DIPHENYLPHOSPHINATES OF TRIBUTYLANTIMONY(V)

H. Mahalakshmi¹ and Vimal K. Jain*¹ and E. R. T. Tiekink*²

1 Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai - 400085, India Department of Chemistry, The University of Adelaide, Australia 5005 < <u>iainvk@apsara.barc.crnct.in</u>> < <u>edward.tiekink@adelaide.edu.au></u>

Abstract

Reactions of $Bu_3^xSbBr_2$ with AgO_2PPh_2 in 1:2 stoichiometry afford $Bu_3^xSb(O_2PPh_2)_2$ (1) $[x = n \ (1a); i \ (1b)]$. The reaction in 1:1 stoichiometry results in an equilibrating mixture of $Bu_3^xSb(Br)_N(O_2PPh_2)_{2:N}$ (2) (N = 1, 2). The latter also forms immediately when (1) is treated with $Bu_3^xSbBr_2$. Treatment of $Bu_3^xSb(OPr)_2$ with Ph_2PO_2H (1:1 ratio) followed by hydrolysis affords colourless crystals of $Bu_3^xSb(OH)(O_2PPh_2)$ (3) $[x = n \ (3a); i \ (3b)]$. All these complexes have been characterized by elemental analysis, IR and NMR (1H_1 , 1C_2 , 3P) spectroscopies, and in the case of 3b by single crystal X-ray diffraction studies. The structure of 3b features trigonal bipyramidal Sb with the axial positions occupied by an hydroxide-O atom and a phosphinate-O derived from a monodentate ligand. Zigzag chains of molecules, mediated by intermolecular -Sb-OH...O=P- interactions, are found in the crystal lattice.

Introduction

The chemistry of classical and organometallic main group metal complexes with oxy- and thio-phosphorous acids has attracted considerable attention during the last 15 years or so [1]. These complexes show diverse structural possibilities ranging from discrete monomeric structures to supramolecular assemblies. In this context, structural patterns of antimony complexes with phosphorous acids have also been reviewed recently by Silvestru and Haiduc [2]. This survey showed that often, phosphinic acid complexes are associated aggregates in the solid state. In pursuance of our recent work [3.4] and those of others [5] on such molecules, we report an investigation of some chemistry of tri-n- and i-butylantimony(V) complexes with diphenyl-phosphinic acid.

Results and Discussion

Treatment of Bu^x₃SbBr₂ with two equivalents of AgO₂PPh₂ in benzene solution readily afforded Bu^x₃Sb(O₂PPh₂)₂ (1) [x = n(1a); i(1b)]. When the reaction was carried out in 1:1 stoichiometry with the view to isolate $Bu_3^xSb(Br)(O_2PPh_2)$ (2) [x = n (2a); i (2b)], an equilibrium between (2), (1) and $Bu_3^xSbBr_2$ (eq.1) was established instead:

$$Bu^{x}_{3}SbBr_{2} + AgO_{2}PPh_{2} \rightarrow Bu^{x}_{3}Sb(Br)(O_{2}PPh_{2}) \implies (1) + Bu^{x}_{3}SbBr_{2} \qquad ...(eq. 1)$$

$$-AgBr$$

Similar equilibria were established when Bux₃SbB₁₂ were treated with Ph₂PO₂H in the presence of triethylamine. Treatment of a CDCl₃ solution of 1 with an equimolar solution of Bu^x₃SbBr₂ immediately established an equilibrium containing 2, 1 and $Bu_3^xSbBr_2$ for each of x = n and i. The relative concentration of all three species (ca 3:2:2, respectively) did not change on keeping the solution either at room temperature for one week or refluxing the solution for one hour, as revealed by NMR spectroscopy. However, in the presence of excess of Bu^x₃SbBr₂ (4 equivalents or more) only 2 and Bu^x₃SbBr₂ existed in solution. Reaction of Bu^x₃Sb(OPrⁱ)₂ with Ph_2PO_2H in benzene solution followed by hydrolysis yields the hydroxo complexes $Bu_3^XSb(OH)(O_2PPh_2)$ (3) [x = n(3a); i(3b)].

