SYNTHESIS, REACTIONS, AND SPECTRAL (IR, ¹H, ¹³C AND ²⁹Si) CHARACTERIZATION OF ORGANOSILICON ARYLOXIDES

Manju Goyal and Anirudh Singh*

Department of Chemistry, University of Rajasthan, Jaipur 302004, India

Abstract

Organosilicon aryloxides of the types Me_nSi(OAr)_{4,n}(n = 1,2 and 3; OAr = OC₆H₃Me₂-2,6; OC₆H₃Me₂-3,4; OC₆H₃Me₂-3,5; OC₆H₃Pr'₂-2,6; OC₆H₂Me₃-2,4,6; OC₆H₃Bu'₂-2,6; OC₆H₂Bu'₃-2,4,6), and two silicon (IV) aryloxide derivatives ClSi(OC₆H₃Me₂-2,6)₃ and Si(OC₆H₃Me₂-2,6)₄ have been prepared by the reactions of Me_nSiCl_{4,n} or SiCl₄ and an appropriate substituted phenol in desired molar ratios using pyridine as proton acceptor in benzene. The reactions of Me₃Si(OAr)(OAr = OC₆H₃Me₂-3,5 or OC₆H₃Me₂-3,4) with TiCl₄ (or NbCl₅) in 1:1 and 1:2 molar ratios have produced corresponding mono-and bis-(aryloxo) derivatives of Ti(IV) and Nb(V) respectively. All these derivatives have been characterized by elemental analysis, molecular weight measurements and spectral (IR and multinuclear NMR) studies.

Introduction

Considerable amount of work have been carried out on silicon alkoxides¹⁻⁴ including their use in the preparation of glass ceramic materials by the Sol-Gel^{5,6} technique, by contrast only a few simple^{7,8} and sterically demanding silicon (IV) and organosilicon (IV) aryloxides have been described so far and for none of these ²⁹Si NMR data are yet available. We therefore, report in this paper the synthesis, chemistry, and spectral characterization of substituted phenoxide derivatives containing organosilicon (IV) and silicon (IV) moieties.

Results and Discussion

Organosilicon- and silicon (IV) aryloxides have been prepared by the reactions of the corresponding chlorosilanes with an appropriate substituted phenol in desired molar ratios in the presence of pyridine in benzene:

$$Me_{4-n}SiCl_n + n ArOH + n C_5H_5N \xrightarrow{C_5H_5} Me_{4-n}Si(OAr)_n + C_5H_5N.HCl \downarrow$$
1: $n = 1,OAr = OC_6H_3Me_2-2,6$; 2: $n = 1, OAr = OC_6H_3Me_2-3,4$
3: $n = 1, OAr = OC_6H_3Me_2-3,5$; 4: $n = 1, OAr = OC_6H_3Pr_2^1-2,6$
5: $n = 1, OAr = OC_6H_2Me_3-2,4,6$; 6: $n = 2, OAr = OC_6H_3Me_2-2,6$
7: $n = 3, OAr = OC_6H_3Me_2-2,6$; 8: $n = 1,OAr = OC_6H_5$

As Me₃SiCl and HOC₆H₃Bu¹₂-2,6 do not react in presence of C₅H₅N to any appreciable extent, the synthesis of Me₃SiOC₆H₃Bu¹₂-2,6 has been achieved by a modified procedure as shown below:

Me₃SiCl + KOAr
$$\xrightarrow{C_6H_6/THF}$$
 Me₃SiOAr + KCl \downarrow
9: OAr = OC₆H₃Bu¹₂-2,6; 10: OAr = OC₆H₂Bu¹₃-2,4,6

Although reactions of SiCl₄ with $HOC_6H_3Me_2$ -2,6 in 1:1 and 1:2 molar ratios could lead to the formation of the desired mono- and bis- products even in the absence of pyridine in refluxing benzene, that the synthesis of tris- and tetrakis-derivatives required the use of C_5H_5N as a proton acceptor:

SiCl₄ + n HOC₆H₃Me₂-2,6
$$C_6H_6$$
 SiCl₄n(OC₆H₃Me₂-2,6)_n + nHCl[↑]

11: n = 1; 12: n = 2

SiCl₄ + n HOC₆H₃Me₂-2,6 + n C₅H₅N
$$\xrightarrow{C_6H_6}$$
 SiCl_{4n} (OC₆H₃Me₂-2,6)_n + n C₅H₅N. HCl
13: n = 3; 14: n = 4

