X-RAY STRUCTURE OF (1,5,9,13-TETRAAZACYCLOHEXADECANE)ZINC(II) TETRABROMOZINCATE

Ki-Young Choi, 1,6 Haiil Ryu, 1 Il-Hwan Suh 1,2,8 and Edward R.T. Tiekink*3

¹Department of Cultural Heritage Conservation Science, Kongju National University, Kongju 314-701, Korea kvchoi@mail.kongju.ac.kr

²Department of Physics, Chungnam National University, Taejon 305-764, Korea

³Department of Chemistry, The University of Adelaide, Australia 5005, edward.tiekink@adelaide.edu.au

Figure 1. Molecular structure (50% displacement ellipsoids) of the cation in the structure of $[ZnL][ZnBr_4]$. Selected bond distances and angles: Zn(1)-N(1) 2.023(5), Zn(1)-N(5) 2.022(5), Zn(1)-N(9) 2.017(5), and Zn(1)-N(13) 2.013(5) Å; N(1)-Zn(1)-N(5) 105.0(2), N(1)-Zn(1)-N(9) 120.5(2), N(1)-Zn(1)-N(13) 103.6(2), N(5)-Zn(1)-N(9) 103.1(2), N(5)-Zn(1)-N(13) 123.0(2), and N(9)-Zn(1)-N(13) 103.0(2)°.

Comment

The zinc atom in the cation exists in a distorted tetrahedral geometry defined by four nitrogen atoms derived from the macrocyclic ligand. The tetradentate mode of coordination results in the formation of four six-membered rings each of which adopts a chair conformation that is flattened somewhat at the zinc apex. The nitrogen-bound hydrogen atoms adopt a +-+- conformation [1] meaning that they sequentially lie to opposite sides of the macrocycle. The conformation reported here for the cation matches closely that found in the perchlorate analogue

⁵ On sabbatical leave at the Department of Chemistry, The University of Adelaide, Australia 5005

[1]. The widest angles subtended at the zinc atom, i.e. N(1)-Zn(1)-N(9) and N(5)-Zn(1)-N(13), may be related to the close association of the respective pairs of amine-hydrogen atoms with symmetry related $[ZnBr_4]^-$ anions. The closest such interaction of 2.49 Å occurs between N-H(9) and Br(1) so that N(9)...Br(1) is 3.403(6) Å and the angle subtended at H(9) is 167° with symmetry operation i: x, y, -1+z.

Experimental

Preparation: The macrocyclic ligand, L, was prepared according to previously published procedure [2]. A methanol solution of L (114 mg, 0.5 mmol) and ZnBr₂ (225 mg, 1 mmol) was heated at reflux for 1 h. The solution was then taken to dryness and the resulting solid dissolved in acetonitrile/water (1:1, 10 ml). When this mixture was allowed to stand for a few days, a quantity of colourless crystals were deposited. These were filtered off and dried in air. IR (KBr, cm⁻¹): 3224 v(N-H). FAB mass (m/z): 678 [ZnL,ZnBr₄]⁺.

Crystallography: An empirical absorption correction was applied [3]. The residual electron density peak $(1.19 \text{ e } \text{Å}^{-3})$ was located near the Br(4) atom.

Formula	$C_{12}H_{28}Br_4N_4Zn_2$	Formula weight	678.8
Crystal system	monoclinic	Space group	$P2_1/n$
2, Å	15.386(5)	<i>b</i> , A	15.668(4)
;, Å	9.036(4)	β, °	103.76(5)
√, Å ³	2116(1)	Z	4
Crystal size, mm	$0.07 \times 0.26 \times 0.31$	Diffractometer	Rigaku AFC7R
l'emperature, K	173	$\mu(Mo-K\alpha)$, cm ⁻¹	98.45
$D_{\rm calcd}$, g cm ⁻³	2.131	F(000)	1312
111007	27.5	No. refins meas., unique	5220, 4855
No. reflns with $I \ge 2\sigma(I)$	2588	R , wR (F^2 , obs. data)	0.032, 0.066
R , wR (F^2 , all data)	0.120, 0.084	No. parameters	200
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.0232P)^2 + 1.9103P]$ where $P = (F_0^2 + 2F_0^2)/3$		
GoF	0.99	ρ, e Å ⁻³	1.19
rograms used	DIFABS [3], teXsan [4], DIRDIF [5], SHELXL97 [6], ORTEP [7]		
Deposition no.	CCDC 162618		

Table 1. Crystallographic data for [ZnL][ZnBr₄]

Acknowledgements

This work was supported by a Grant (No. 2001-1-12200-008-2) from the Basic Research Program of the Korea Science and Engineering Foundation. The Australian Academy of Science is gratefully acknowledged for support to allow I.-W.S. to spend sabbatical leave in Adelaide. The Australian Research Council is thanked for support of the crystallographic facility.

References

- [1] R. Luckay, T.E. Chantson, J.H. Reibenspies and R.D. Hancock, J. Chem. Soc., Dalton Trans., (1995) 1363.
- [2] W.L. Smith and K.N. Raymond, Inorg. Synth., 20 (1980) 109.
- [3] N. Walker and D. Stuart, Acta Crystallogr., A39 (1983) 158.
- [4] teXsan, Single Crystal Structure Analysis Software, Version 1.04 (1997), Molecular Structure Corporation, The Woodlands, TX, U.S.A.
- [5] P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. García-Granda, R.O. Gould, J.M.M. Smits and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands (1992).
- [6] G.M. Sheldrick, SHELXL97, University of Göttingen, Germany (1997).
- [7] C.K. Johnson, ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, TN, U.S.A. (1976).

Received: April 20, 2001 - Accepted: April 27, 2001 - Accepted in publichable format: May 2, 2001