All of the complexes reported are colourless crystalline solids that are soluble in common organic solvents. The IR spectra of each of 1 - 3 exhibited a band in the region 429 ± 2 cm⁻¹, absent in the spectra of Ph₂PO₂H and $Bu_{3}^{x}SbBr_{2}$, which has been attributed to vSb-O [6]. $Bu_{3}^{x}SbBr_{2}$ and 2 showed absorptions due to vSb-Br at 270 \pm 2 cm⁻¹ [5]. The vSb-C could not be assigned unambiguously due to the presence of overlapping phenyl group absorptions. The spectra of 3a and 3b displayed a broad band at 3325 and 3175 cm⁻¹, respectively, which can be assigned to vO-H absorptions. H NMR spectra exhibited the expected peak multiplicities and integrations. The butyl-H resonances for 1 are shielded relative to the corresponding signals for 2 and 3. The ¹³C{¹H} NMR spectra for 1 showed a single set of resonances for Bux3Sb carbons and doublets for the diphenylphosphinate group due to "J(31P-13C) couplings. The magnitude of these couplings can be compared with those reported for analogous compounds [3]. The "P{ H} spectra exhibited a single resonance and appeared at lower frequencies

when compared to that of uncoordinated diphenylphosphinic acid. The following trend of ³¹P NMR signal deshielding is evident:

$$Ph_2PO_2H > Bu_3^xSb(Br)(O_2PPh_2) \approx Bu_3^xSb(O_2PPh_2)_2 > Bu_3^xSb(OH)(O_2PPh_2)$$

Weakly diffracting crystals were obtained for 3b and one of these was subjected to a crystallographic study. The analysis is not optimal owing, in part, to disorder in the positions of the atoms, in particular for the light atom positions. However, the structure has been determined unambiguously. There are two independent molecules comprising the crystallographic asymmetric unit, labeled molecule a and b, that are similar to each other. The molecular structure for molecule a is illustrated in Fig. 1 and selected geometric parameters are collected in Table 1

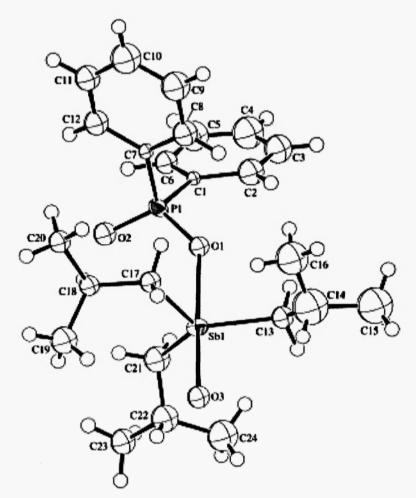


Fig. 1. Molecular structure and crystallographic numbering scheme for one of the independent molecules in [Bu'₃Sb(OH)(O₂PPh₂)] (3b)

In the following description parameters for the second molecule are given in parentheses; see Figs 1 and 2 for numbering schemes. The Sb atom in each molecule exists in a distorted trigonal bipyramidal geometry with the three organic substituents defining the equatorial plane. The axial positions are occupied by the hydroxide group and an O atom derived from a diphenylphosphinate ligand. The Sb(1) atom lies 0.233(2) Å (0.104(2) Å) out of the C₃ plane in the direction of the hydroxide group. The O-Sb-O axial angle is 178.6(6)° (176.4(6)°). The Sb-Q-P distances are significantly longer than the Sb-OH distances, as expected. The diphenylphosphinate ligand coordinates in the monodentate mode as the secondary Sb-O2 distance of 3.94(1) Å (Sb-O5 is 3.91(1) Å) is longer than the sum of the van der Waals radii of 3.78 Å for Sb and O [7]. This feature of the structure may be

explained in terms of the participation of the O2 and O5 atoms in intermolecular associations to symmetry related hydroxide groups (see below).

The major differences in the Sb atom coordination geometries between the two independent molecules relate to the disposition of the *i*-butyl groups about the Sb atom as manifested in some of the O-Sb-C angles, which differ by up to 6°. In terms of the *i*-butyl groups themselves, there are some minor differences in the relative orientations of the methyl groups (the high thermal motion notwithstanding) with the major difference being associated with the relative orientations of the methyl groups in the C13- and C45- *i*-butyl groups. The crystal lattice of 3b is stabilized by a series of intermolecular interactions leading to the formation of hydrogen-bonded aggregates.

