SYNTHESIS OF SUGAR ALLYLTINS AND THEIR APPLICATION IN THE PREPARATION OF CARBOBICYCLES

Slawomir Jarosz*, Stanislaw Skóra, and Katarzyna Szewczyk

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa

Abstract: Sugar allylic alcohols are readily converted into sugar allyltin derivatives of the general formula Sug-CH=CH-CH₂SnBu₃ or Sug-CH(SnBu₃)-CH=CH₂. Both, primary and secondary allyltins undergo controlled decomposition induced with the Lewis acids (preferably ZnCl₂) to the dienoaldehydes with the *trans* configuration of the internal double bond exclusively. Primary allyltins are stable up to 170 °C, while secondary ones are converted into the *cis* dienoaldehydes at 140 °C. The corresponding dienoaldehydes were used for the preparation of highly oxidized bicyclo[4.3.0]nonanes and bicyclo[4.4.0]decanes.

Introduction

Highly oxygenated carbobicyclic derivatives like bicyclo[4.3.0]nonane and bicyclo[4.4.0]decane might possess interesting biological activity. For example, one of the stereoisomers of decalin 2 has shown potent and selective α -glucosidase inhibition at μM concentration against α - and β -glucosidases. However, compounds of this type are available only in racemic form. Optically pure derivatives 2 and 3 might be, eventually, prepared from the precursors 4 and 5, which could be obtained from the dienoaldehyde 1 accessible in enantiomerically pure form from sugars (Fig. 1).

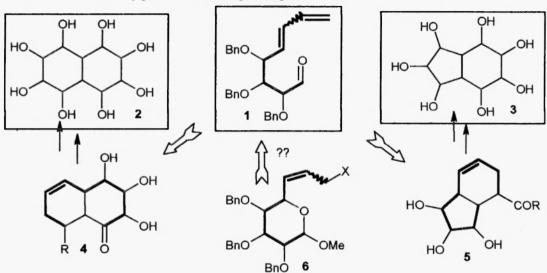


Figure 1. Synthetic plan for the preparation of carbobicycles from sugars

Aldehyde 1 might be prepared from monosaccharides either by a stepwise procedure² or by a rearrangement of a sugar skeleton; the latter might offer access to configurationally pure dienes 1 either in the *trans* or *cis* forms. The most promising method for such controlled rearrangement of a sugar skeleton seemed to be a reductive fragmentation of compound 6 (X = halogen) induced with metallic zinc; it might be regarded as an application of the classical Vasella reaction³ (see Fig. 2) to allylic sugar derivatives.

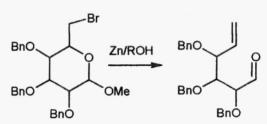


Figure 2. The Vasella reaction

Unfortunately all attempts to prepare the dienoaldehyde 1 via a modified Vasella reaction failed. The other methods were, therefore, needed to accomplish conversion of 6 into 1.

The solution to the problem came from the different field. One of the methods applied by us in the synthesis of higher carbon sugars was based on a coupling of sugar allyltin derivatives 6 (X = SnBu₃) with aldehydes catalyzed with a Lewis acid.⁴ Besides the expected higher sugar precursor, we isolated also

significant amounts of a decomposition product, which, to our surprise, was identified as dienoaldehyde 1. Moreover, the configuration of the internal double bond was exclusively *trans*. This result, a controlled decomposition of a sugar skeleton induced with a Lewis acid, opened a convenient route to enantiomerically pure carbobicyclic derivatives such as 4 and 5 (as presented schematically in Fig. 1).

Preparation of sugar allyltin derivatives

Although a number of methods for the preparation of allyltin derivatives can be found in the literature⁵ they are hardly applicable in sugar chemistry. The best and most reliable method^{6,7} for the preparation of sugar allyltins is presented in Scheme 1 (route a). The sugar allylic alcohol 7 is converted into xanthate 8, which subsequently undergoes a [3,3] rearrangement to thiocarbonate 9 on heating. Surprisingly, this process is completely non-selective. Reaction of 9 with tributyltin hydride under radical conditions result in an S_R2 displacement of a thiocarbonate moiety by the stannyl radical and formation of allyltin 10 as a mixture of the trans and cis isomers with the former strongly predominating.

Scheme 1. i. NaH, CS₂, Mel; ii. 110 °C, 2-3 h; Bu₃SnH, 110 °C, 2 h; iii. i. 'Bu₃SnCu', THF

Another, although not so general, method consisted in the reaction of sugar allylic bromides (or mesylates) with tributyltin cuprate⁸ (route **b** in Scheme 1). The D-gluco-configurated allylic bromide 11a reacted with 'Bu₃SnCu' providing the primary allyltin derivative 10a together with the secondary one (single isomer of unknown configuration at the newly created stereogenic center) 12a in the ratio 1.3:1. More sterically hindered D-galacto-derivative 11b led only to the primary allyltins 10b. It has to be pointed out that the products arising from the nucleophilic displacement of the bromide with the stannyl anion are formed with full retention of the configuration across the double bond.⁹

Transformation of the sugar allyltin derivatives into dienoaldehydes

On treatment with Lewis acids, sugar allyltin derivatives undergo controlled decomposition to dienoaldehydes 1 with elimination of a tributylstannyl moiety. The configuration of the internal double bond in compound 1, is *independent* of the configuration of unsaturated organometallics. The primary allyltins with different geometry across the double bond $(E \text{ or } Z)^9$ as well as the secondary ones one converted exclusively into the trans dienoaldehydes.