In view of the fact that synthesis of Si(OC₆H₃Me₂-2,6)₄ by the reaction of SiCl₄ and HOC₆H₃Me₂-2,6 in the presence of pyridine in refluxing benzene required 36 h, an alternative and convenient route for the preparation of the above derivative has been designed according to the reaction shown below:

$$SiCl_4 + 4 NaOC_6H_3Me_2-2,6 \xrightarrow{C_6H_6} Si(OC_6H_3Me_2-2,6)_4 + 4 NaCl \downarrow$$

All these derivatives are highly moisture sensitive, colourless liquids to yellowish white

ible 1 Preparative and analytical data* for aryloxo derivatives of silicon (IV)

I	Reac	Reactants		Product	Yield	B P. °C/mm		Ana vsis %		Mol. wt.
	(g, m	(g, mmol)		(Coicur & state)	g(%)		S	၁	H	
	Me ₃ S'Cl + (2 85,26.22)	FOC, H ₃ Me ₂ -2,6 + (3.01,24.66)	CHN (2.07,261)	$M_{\odot} S OC_6H M_{\odot} 2,6$ (1) Colord ass 1 qui 1	3.90(82)	90-35.8	14.72 (14.46)	68.04 (68)	9.30	198 (194)
	Me SiC + (2 86,26 38)	HOC H ₃ Me ₂ 3,4 + (3.11,25.47)	CHN (2.11,26 62)	$M_{2_3}SiOC_6H_3M_{2_2}:3,4$ (2) Color these I quid	4.57(93)	110.8	14.47 (14.46)	68 02 (58)	9.32 (9.34)	196 (194)
	Me S CI + (2.89,26.62)	HOC H Mr ₂ 3.5 + (3.11,25.47)	C,H,N (1.43,25.2)	Me ₃ S O C _c H ₃ Ms ₂ ·3 5 (3) Co ourlass l'quid	4.42(90)	95-100.9	14 32 (14 46)	68 02 (58)	9.32 (9.34)	196 (194)
	Me ₃ SiCl + (1.84,16.97)	HOC,H,Pri-2,6 + (3.01,16.88)	CHN (1.37,17.37)	Me ₁ SiOC ₁ H Pri-2,6 (4) Colord:ss I quid	3.58(85)	85.9	11.20 (11.22)	71.96 (71.92)	10.52 (10.47)	260 (250)
	May S'Cl + (2.45,22.55)	HOC, H, Me, 2,4,6 + (2.81,20.69)	C,H N (1.77,21.36)	M2,SiOC, H Me1-2,4,6 (5) Colourless I quid	3.89(91)	95-110.8	13.61 (13.48)	69 28 (69.15)	9.73 (9.69)	215 (208)
	Magardi, + (2.46,19.19)	2HOC,H,Me ₂ ·2 6 + (4.64,38.00)	2C,H,N (3.10,39.2)	M? ₂ SijOC ₆ H,Me ₂ 2,6) ₂ (6) Colourless liquid	5.12(89)	145.1	9.32 (9.35)	71.92 (71.94)	8.15 (8.05)	305
	MeS'CI. + (1.23,8.26)	3HOC H ₃ Me ₂ ·2,6 + (3.02,24,75)	3C H N (2.03,25.61)	McSi(OC, H, Me ₂ -2,6) ₃ (7) White solid	3.28(98)	e(98)	6.85 (6.91)	73.88 (73.83)	7.43 (7.44)	410 (405)
	Ma, S CI + (2.85,26.26)	HOC,H, + (2.46,26.15)	C,H,N (0.36,9.28)	M.; SiOC, H, (8) Colourles 1 qui d	3 88(91)	75-80.8	16 96 (16 90)	(64.98)	8.42 (8.49)	169 (166)
	Me ₃ SiCl + (1.19,10.94)	HOC,H,Bu ₂ ,2,6 + (1.93,9.35)	K (0.36,9.28)	Me ₃ S'OC ₈ H Bu ₂ ·2,6 (9) Pa e yellow soli i	2.26(88)	130-140.8 (60)	10.41 (10.09)	73.60 (73.30)	10 92 (10 86)	285 (278)
	M2.S.Cl + (0.56 5.15)	HOC H.Eu ^t ₃ ·2,4,6 + (1.06,4.06)	K (0.15,4.13)	Nie ₂ SiOC ₈ H ₂ B3 ¹ ; 2, 4,6 (10) P.le yellow solid	1.25(93)	140-150.8 (64)	8.61 (8.40)	75.42 (75.36)	11.48 (11.45)	340 (334)
	S Cl ₄ + (2.17,12.78)	HOC,H,Me,-2,6 (1.53,12,53)		SiCl ₃ CC H _M ² ₂ -2,6 * (11) colo ar si Jiquid	2.46(77)	130.8	11.00 (10.99)	37.60 (37.58)	360	270 (255)
	S C + (1.04,6.13)	2HOC, H, Me ₂ -2,6 (1.48, 12.18)		SiCl ₂ (OC ₆ H, Me ₂ ·2 6) 2 colour #ss liquid	1.98(94)	135.8	8.24 (8.23)	5630 (5631)	5.30 (5.32)	350 (341)
	S C ₄ + (1.25,7.36)	³ HOC H ₁ Me ₁ 2.6 + (2.66,21.78)	3C,H,N (1.78,22.51)	Si(Cl)(OC ₆ H ₁ Mc ₂ -2,6) ₃ (13) Light yellow liquid	3.14(98)	150.8	6.52 (6.58)	67.54 (67.49)	6.40 (6.38)	428 (426)
	S,C (2.43,14.59)	4HOC H Me ₂ ·2 6 + (7.07,57.95)	4C,H,N (4.65,58.78)	$S^{11}OC_{p}H_{1}Me_{1}-2,6)_{4}^{*}$ (14) White solid	4.07(94)	e(06)	5.44 (5.48)	74.10 (74.95)	7.18 (7.08)	520 (512)