Table 1. Selected geometric parameters (Å, °) for [Buⁱ₃Sb(OH)(O₂PPh₂)] (3b)

Sb-O1	2.27(2)	Sb2-O4	2.28(1)	
Sb1-O3	1.97(2)	Sb2-O6	2.02(1)	
Sb1-C13	2.11(3)	Sb2-C37	2.12(2)	
Sb1-C17	2.12(2)	Sb2-C41	2.16(3)	
Sb1-C21	2.11(3)	Sb2-C45	2.07(3)	
P1-O1	1.54(1)	P2-O4	1.51(2)	
P1-O2	1.52(2)	P2-O5	1.49(2)	
O1-Sb1-O3	178.2(6)	O4-Sb2-O6	176.4(6)	
O1-Sb1-C13	81.6(7)	O4-Sb2-C37	87.5(6)	
O1-Sb1-C17	82.9(8)	O4-Sb2-C41	87.9(9)	
O1-Sb1-C21	86.7(9)	O4-Sb2-C45	86.2(8)	
O3-Sb1-C13	96.6(8)	O6-Sb2-C37	89.9(7)	
O3-Sb1-C17	98.4(9)	O6-Sb2-C41	95.5(9)	
O3-Sb1-C21	93.9(9)	O6-Sb2-C45	93.0(9)	
C13-Sb1-C17	121.0(9)	C37-Sb2-C41	118(1)	
C13-Sb1-C21	117(1)	C37-Sb2-C45	122(1)	
C17-Sb1-C21	118(1)	C41-Sb2-C45	119(1)	
Sb1-O1-P1	138.1(9)	Sb2-O4-P2	135.4(9)	

The O2 atom is 2.66(2) Å from a symmetry related hydroxide-O3 (OH atoms were not located in the X-ray study; symmetry operation: 1-x, -0.5+y, 1.5-z). For the second independent molecule O5...O6 is 2.71(2) Å (symmetry operation: -x, -0.5+y, 1.5-z). These distances are indicative of significant hydrogen bonding interactions. This mode of association leads to the formation zigzag chains, mediated by -Sb-OH...O=P- hydrogen bonds, extending along the b-direction and as illustrated in Fig. 2.

Chains are comprised of linked molecules of one or the other of the independent molecules comprising the asymmetric unit. Links connecting the chains appear to be afforded by C-H... π interactions between centrosymmetrically and as well as between translationally related chains. Thus, for centrosymmetrically-related chains, the C48-H73...ring centroid of C1-C6 distance is 2.70 Å with an angle at H of 165° and the C48-H74...ring centroid of C7-C13 is 2.91 Å with an angle of 159° (symmetry operation -x, -y, 1-z). Between translationally-related chains (1+x, y, z), the C24-H36...ring centroid of C25-C30 distance is 2.88 Å with an angle at H of 168°.

The structure reported here bears a close resemblance to that of the trimethylantimony(V) analogue that has been reported recently [5].

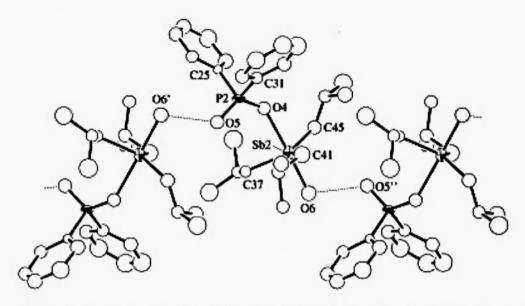


Fig. 2. Zigzag chains, mediated by -Sb-OH...O=P- hydrogen bonds, as found for the second independent molecule in [Bu'₃Sb(OH)(O₂PPh₂)] (3b). Symmetry operations: single prime -x, -0.5+y, 1.5-z and double prime x, 0.5+y, 1.5-z

Bu 3Sb and Bu 3Sb were prepared by the reaction of SbCl3 with Bu MgBr in diethylether [7]. The dibromides, Bu ₃Sb and Bu'₃Sb were prepared by the reaction of SbCl₃ with Bu'MgBr in diethylether [7]. The dibromides, Bu''₃SbBr₂, were obtained by the reaction of the tributylstibines in benzene with bromine in CCl₄. Bu''₃SbBr₂, pale yellow oil (88% yield) Br'% Found. 35.4; Calcd. 35.3. H NMR in CDCl₃: 0.97 (t, 7.3 Hz, SbCH₂CH₂CH₂CH₂CH₂); 1.45 (sextet, 7.3Hz, SbCH₂CH₂CH₂-); 1.97 (quintet, 7.3 Hz, SbCH₂CH₂-); 2.87 (t, 8.1 Hz, SbCH₂-); Bu'₃SbBr₂, white crystalline solid (m.p. 90° C, lit 95 °C [8], 26% yield) Br'% Found 35.1, Calcd. 35.3. H NMR in CDCl₃: 1.14 (d, 6.6 Hz, SbCH₂CHMe₂), 2.57 (sextet, 6.6 Hz, SbCH₂CH<), 2.91 (d, 6.6 Hz SbCH₂-). Diphenylphosphinic acid was prepared by the literature method (³¹P{¹H} in CDCl₃ δ: 33.2 ppm) [9]. The NMR spectra (¹H, ¹³C{¹H}, ³¹P{¹H}) were recorded on a Bruker DPX-300 NMR spectrometer in 5 mm tubes in CDCl₃ solution. The chemical shifts were referenced to the internal chloroform peak, δ 7.26 and 77.0, for ¹H and ¹³C{¹H}, respectively and external 85% H₃PO₄ for ³¹P{¹H}.

