POLYSULFONYLAMINES. Part CIV [1]. SERENDIPITOUS ISOLATION AND CRYSTAL STRUCTURE OF THE NOVEL IONIC DIMETHYLTIN(IV) COMPLEX [Me₂Sn(pyridine-1-oxide)₄]²⁺ • 2 (MeSO₂)₂N • 2 MeCN

Andreas Wirth, Armand Blaschette* and Peter G. Jones*

Institut für Anorganische und Analytische Chemie, Technische Universität, P. O. Box 33 29, D-38023 Braunschweig, Germany

Abstract: The title complex is the first authenticated example of a 1:4 adduct formed between a diorganyltin(IV) salt and an amine *N*-oxide. It was obtained adventitiously on treating the dimeric hydroxide $[Me_2Sn\{(MeSO_2)_2N\}(\mu-OH)]_2$ with four equivalents of pyridine-1-oxide (pyo) in acetonitrile, the co-products being Me_2SnO and water. The crystal structure, as determined by X-ray difraction at -100 °C (triclinic, space group PT, Z=1), consists of *trans*-octahedral, centrosymmetric $[Me_2Sn(pyo)_4]^{2+}$ cations, non-coordinating $(MeSO_2)_2N^-$ anions and non-coordinating MeCN molecules. Characteristic bond lengths and angles are as follows: Sn-C 211.6, Sn-O 221.0 and 223.1, N-O 134.8 and 134.5 pm, Sn-O-N 123.5 and 119.3, *cis*-angles at tin in the range $90 \pm 4.5^\circ$; N-S 159.0 and 159.4 pm, S-N-S 121.3°.

Introduction

The coordination chemistry of aromatic amine N-oxides is a long-established field of research [2]. With diorganyltin(IV) compounds R_2SnX_2 , these O-donors are known to form 1:1 and 1:2 complexes, and X-ray structures are available for the following four examples containing 2,6-lutidine-1-oxide (luO), pyridine-1-oxide (pyO) or quinoline-1-oxide (quO): [$Ph_2SnCl_2(luO)$] (1) [3], [$Me_2SnCl_2(luO)$] (2) [4, 5], [$Me_2SnCl_2(pyO)_2$] (3) [6], and [$Me_2SnCl_2(quO)_2$] (4) [7]. In the solid state, 1-4 exist as uncharged molecules. The monomeric complex 1 contains five-coordinated, trigonal-bipyramidal tin with the ligand oxygen and one of the chlorine atoms occupying the apical positions, whereas in 2 six-coordination at tin is created via dimer formation through bridging chlorine atoms. For the 1:2 adducts 3 and 4, the structure determinations revealed all-trans-octahedral and crystallographically centrosymmetric complex molecules.

We describe here the first authenticated 1:4 complex formed between a diorganyltin(IV) salt and an aromatic amine *N*-oxide and, concomitantly, the first member in this class of coordination compounds that displays an *ionic* crystal structure.

Results and Discussion

The title complex (5) was discovered adventitiously. In previous work [8] we had shown that the dimeric hydroxide $[Me_2Sn(A)(\mu\text{-OH})]_2$ (6), where A^- is di(methanesulfonyl)amide, readily forms novel 1:2 complexes with selected monodentate *O*-donor ligands according to the following equation:

[Me₂Sn(A)(
$$\mu$$
-OH)]₂ + 2 L \rightarrow [Me₂Sn(A)(L)(μ -OH)]₂ (1)
A⁻ = (MeSO₂)₂N⁻; L = Ph₃PO, Ph₃AsO, (Me₂N)₃PO

In view of the fact that the amide species A is of considerable utility as a non-coordinating counter-ion for mono- and polynuclear organotin complex cations [9], we attempted to generate a

dinuclear dication of the hitherto unreported type $[R_2Sn(L)_2(\mu-OH)]_2^{2+}$ by treating 6 with four equivalents of monodentate O-donor ligands. Whereas the primary goal was not (yet) attained, we observed in the course of these studies (i) that 6 does not react with more than two equivalents of the bulky ligands shown in eq. (1), and (ii) that four equivalents of the sterically less demanding O-donors pyridine-1-oxide (pyO) and dimethyl sulfoxide (dmso) induce degradation of the central $[SnO(H)]_2$ four-membered ring of 6 to produce dimethyltin oxide, water and the mononuclear and ionic 1:4 complexes shown below:

[Me₂Sn(A)(
$$\mu$$
-OH)]₂ + 4 L → [Me₂Sn(L)₄]²⁺ • 2 A⁻ + Me₂SnO + H₂O (2)
A⁻ = (MeSO₂)₂N⁻; L = pvO , $dmso$

The dimethyl sulfoxide complex formed according to eq. (2) was previously prepared by direct complexation of $Me_2Sn(A)_2$ with *dmso* and structurally characterized by X-ray diffraction and multinuclear CP/MAS NMR spectroscopy [10]. Its pyridine-1-oxide analogue crystallized from acetonitrile as the disolvate $[Me_2Sn(pyO)_4]^{2+} \cdot 2 A^- \cdot 2 MeCN$ (5), which was subjected to low-temperature X-ray structural analysis.

