CRYSTAL STRUCTURE OF BIS(β-ALANINATO)ZINC(II)

Chew-Hee Ng*1, Zhong-Yuan Zhou², Hoong-Kun Fun², Soon-Beng Teo³, Siang-Guan Teoh³, Pance Naumov⁴ and Seik Weng Ng³

¹ School of Arts and Science, Tunku Abdul Rahman College, 53300 Kuala Lumpur, Malaysia ² X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia ³ School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia ⁴ Institute of Chemistry, "Sv. Kiril i Metodij University", P.O. Box 162, MK-1001, Skopje, Macedonia ⁵ Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Figure 1. *ORTEP* plot of bis(β-alaninato)zinc(II) at the 50% probability level. Selected bond distances and angles: Zn1-O1 = 1.982(3), Zn1-O3 = 1.950(4), Zn1-N1' = 2.013(4), Zn1-N2" = 2.013(4) Å; O1-Zn1-O3 = 109.8(2), O1-Zn1-N1' = 98.1(2), O1-Zn1-N2" = 112.3(2), O3-Zn1-N1' = 113.7(2), O3-Zn1-N2" = 106.7(2), N1'-Zn1-N2" = 116.1(2) °. Symmetry transformation: i = x - 1, -y, z - 1/2; ii = x - 1/2, -y + 1/2, z + 1/2.

Comment

The zinc atom in bis(β -alaninato)zinc(II) is four-coordinate in a tetrahedral geometry, the atom being covalently bonded to the carboxyl oxygen atoms of the two β -alaninato entities and datively bonded to the nitrogen ends of two adjacent β -alaninato groups in a three-dimensional network structure. The related zinc aminoacetates are usually six- [1] and occasionally five-coordinate [2]. The bond distances in the compound are somewhat shorter than in these aminoacetates [1-3]. Unlike the copper [4], nickel and cobalt [5] analogs in which the β -alaninates are N,O-chelating, the carboxylato entities in bis(β -alaninato)zinc(II) exist in the N,O-bridging mode. The bridging nature of the β -alaninate in the present compound contrasts with the chelating mode exercised by the α -alaninato analog, $Zn[O_2CCH(CH_3)NH_2]_2$; in the latter, adjacent molecules are linked by a O,O-carboxylate bridge into chains [6]. The difference in coordination between the anionic α - and β -alaninate ligands in these two zinc(II) complexes may be due to differences in the synthetic route and reaction

condition. Such variation results in the parent acid, β -alanine, being zwitterionic and monodentate in the zinc nitrate adduct [7].

Experimental

The compound was synthesized by heating a mixture of β -alanine (35.6 g, 0.4 mol) and zinc oxide (16.6 g, >0.2 mol) in about 200 mL water for several hours. The unchanged oxide was removed by filtration and the filtrate concentrated. The compound was obtained in about 10 % yield. Diffraction measurements were carried out on a Siemens P4 diffractometer. The absolute structure parameter [8] refined to 0.01(2).

Table 1. Crystal data for bis(β -alaninato)zinc(II)

Empirical formula	$C_6H_{12}N_2O_4Zn$	Formula weight	241.55
Crystal system	Monoclinic	Space group	Cc
Unit cell dimensions	a = 5.561(2) Å	Volume	889.2(5) Å
	$b = 18.278(5) \text{ Å}, \beta = 103.39(2)^{\circ}$	Density, g cm ⁻³	1.804
	c = 8.993(3) Å	Z	4
μ , mm ⁻¹	2.746	F(000)	496
θ range of data	2.23 – 29.00°	Completeness of data	100%
Independent reflections	$1518 (R_{int} = 0.024)$	Reflections collected	1615
Refinement method	Full-matrix least-squares on F^2	Reflections with $I > \sigma 2(I)$	1496
Goodness-of-fit on F^2	1.074	Parameters refined	118
R (all data)	0.038	Final $R[I > 2\sigma(I)]$	0.037
Programs	SHELXS-97, SHELXL-97,	Diff. peak and hole, eÅ-5	-0.77 - 0.95
	ORTEP [9-11]	CCDC deposition no.	164870

Acknowledgments

We thank Tunku Abdul Rahman College, Universiti Sains Malaysia (IRPA 305/PFIZIK/610961) and the University of Malaya (F0758/2001A) for supporting this work.

References

- 1 H. Freeman, Adv. Protein Chem., 22 (1976) 257.
- 2 C.H. Ng, H.K. Fun, S.B. Teo, S.G. Teoh and K. Chinnakali, Acta Cryst., C51 (1995) 244.
- D. van der Helm, A.F. Nicholas and C.G. Fisher, Acta Cryst., B26 (1970) 1172.
- 4 Y. Mitsui, Y. Iitaka and H. Sakaguchi, Acta Cryst., B32 (1976) 1634.
- 5 P. Jose, L.M. Pant and A.B. Biswas, *Adv. Protein Chem.*, 22 (1976) 311.
- S.D. Dalosto, M.G. Ferreyra, R. Calvo, O.E. Piro and E.E. Castellano, J. Inorg. Biochem., 75 (1999) 151.
- F. Dejehet, R. Debuyst, B. Ledieu, J.P. Declercq, G. Germain and M. van Meerssche, *Inorg. Chim. Acta*, 30 (1978) 197.
- 8 H.D. Flack and D. Schwarzenbach, Acta Cryst., A44 (1988) 499.
- G.M. Sheldrick, SHELXS-97. Program for Crystal Structure Solution. University of Göttingen, Germany (1997).
- 10 G.M. Sheldrick, SHELXL-97. Program for Crystal Structure Refinement. University of Göttingen, Germany (1997).
- 11 C.K. Johnson, ORTEP-II. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA (1976).

Received: June 12, 2001 - Accepted: July 6, 2001 - Accepted in publishable format: July 27, 2001