Preparations

 $[Bu_3Sb(O_2PPh_2)_2](1a)$

To a benzene solution (20 ml) of Buⁿ₃SbBr₂ (490 mg, 1.08 mmol), solid AgO₂PPh₂ (707 mg, 2.17 mmol) was added with stirring which was continued for 10 h at room temperature. Precipitated AgBr was filtered off and the filtrate was concentrated in vacuo to give a white solid in nearly quantitative yield (97%). This was recrystallized mirate was concentrated *in vacuo* to give a write solid in nearly quantitative yield (97%). This was recrystallized from a toluene-hexane mixture as a colourless crystalline solid, m.p. 78-80 °C. Analysis Found C, 59.6; H, 6.8; Calcd for $C_{36}H_{47}O_{4}P_{2}Sb$; C, 59.4; H, 6.5. H NMR in CDCl₃ δ: 0.74 (t, 7.0 Hz, SbCH₂CH₂CH₂Me); 1.21 (sextet, 7.0 Hz, SbCH₂CH₂CH₂-); 1.80 (quintet, 7.0 Hz, SbCH₂CH₂-); 2.48 (t, 7.0 Hz, SbCH₂-); 7.40 (m, 3,4,5-H, C₆H₅); 7.75 (m, 2,6-H, C₆H₅). To NMR in CDCl₃ δ: 13.0 (s, SbCH₂CH₂CH₂Me); 25.0 (s, SbCH₂CH₂CH₂-); 26.1 (s, SbCH₂CH₂-); 33.6 (s, SbCH₂); 128.0 (d, 12.7 Hz, C-3,5, C₆H₅); 130.6 (d, 1.9 Hz, C-4, C₆H₅); 131.0 (d, 9.6 Hz, C-2,6, C₆H₅); 137.4 (d, 135.0 Hz, C-1, C₆H₅); ³¹P₁H₂ in CDCl₃ δ: 21.5 ppm.

Similarly, [Bu'₃Sb(O₂PPh₂)₂] (1b) was prepared and recrystallized from a toluene-hexane solution in 66% yield as a colourless crystalline solid, m.p. 124-126 °C. Analysis Found C, 59.4; H, 6.2; Calcd for C₃₆H₄₇O₄P₂Sb; Č, 59.4; H, 6.5. H NMR in CDCl₃ δ : 0.92 (d, 6.6 Hz, SbCH₂CH Me_2); 2.36 (m, SbCH₂CH<); 2.54 (d, 7.1 Hz, SbCH₂-); 7.32-7.42 (m, 3,4,5-H, C₆H₅); 7.69-7.76 (m, 2,6-H, C₆H₅); 13 C{ 1 H} NMR in CDCl₃ δ : 24.8 (s, SbCH₂CH Me_2); 25.2 (s, SbCH₂CH<C); 44.8 (s, SbCH₂-); 128.1 (d, 12.6 Hz, C-3,5, C₆H₅); 130.7 (d, 2.0 Hz, C-4, C₆H₅); 131.2 (d, 9.6 Hz, C-2,6, C₆H₅); 137.5 (d, 135.2 Hz, C-1, C₆H₅). 31 P{ 1 H} in CDCl₃ δ : 20.9 ppm.

 $[Bu'_3Sb(Br)(O_2PPh_2)]$ (2b)