^a Calculated values in parentheses. ^b % CI=41.57(41.63). ^c % CI=20.62(20.79). ^d % CI=8.32(8.31). ^e Recrystallized from n-hexane at -20°C.

Table 2 Reaction of TiCl₄ or NbCl₅ with trimethylsilicon aryloxides

			Ducktook	Viola			Amoleccie 8 0/		Molé	N Doc
(g, mmol)			(Colour & state)	g(%)	Ti/Nb	CI	c C	Н	MIOI. WI.	IMIL
Me,SiOC,H,Me,-3,5 (0.53,2.73)	+	TiCl ₄ (0.51,2.68)	$\operatorname{TiCl}_3(\operatorname{OC}_1H_3\operatorname{Me}_2-3,5)$ (15) Ref solid	0.70(93)	17.20 (17.40)	38.60 (38.70)	35.01 (34.90)	3.31 (3.230)	528 (275)	82
2Me ₃ SiOC ₅ H ₃ Me ₂ -3,5 (0.97,4.89)	+	TiCl ₄ (0.51,2.71)	$T^{*}Cl_{2}(OC_{s}H_{1}Me_{i}^{-}3.5)_{2}$ (16) Red solid	0.84(93)	13.20 (13.27)	19.37 (19.65)	53 24 (53 22)	5.04 (5.03)	(361)	06
M2, S'OC, H3Me2-3,4 (0.99,5.14)	+	NEC1 ₅ (1.35,5.00)	$N^{L}Cl_{4}(OC_{5}H_{3}M\epsilon_{2}-3,4)$ (17) R3d solid	1,56(87)	25.30 (25.52)	38.90 (39.80)	27.08 (26.97)	2.58 (2.54)	665 (356)	85
1.Ne ₃ SiOC,H ₃ Me ₂ -3,5 (0.82,4.2)	+	17bCl ₅ (0.58,2.14)	NbCl ₃ (OC ₆ H ₃ Me ₁ -3,5) ₂ (18) Red solid	0.90(95)	21.00 (21.05)	24.00 (24.10)	43.52 (43.51)	4.10 (4.11)	870 (441)	93

*Calculated values in parentheses.

crystalline solids (Table-1) soluble in common organic solvents (e.g., benzene, toluene, CCl₄, n-hexane, etc.), and monomeric (ebullioscopically) in benzene. These new silicon aryloxide derivatives have been purified either by distillation under reduced pressure or crystallization from n-hexane at -20°C.

