TABLE OF CONTENTS | REGULAR PAPERS NOVEL FLUORIDE ION MEDIATED METHOD FOR RAPID SILYLATIC CARBOXYLIC ACIDS WITH AZIDOTRIMETHYLSILANE UNDER PHA TRANSFER CATALYSIS CONDITIONS Edgars Äbele,* Olegs Dzenitis, Juris Popelis, and Edmunds Lukevics* | | |--|--------------------| | (POLYFLUOROORGANO)HALOBORANES AND (POLYFLUOROORGANO)FLUOROBORATE SALTS: PREPARATION NMR SPECTRA AND REACTIVITY Vadim V. Bardin and Hermann-Josef Frohn* | l,
589 | | NITROGEN-SULPHUR AND NITROGEN-OXYGEN DONOR FERROC CONTAINING LIGANDS AND THEIR DIORGANOSILICON (IV) COMPLEXES R. V. Singh*, Mukta Jain and Pooja Nagpal | ENE
615 | | REVISITING THE AMINATION OF ORGANOZINCS WITH BENZENEDIAZONIUM TETRAFLUOROBORATE Ender Erdik* and Melike Koçoglu | 621 | | THE PREPARATION OF TWO THIOETHER o-CARBORANE DERIVATIVES AND THE USE OF ¹³ C NMR TO STUDY THEIR STEREOSELECTIVE DEBORATION Rebecca Brockman, Kelly Challis, Gretchen Froehner, and Thomas D. Getman | 6 2 9 | | SOLUTION AND SOLID STATE MOLECULAR STRUCTURES OF DIALKYLTIN(IV) β -NAPHTHOATES: $[R_2Sn(OCOC_{10}H_7)]_2O]_2$, $R_2Sn(OCOC_{10}H_7)_2$ AND $(CH_3)_4N^+[R_2Sn(OCOC_{10}H_7)_3]^-$ ($R=n$ -C ₄ H ₉ and X-RAY CRYSTAL STRUCTURES OF $[\{n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $\}_2O[_2$ AND $[(n$ -C ₄ H ₉) ₂ Sn(OCOC ₁₀ H ₇) $]_2O[_2$ | CH₃).
ND
635 | | CRYSTALLOGRAPHIC COMMUNICATIONS CRYSTAL STRUCTURE OF BIS[AQUADICHLOROACETATO-TRIPHENYLTIN(IV)] DIHYDRATE:18-CROWN-6 Mostafa M. Amini*, Shahrbano Foladi, Houssein Aghabozorg and Seik Weng | 643
Ng | | | |