(i) To a benzene solution of AgO₂PPh₂ (384 mg, 1.18 mmol) a solution of Bu'₃SbBr₂ (536 mg, 1.18 mmol) was added with stirring which was continued at room temperature for 10 h. Precipitated AgBr was filtered off through a fine silica filter. The filtrate was concentrated in vacuo to give a white solid (684 mg, 98%) which was recrystallized from a benzene-hexane mixture, m.p. 81 °C. Analysis Found C, 48.9; H, 6.1; Calcd for $C_{24}H_{37}BrO_2PSb$; C, 48.8; H, 6.3. NMR spectra ('H and ³¹P) showed the existence of **1b**, **2b** and Bu'₃SbBr₂ in an ca ratio of 2:3;2. ¹H NMR in CDCl₃ for **2b** δ : 1.02 (d, 6.6 Hz, SbCH₂CHMe₂); 2.44 (m, SbCH₂CH<); 2.72 (d, 7.0 Hz,SbCH₂-); ³¹P{¹H} NMR in CDCl₃ for **2b** δ : 21.0 ppm. Similarly, [Buⁿ₃Sb(Br)(O₂PPh₂)] (2a) was prepared as a colourless oil. Analysis Found C, 48.0; H, 6.5. Calcd for $C_{24}H_{37}BrO_{2}PSb;$ C, 48.8; H, 6.3. NMR spectra showed resonances for **1a**, **2a** and Buⁿ₃SbBr₂ in 2:3:2 ratio. ¹H NMR in CDCl₃ for **2a** δ : 0.86 (t, 7.3 Hz, SbCH₂CH₂CH₂CH₂CH₂); 1.33 (sextet, 7.3 Hz, SbCH₂CH₂CH₂-); 1.87 (pentet, SbCH₂CH₂-); 2.66 (t, 7.3 Hz, SbCH₂-). ³¹P{ ¹H} in CDCl₃ for **2a** δ : 21.9 ppm.

(ii) To a CDCl₃ solution of 1b (13 mg, 0.018 mmol), Bu'₃SbBr₂ (8.1 mg, 0.018 mmol) was added in an NMR tube. ¹H and ³¹P NMR spectra were recorded immediately after mixing which were identical with the spectra for the sample prepared in (i). The spectra did not change either on keeping the solution for one week at room temperature or refluxing it for one hour. However, on increasing the concentration of Bu'₃SbBr₂ (4 mole and above) only 2b and Bu'₃SbBr₂ existed in solution.

Similarly, reaction between 1a and Bun3SbBr2 investigated by H and HP NMR. These showed spectra

comparable to the product prepared in (i).

 $[Bu_3^nSb(OH)(O_2PPh_2)]$ (3a)

To a NaOPr' solution [prepared from 835 mg (36.3 mmol) Na in 25 ml Pr'OH], a benzene solution (20 ml) of Buⁿ₃SbBr₂ (8.23 g, 18.2 mmol) was added and stirred at room temperature for 4 h. Precipitated NaBr was filtered off and the filtrate was concentrated in vacuo and the residue was distilled under vacuum (125-130 °C/5 mm) to

give [Buⁿ₃Sb(OPr¹)₂] as a colourless liquid (3.57g, 48%). To a benzene solution of [Buⁿ₃Sb(OPr¹)₂] (1.05 g, 2.55 mmol), solid Ph₂PO₂H (492 mg, 2.25 mmol) was added and stirred at room temperature for 30 min and then solvent was evaporated in vacuo to give a paste which on and stiffed at foom temperature for 30 min and then solvent was evaporated in vacuo to give a paste which of crystallization from moist acetone-hexane solution gave colourly states of $[Bu^n_3Sb(OH)(O_2PPh_2)]$ (740 mg, 87%), m.p. 90 °C. Analysis Found C, 54.0; H, 7.2; Calcd for $C_{24}H_{38}O_3PSb$; C, 54.6; H, 7.2. 'H NMR in CDCl₃ δ : 0.87 (t, 7.3 Hz, SbCH₂CH₂CH₂CH₂Me); 1.35 (sextet, 7.3 Hz, SbCH₂CH₂CH₂-); 1.75 (pentet, 7.3 Hz, SbCH₂CH₂-); 2.32 (t, 8.0 Hz, SbCH₂C); 7.35 (br, 3,4,5-H, C_6H_3); 7.70-7.76 (m, 2,6-H, C_6H_3). $^{31}P\{^{1}H\}$ in CDCl₃ δ : 18.2 ppm. Similarly, $[Bu^{1}_3Sb(OH)(O_2PPh_2)]$ (3b) was prepared and recrystallised from toluene, m.p. 126 °C. Analysis Found C, 53.9; H, 7.2; Calcd for $C_{24}H_{38}O_3PSb$; C, 54.6; H, 7.2. 'H in CDCl₃ δ : 1.02 (d, 6.6 Hz, SbCH₂CHMe₂); 2.28 2.33 (overlapping signals due to $SbCH_2$ CHMe₂); 7.70-7.77 (m, 2.6-1) 2.28-2.33 (overlapping signals due to SbCH₂- and SbCH₂CH<); 7.32-7.36 (m, 3,4,5-H, C_6H_5); 7.70-7.77 (m, 2,6-H, C_6H_5). $^{1}P\{^{1}H\}$ in CDCl₃ δ : 17.6 ppm.