For reactions of primary sugar allyltins with zinc chloride (leading to the *trans* dieno-aldehydes) two possible mechanisms may be postulated: first involving a trans-metallation process (route **a**, Fig. 3-1) and a second one involving a complexation (route **b**, Fig. 3-1). It is not easy to distinguish between these two alternatives. However, the results of the reaction performed with boron trifluoride etherate (instead of ZnCl₂), in which also **only** the *trans* dienoaldehyde is formed, support rather the mechanism depicted in route **b**. However, still, it is not clear why decomposition of the primary sugar allyltins induced with a Lewis acid leads only to the *trans* isomer of 1, regardless of the configuration of the double bond of starting organometallic derivative.

The thermal behavior of both regioisomers is different; the primary sugar allyltins are stable up to 170 °C, while the secondary ones undergo controlled decomposition on heating to 140 °C (Scheme 2). The product of this rearangement arising from elimination of the tributylstannyl moiety, dienoaldehyde 1, has, however, the *opposite* cis-geometry across the internal double bond! For example compound 12a on heating to 140 °C rearranges into the cis-dienoaldehydes (1-cis, Fig. 3-II).

Scheme 2. i. ZnCl₂, CH₂Cl₂, rt; ii. xylene, reflux (140 °C, 4 h); iii. ^tBuC₆H₅, reflux (170°C, 4 h)

Two possible mechanisms can be proposed for this thermal decomposition. First postulates a cleavage of the carbon-metal bond with formation of radical 13 which further is converted into *cis-1*. This transformation requires a homolytic cleavage of the C-O bond (route *a*, Fig. 3-II), a process which is not very likely;¹¹ this mechanism was excluded also experimentally. The intermediate radical 13, if formed, should be trapped with tributyltin hydride to afford (besides the dienoaldehyde) also the reduced product 14. No such product was detected in the post-reaction mixture. We postulate, therefore, that the tin atom present

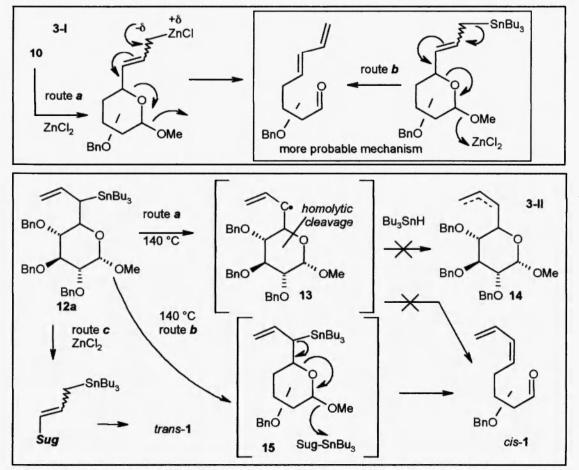


Figure 3. The possible mechanisms for reaction of sugar allyltins with ZnCl₂ (3-I) and for decomposition of secondary sugar allyltins(3-II)

in 12a, may act at high temperature as a (weak) Lewis acid and induce decomposition according to route b in Fig. 3-II. It is not clear, however, why the geometry of the internal double bond is cis.

Treatment of 12a with $ZnCl_2$ induces its conversion into the *trans*-aldehyde. This might be safely explained assuming the fast rearrangement to the primary analog (a process which is strongly catalyzed with Lewis acids¹²) and decomposition of the latter (route c in Fig. 3-II). As shown in Scheme 2, the conversion of sugar primary allyltin derivatives catalyzed by a Lewis acid provides exclusively the *trans*-dienoaldehydes *regardless* of the geometry of the double bond in the starting organometallics.

Application of sugar allyltins in the synthesis of carbocyclic derivatives

The dienoaldehydes with the *trans* and *cis* geometry across the internal double bond are convenient synthons for the preparation of carbocyclic derivatives. The general methodology is outlined in Scheme 3 for the allyltins derived from D-glucose.