As shown in Fig. 1, the crystal consists of trans-octahedral $[Me_2Sn(pyO)_4]^{2+}$ cations, non-coordinating $(MeSO_2)_2N^-$ anions and non-coordinating MeCN molecules. The tin atom occupies a crystallographic centre of inversion. Selected geometric parameters for the ionic moieties are given in Table 1.

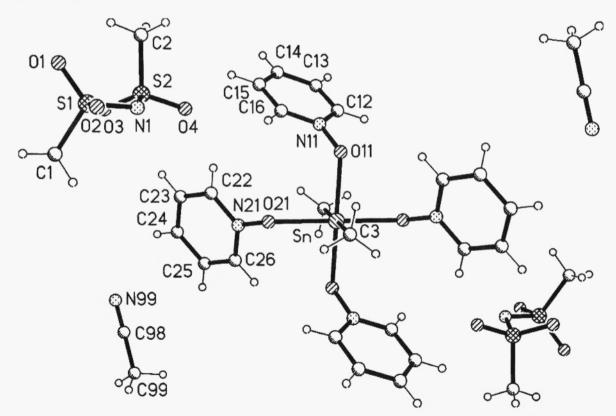


Fig. 1. The centrosymmetric formula unit of 5 showing the atomic labelling. Radii are arbitrary.

The coordination polyhedron around tin is similar to that found in the aforementioned *dmso* analogue. The Sn-O bond lengths (av. 221.1 pm) compare well with the Sn-O distance in **4** (222.0 pm), but they are markedly shorter than in **1** (229.0 pm), **2** (228.9 pm) or **3** (225 pm). The *cis*-angles

at tin lie in the range 90 \pm 4.5°. The O-N distances (av. 134.7 pm), the Sn-O-N angles (av. 121.4°, reflecting sp² hybridization at the coordinating oxygen atoms), and the angles of twist between the mean planes of the aromatic rings and the corresponding Sn-O-N planes (84.5 and 64.5°) fall in the same ranges as the related parameters in **1-4** and in a large variety of transition metal complexes with pyridine-1-oxide (for a detailed discussion and a literature survey cf. Ref. [5]).

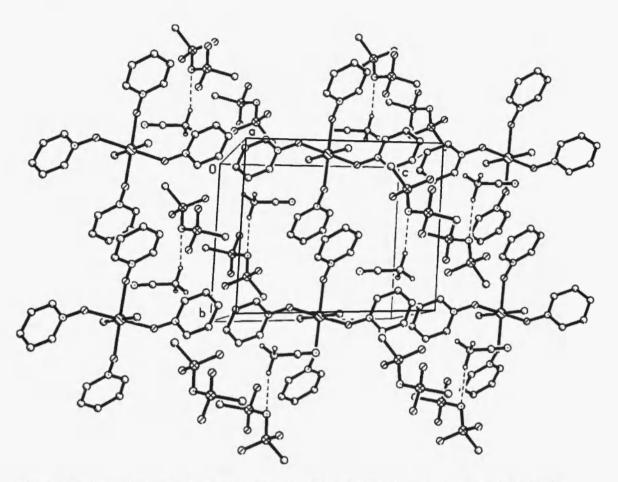
Table 1. Selected bond lengths (pm), bond angles (°) and dihedral angles (°) for 5 a) b)