Crystallography

Crystallographic data are summarized in Table 2. A correction was applied to the data to allow for significant decomposition (ca 11 %) of the crystal during the course of the data collection. Despite the data collection having been measured at 173 K, significant thermal motion was found in each of the two molecules comprising the crystallographic asymmetric unit. As a consequence only the Sb and P atoms were refined with anisotropic displacement parameters. H atoms were included in their calculated positions; the O-H atoms were not located.

Table 2. Crystal data for [Bu¹₃Sb(OH)(O₂PPh₂)] (3b)

Formula	$C_{24}H_{38}O_3PSb$	Formula weight	527.3		
Crystal system	monoclinic	Crystal size, mm	$0.08 \times 0.16 \times 0.21$		
Space group	$P2_1/c$	a, Å	22.043(2)		
b, Å	13.2276(7)		18.600(2)		
B, °	110.75(1)	c, A V, Å ³	5071.3(2)		
β, ° Z	8	Diffractometer	Rigaku AFC7R		
Temperature, K	173	μ(Mo-Kα), cm ⁻¹	11.70		
Trans. factors	0.561 - 1	D _{calcd} , g cm ⁻³	1.381		
F(000)	2176	θ_{max} ,	27.5		
Reflns meas.	12517	Refins unique	12156		
Reflns with $I > 3.0\sigma(I)$	3136	Weighting scheme	$1/[\sigma^2(F_0) + 0.00002F_0^2]$		
$R(F), R_{w}(F)$	0.064, 0.075	ρ, e A ⁻³	1.02		
Programs used	DIFABS [11], teXsan [12], DIRDIF [13], ORTEP [14], PLATON [15]				
Deposition number	CCDC 145932				

Acknowledgements

One of the authors (HM) is grateful to DAE for the award of a Junior Research Fellowship. The authors thank Dr. J.P. Mittal, Director, Chemistry and Isotope Group and Dr. P. Raj, Head, NM & SC Division for encouragement of this work. We are grateful to Analytical Chemistry Division, BARC for carrying out analysis of the complexes. The Australian Research Council is thanked for support of the crystallographic facility.

References

- E.R.T. Tiekink, *Main Group Met. Chem.* 15 (1992) 161; V.K. Jain, *Coord. Chem. Rev.*, 135/136 (1994) 809; J.Z. Schpector, I. Haiduc, C. Silvestru and R. Cea-Olivares, *Polyhedron*, 14 (1995) 3087; M.J. Cox and E.R.T. Tiekink, *Rev. Inorg. Chem.*, 17 (1997) 1. [1]
- [2] [3] C. Silvestru and I. Haiduc, Coord. Chem. Rev., 147 (1996) 117.
- S.S. Garje and V.K. Jain, Main Group Met. Chem., 21 (1998) 77.

- S.S. Garje and V.K. Jain, Main Group Met. Chem., 18 (1995) 387.
- [4] [5] C. Silvestru, A. Silvestru, I. Haiduc, D.B. Sowerby, K.H. Ebert and H.J. Breunig, *Polyhedron*, 16 (1999) 2643.
- E. Maslowsky Jr., *J. Organomet. Chem.*, **70** (1974) 153. A.Bondi, *J. Phys. Chem.*, **64** (1964) 441.
- A. Berry, Polyhedron, 18 (1999) 2609.
- L.I. Zakharin and O. Yu. Okhlobystin, Doklady Akad. Nauk S.S.S.R, 116 (1957) 236; Chem Abst, 52 (1958) 6167.
- G.M. Kosolapoff, "Organophosphorous Compounds", J. Wiley, N. Y (1950). N. Walker and D. Stuart, *Acta Crystallogr.*, A39 (1983) 158.
- teXsan, Single Crystal Structure Analysis Software, Version 1.04 (1997), Molecular Structure Corporation, The Woodlands, TX, USA.
- P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography [13] Laboratory, University of Nijmegen, The Netherlands (1992). C.K. Johnson, ORTEP. Report ORNL-5138 (1976), Oak Ridge National Laboratory, TN, USA.
- [14] [15]
- A.L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands (2000); http://www.crvst.chem.uu.nl/platon/.

Received: June 21, 2000 - Accepted: August 24, 2000 -Accepted in publishable format: August 25, 2000