^{1}$ J<sub>C-Sn</sub> 41 Hz), 10 ( $^{2}$ J<sub>C-Sn</sub> 10 Hz);  $^{119}$ Sn{ $^{1}$ H} NMR (C<sub>6</sub>D<sub>6</sub>, 149.21 MHz), δ -2166;  $^{119}$ Sn{ $^{1}$ H} MAS (149.21 MHz), δ -2097, -2283. EI-MS: M $^{1}$  *m/z* 404, M $^{+}$ -SO<sub>3</sub>CF<sub>3</sub> *m/z* 254, M $^{+}$ -SnSO<sub>3</sub>CF<sub>3</sub> *m/z*, 135. Elemental analysis for C<sub>22</sub>H<sub>30</sub>F<sub>6</sub>O<sub>6</sub>S<sub>2</sub>Sn<sub>2</sub>: C 32.70(32.78), H 3.69(3.72).

Crystallography: The data were collected using a Siemens 3 diffractometer equipped with SMART CCD area detector; graphite-monochromated Mo-K $\alpha$ . The structure was solved by direct methods with SHELXTL version 5.0 /3/ and the refinements were carried out using SHELXTL96 software /4/, minimizing on the weighted R factor wR2. All non-H atoms were anisotropic; methyl hydrogens were included in riding mode with idealised geometry, but with the torsion angle defining the H atom positions refined and with Uiso(H) equal to 1.5Ueq(C).

Table 1

Crystal data and structure refinement for compound 1.

| Empirical formula        | $C_{22}H_{30}F_6O_6S_2Sn_2$                         | Formula weight                     | 806.0                           |
|--------------------------|-----------------------------------------------------|------------------------------------|---------------------------------|
| Crystal system           | monoclinic                                          | Crystal size                       | 0.30 x 0.30 x 0.20 mm           |
| Space group              | P2 <sub>1</sub> /c (Nº 14)                          | A                                  | 11.382 (4) Å                    |
| ь                        | 11.676 (3) Å                                        | С                                  | 22.352 (8) Å                    |
| β                        | 97.46(5)°                                           | Volume                             | 2945 (2) Å <sup>3</sup>         |
| Z                        | 4                                                   | Diffractometer                     | Siemens 3                       |
| Temperature              | 173(2) K                                            | Wavelength                         | 0.71073                         |
| Density (calc.)          | 1.82 Mg.m <sup>-3</sup>                             | Absorp. coefficient                | 1.91 mm <sup>-1</sup>           |
| F(000)                   | 1584                                                | $\theta$ range                     | 2 to 25 deg.                    |
| Reflections collected    | 5446                                                | Independent reflections            | 5179 [R(int) = 0.0238]          |
| Reflections with I >     | 4264                                                | Structure solution                 | Direct methods                  |
| 2σ (Ι)                   |                                                     |                                    |                                 |
| Refinement method        | Full-matrix least-<br>squares on all F <sup>2</sup> | Data/restraints/parameters         | 5179 / 0 / 353                  |
| Goodness-of-fit on $F^2$ | 1.058                                               | Final R indices $[I > 2\sigma(I)]$ | R1 = 0.034, $wR2 = 0.076$       |
| R indices (all data)     | R1 = 0.047, wR2 = 0.081                             | Largest diff. Peak and hole        | 0.50 and -0.45 e.Å- <sup></sup> |
| Abs. Correction          | Tmax = 1.00,<br>Tmin = 0.83                         | Maximum shift/e.s.d.               | 0.007                           |
| CCDC reference           | 120386                                              |                                    |                                 |

# **ACKNOWLEDGMENT**

The authors are grateful to CNPq and Fapemig for financial support.

## REFERENCES

- 1. G. M. de Lima, S. P. Constantine and D. J. Duncalf, Main Group Metal Chemistry, 25, 567 (2002).
- 2. (a) F. X. Kohl and P. Jutzi, Chem. Ber., 114, 488 (1981).
  - (b) F. X. Kohl, E. Schlüter, P. Jutzi, C. Krüger, G. Wolmershäuser, P. Hofmann and P. Stauffert, *Chem. Ber.*, 117, 1178 (1984).
  - (c) F. X. Kohl, R. Dickbreder, P. Jutzi, G. Müller and B. Huber, Chem. Ber., 122, 871 (1989).
  - (d) S. P. Constatine, D. Phil Thesis, University of Sussex, 1997;

- (e) P. Jutzi, F. Kohl C. Krüger, Angew. Chem., Int. Ed. Engl., 18, 59 (1979).
- (f) R. Hani and R. A. Geanangel, J. Organomet. Chem., 293, 197 (1985).
- (g) P. Jutzi, F. X. Kohl, C. Krüger, G. Wolmershauser, P Hofmann and P. Stauffert, *Angew. Chem., Int. Ed. Engl.*, 21, 70 (1982).
- 3. G. M. Sheldrick, SHELXL 5.0, Siemens Analytical Instruments, Madison, WI, 1994.
- 4. G. M. Sheldrick, SHELXL 96, University of Göttingen, (1996).