Scheme 3. *i.* xylene, 140 °C, 4 h; *ii.* xylene, 140 °C, $Ph_3P=CHCO_2Me$ (24); *iii.* $ZnCl_2$, Ch_2Cl_2 , rt, 1h; *iv.* 24, C_6H_6 ; v. p = 10 kbar; vi. 1.[O], 2. Ch_2N_2 , 3. $Ch_2P(O)(OMe)_2$; Ch_2CO_3 , Ch_3CO_4 , rt

The secondary allyltin derivative 12a on heating to 140 °C is converted into the *cis* aldehyde 1a-*cis*. If this reaction is performed in the presence of a stabilized ylid (Ph₃P=CHCO₂Me, 24) the resulting Wittig product 18 undergoes a spontaneous intramolecular Diels-Alder reaction (IMDA) to provide the bicyclic derivative 21 with the *cis* junction between both rings. ¹⁰ The isomeric bicyclo[4.3.0]nonene 22 is available by the (slightly modified) Wittig – IMDA sequence of reactions performed on the *trans*-aldehyde 1. ¹³

Alternatively, dienoaldehyde 1a-trans may-be oxidized to an acid and converted into the methyl ester by reaction with diazomethane. Treatment of this ester with the anion generated from dimethyl methyl phosphonate afforded the Horner-Emmons reagent 16, which reacted with aldehyde 17 to furnish triene 20, undergoing spontaneous cyclization to decaline 23.14

The very high stereoselectivities observed in all these cyclizations are easily explained assuming the *endo* transition states of reacting species 18-20.

Conclusions

The primary sugar allyltin derivatives are easily available from the corresponding allylic alcohols. The secondary ones are obtained (although as minor products) in reaction of allylic bromides (or mesylates) with tributyltin cuprate. Treatment of both regioiosomers with zinc chloride induces their conversion into the *trans* dienoaldehydes, resulting from a rearrangement of the sugar skeleton with elimination of a tributylstannyl moiety. The configuration across the internal double bond *is independent* of the geometry (E or Z) of the starting organometallic compound. The secondary allyltin derivatives undergo a conversion into the *cis*-dienoaldehydes on heating to 140 °C. Both isomers (E and Z) of the unsaturated aldehydes are convenient precursors of enantiomerically pure carbobicylic products.

Acknowledgements

The Grant 3T09A 07015 from the Polish State Committee for Scientific Research is gratefully acknowledged.

References

- Mehta, G.; Ramesh, S. S. Chem. Commun., 2429 (2000); Mehta, G.; Ramesh, S. S. Tetrahedron Lett., 42, 1987 (2001).
- 2. Herczegh, P.; Zsely, M.; Szilagyi, L.; Bajza, I.; Kovacs, A.; Batta, G., Bognar, R. Cycloaddition Reactions in Organic Chemistry, 494, 112 (ACS Symposium Series, Guiliano R.M. Edition, 1992).
- 3. Bernet, B.; Vasella, A. Helv. Chim. Acta, 62, 1990 (1979); ibid. item., 62, 2400 (1979).
- 4. Jarosz, S., Fraser-Reid, B. J. Org. Chem., 54, 4011 (1989), for a summary on the general methodology leading to higher carbon sugars see Jarosz, S. J. Carbohydr. Chem., 20, 93 (2001).
- Yamamoto, Y. Acc. Chem. Res., 20, 243 (1987); Yamamoto, Y.; Asao, N. Chem. Rev., 93, 2207 (1993); Marshall, J. A., Chem. Rev., 96, 31 (1996); Weigand, S.; Brückner, R. Synthesis, 475 (1996); Jarosz, S. Polish J. Chem., 72, 815 (1998) and referencens therein.
- 6. Ueno, Y.; Sano, H.; Okawara, M. Synthesis, 1011 (1980); Mortlock, S. V.; Thomas, E. J. Tetrahedron Lett., 29, 2479 (1988).
- 7. Kozlowska, E.; Jarosz, S. J. Carbohydr. Chem., 13, 889 (1994).
- 8. Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H.; Reuter, D. C. *Tetrahedron Lett.*, **30**, 2065 (1989); athough we depicted this reagent as 'Bu₃SnCu' the nature of this species is much more complicated and its structure according to Lipshutz should be written as Bu(Bu₃Sn)Cu(CN)Li₂.
- 9. Jarosz, S. Tetrahedron, 53, 10765 (1997).
- 10. Jarosz, S.; Szewczyk, K. Tetrahedron Lett., 42, 3021 (2001).
- 11. Abstraction of a hydrogen atom in benzylidene acetals leading to radical which undergoes rearrangement with a cleavage of the C-O bond is known [Roberts, B. P.; Smits, T. M. *Tetrahedron Lett.*, 42, 137 (2001); Huyser, E. S.; Garcia, Z. J. Org. Chem., 27, 2716 (1962)], however, the case reported here is different.
- 12. Verdone, J. A.; Mangravite, J. A.; Scarpa, N. M.; Kuivila H. G. J. Am. Chem. Soc., 97, 843 (1975).
- 13. Jarosz, S.; Kozlowska, E.; Jezewski, A. Tetrahedron, 53, 10775 (1997); see also Jarosz, S.; Skora, S. Tetrahedron: Asymmetry, 11, 1425 (2000).
- 14. Jarosz, S., Skora, S. Tetrahedron: Asymmetry, 11, 1433 (2000).