Sn-C(3)	211.6(2)	N(11)-C(12)	134.7(2)
Sn-O(11)	223.14(12)	N(11)-C(16)	134.8(2)
Sn-O(21)	221.02(12)	N(21)-C(22)	134.6(2)
O(11)-N(11)	134.5(2)	N(21)-C(26)	134.9(2)
O(21)-N(21)	134.8(2)	N(1)-S(1)	158.99(14)
, , , ,		N(1)-S(2)	159.4(2)
O(11) Sp O(01)	00.00(5)	N/44\ O/44\ S= O/04\	C7 4/4)
O(11)-Sn-O(21)	90.20(5)	N(11)-O(11)-Sn-O(21)	-67.4(1)
C(3)-Sn-O(11)	85.58(6)	N(21)-O(21)-Sn-O(11 ¹)	• •
C(3)-Sn-O(21)	86.72(6)	Ψ11	84.5(1)
Sn-O(11)-N(11)	119.28(9)	Ψ21	64.5(1)
Sn-O(21)-N(21)	123.54(10)	O(1)-S(1)-N(1)-S(2)	-37.1(1)
O(11)-N(11)-C(12)	119.54(14)	O(2)-S(1)-N(1)-S(2)	-165.0(1)
O(11)-N(11)-C(16)	118.46(14)	C(1)-S(1)-N(1)-S(2)	81.6(1)
C(12)-N(11)-C(16)	122.0(2)	O(3)-S(2)-N(1)-S(1)	-42.4(1)
O(21)-N(21)-C(22)	118.20(14)	O(4)-S(2)-N(1)-S(1)	-170.3(1)
O(21)-N(21)-C(26)	120.18(14)	C(2)-S(2)-N(1)-S(1)	75.9(1)
C(22)-N(21)-C(26)	121.51(14)		
S(1)-N(1)-S(2)	121.33(9)		

^a) Symmetry code: (i) -x+1, -y, -z+1. ^b) φ_n are the tilt angles between the Sn-O(n)-N(n) planes and the respective aromatic N(n)C₅ rings.

The $(MeSO_2)_2N^-$ anion in **5** adopts an extended conformation approximating to C_2 symmetry (cf_i torsion angles in Table 1). This geometry, with short N-S bond lengths of ca. 160 pm and an S-N-S angle of ca. 120°, is persistent for the non-coordinating species in question and has been observed in numerous ionic di(methanesulfonyl)amides including, among others, organotin complexes and onium salts [9, 11-13].

In the crystal packing (Fig. 2), one MeCN hydrogen atom is directed towards the nitrogen atom of an adjacent anion, and the resulting intermolecular sequence may be viewed as a C-H···N⁻ hydrogen bond. The geometric data are as follows: C(99)-H(99C) 98, $H(99C)\cdots N(1')$ 251, $C(99)\cdots N(1')$ 338.6(3) pm, angle at H(99C) 150(1)° [symmetry code for N(1'): -x+1, -y+1, -z+1].


Experimental

The dimeric hydroxide 6 was prepared according to a published procedure [8].

[trans-Dimethyltetrakis(dimethyl sulfoxide)tin(IV)] Bis[di(methanesulfonyl)amide]

A MeCN solution (20 mL) of Me₂SO (5.93 mmol, 0.463 g) was added to a suspension of **6** (1.48 mmol, 1.00 g) in the same solvent (30 mL). The mixture was stirred for 6 h at reflux temperature of the solvent. Me₂SnO was removed by filtration. Removal of the volatiles from the filtrate under reduced pressure afforded a solid residue that was recrystallized from MeCN (15 mL; 80 °C \rightarrow -20 °C); large colourless crystals; yield 52% (0.62 g); m.p. 88-92 °C (reported m.p. [10]: 95-98 °C). Analysis: found C 20.85, H 5.26, N 3.48%; C₁₄H₄₂N₂O₁₂S₈Sn (805.72 g mol⁻¹) requires C

20.87, H 5.25, N 3.48%. ¹H NMR (CD₃CN, 200 MHz): $\delta = 0.53$ (s, 6H, MeSn), ² $J(^{117}Sn^{-1}H) = 105.1$ Hz, ² $J(^{119}Sn^{-1}H) = 110.9$ Hz; 2.65 (s, 24H, Me₂SO); 3.01 (s, 12H, MeS).

Fig. 2. Packing diagram of **5** viewed approximately parallel to the *x* axis. H atoms in the ions are omitted and the C-H···N⁻ interactions are indicated by broken lines.

[trans-Dimethyltetrakis(pyridine-1-oxide)tin(IV)] Bis[di(methanesulfonyl)amide]-Acetonitrile (1/2) (5) Following the above procedure, **5** was obtained by treating **6** (2.96 mmol, 2.00 g, 30 mL of MeCN) with pyridine-1-oxide (11.9 mmol, 1.13 g, 20 mL of MeCN) for 4 days at 20 °C: The pale yellow raw product was recrystallized from MeCN (20 mL, 80 °C \rightarrow -20 °C); large colourless crystals; yield 34% (0.97 g); dec. 83 °C. Analysis: found C 37.69, H 4.62, N 11.72, S 13.58%; C₃₀H₄₄N₈O₁₂S₄Sn (955.66 g mol⁻¹) requires C 37.70, H 4.64, N 11.72, S 13.42%. ¹H NMR (CD₃CN, 200 MHz): δ = 0.53 (s, 6H, MeSn), 2 J(117 Sn- 1 H) = 105.1 Hz, 2 J(119 Sn- 1 H) = 110.9 Hz; 1.96 (s, 6H, MeCN); 2.86 (s, 12H, MeS); 7.63-7.77 (8H, ar. H₈); 7.82-7.95 (4H, ar. H_γ); 8.45-8.55 (8H, ar. H_α).

X-ray crystal structure determination of 5

Crystal data: triclinic, space group PT, a = 914.50(8), b = 953.96(8), c = 1171.09(10) pm, $\alpha = 94.272(6)$, $\beta = 95.757(6)$, $\gamma = 92.467(6)^{\circ}$, V = 1.0124(2) nm³, Z = 1, $D_c = 1.568$ Mg m³, F(000) = 490, $\lambda(\text{MoK}\alpha) = 71.073$ pm, $\mu = 0.905$ mm⁻¹, T = 173(2) K.

Data collection and reduction: A colourless prism of approximate dimensions 0.38 x 0.36 x 0.32 mm was mounted in inert oil and transferred to the cold gas stream of the diffractometer (Siemens R3 system with LT-2 low-temperature attachment). Intensities were measured with ω -

scans using monochromated MoK α radiation to $2\theta_{max}=55^{\circ}$. Cell constants were refined from diffractometer angles of 59 reflections in the 2θ range 10-25°. The absorption correction (transmissions: 0.74-0.77) was based on ψ -scans. Of 4866 data, 4639 were unique ($R_{int}=0.011$) and were used for all calculations.

Structure solution and refinement: The structure was solved by the heavy-atom method and refined anisotropically on F^2 using the program SHELXL-93 (*G.M. Sheldrick*, University of Göttingen). Hydrogen atoms were included with a riding model or as rigid methyl groups. The final wR2 was 0.054, with conventional R1 = 0.021, for 255 parameters. GOOF = 1.03; max. $\Delta \rho = 313$ e nm⁻³.

Full details of the structure determination (excluding structure factors) have been deposited at the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, and can be obtained on quoting the reference number CSD-408349.

Acknowledgements

We thank the Fonds der Chemischen Industrie, Frankfurt am Main, for financial support and Mr A. Weinkauf, for data collection.

References

- [1] Part Clli: M. Näveke, A. Blaschette, P.G. Jones, Z. Naturforsch. (b), submitted for publication.
- [2] N.M. Karayannis, L.L. Pytlewski, C.M. Mikulski, Coord. Chem. Rev. 11, 93 (1973).
- [3] A.L. Rheingold, S.-W. Ng, J.J. Zuckerman, Organometallics 3, 233 (1984).
- [4] S.-W. Ng., J.J. Zuckerman, J. Chem. Soc., Chem. Commun. 1982, 475.
- [5] S.-W. Ng, C.L. Barnes, D. van der Helm, J.J. Zuckerman, Organometallics 2, 600 (1983).
- [6] E.A. Blom, B.R. Penfold, W.T. Robinson, J. Chem. Soc. (A) 1969, 913.
- [7] S.-W. Ng, V.G. Kumar Das, Z. Kristallogr. 209, 744 (1994).
- [8] A. Wirth, D. Henschel, P.G. Jones, A. Blaschette, J. Organomet. Chem. 525, 167 (1996).
- [9] A. Wirth, I. Lange, D. Henschel, O. Moers, A. Blaschette, P.G. Jones, *Z. Anorg. Allg. Chem.*, in the press.
- [10] A. Blaschette, I. Hippel, J. Krahl, E. Wieland, P.G. Jones, A. Sebald, *J. Organomet. Chem.* **437**, 279 (1992).
- [11] A. Weitze, D. Henschel, A. Blaschette, P. G. Jones, Z. Anorg. Allg. Chem. 621, 1746 (1995).
- [12] D. Henschel, O. Moers, A. Blaschette, P.G. Jones, Acta Crystallogr. C53, 1877 (1997).
- [13] P. Bombicz, M. Czugler, A. Kaiman, I. Kapovits, Acta Crystallogr. B52, 720 (1996).

Received: March 3, 1998 - Accepted: March 16, 1998 - Accepted in revised camera-ready format: March 18, 1998

e.			