Reactions of organosilicon aryloxides with covalent metal chlorides (e.g., TiCl₄ and NbCl₅) in 1:1 and 1:2 molar ratios yield quantitatively mono- and bis- substituted aryloxide derivatives according to the following reactions:

TiCl₄ + n Me₃SiOAr TiCl_{4-n}(OAr)_n + n Me₃SiCl
NbCl₅ + n Me₃SiOAr
$$CH_2Cl_2$$
 NbCl_{5-n}(OAr)_n + n Me₃SiCl
15: OAr = OC₆H₃Me₂-3,5; n = 1; 16: OAr = OC₆H₃Me₂-3,5; n = 2
17: OAr = OC₆H₃Me₂-3,4; n = 1; 18: OAr = OC₆H₃Me₂-3,5; n = 2

These transition metal chloride-aryloxide derivatives (Table-2) are dark red coloured, moisture sensitive solids soluble in benzene, toluene, dichloromethane, and dimeric ebullioscopically in benzene. All these new derivatives can be recrystallized from hot n-hexane at room temperature. By contrast reactions in 1:1 and 1:2 molar ratios of TiCl₄ or NbCl₅ with Me₃SiOC₅H₃Me₂-2,6 in THF have been reported to yield monomeric solvated products. ¹⁰

These reactions are of considerable utility because they provide a neat and high yield synthesis of mono-aryloxo derivatives of the early transition metals and it avoids the formation of HCl, KCl, or ammonium salt which are often difficult to remove completely, whereas, the liberated Me₃SiCl is easily removed by distillation. Furthermore, preparation of these types of derivatives by other routes like reactions of metal chlorides with: (i) phenols, or (ii) alkali metal aryloxides¹¹ generally yield mixture of products.

The ¹H NMR spectrum of TiCl₃(OC₆H₃Me₂-3,5) exhibits signals at δ 2.19 (3,5-Me), 6.48 (aromatic *ortho*-H), 6.57 (aromatic *para*-H), for TiCl₂ (OC₆H₃Me₂-3,5)₂ signals are observed at δ 2.21 (3,5-Me), 6.66 (aromatic *ortho*-H), 6.75(aromatic *para*-H). The niobium derivative NbCl₄(OC₆H₃Me₂-3,4) exhibits signals at δ 2.14 and 2.23 (3,4-Me), 6.26-7.19 (br, aromatic-H), while those of NbCl₃(OC₆H₃Me₂-3,4)₂ shows signals at δ 2.28 (3,5-Me), 6.48 (aromatic *ortho*-H), and at 6.57 (aromatic *para*-H).

The ¹H NMR spectra of the organosilicon aryloxides (Table-3) show the absence of the signal in the region δ 4.47-5.29 due to the phenolic OH, a feature characteristic of

Compound	Me-Si	CH³·CH³	C,H,(or C,H,)-Me/Pr'/Bu	²⁵ Si NMR data in CDC(₂ (8, ppm)
1	0.25(s,9H)	6.72-7.06(m,3H)	2.22(s,5HMe)	+19.2
		(20'2-99'9)	(2.25)	
2	0.25(s,9H)	6.43-6.68(m,3H)	2 18/s,3H Me),2.28(s,3H Me)	+18.92
		(6.53-7.06)	(2.19)	
3	0.24(s,9H)	6.64(d.2H.Ortho-H)		•
		(6.57)	2.19(s, 6H Ms)	
		7.02(t,1H,parc-H)	(2 28)	
		(99'9)		
4	0.27(s,9H)	6.97-7.24(m,3H)	1.20(d,J= 6Hz,12H,Me) 3.19(sep;,2H,CH)	+16.73
		(6.88-7.24)		
5	0.25(s,9H)	6.79(s.2H)	2.18(s,6H,Me·2,6),2.22(s,3H,Me-4)	
		(684)	(2.23)	
9	0.36(s,6H)	6.79-7.19(m 6H)	2.32(s,12H Me)	-7.95
7	0.45(s,3H)	6.75-7.15(m,9H)	2.19(s,18H Me)	-67.61
ø	0.35/c OH)	6.65.7.35(m. 2H)	1-35% 19U Bu)	+13.7
	(117,6),55.0	75.79.737	(147)	1.51
· «	0.27(s 9H)	6.84-7.46(m.5H)	(;;;)	+23.5
10	0.39(3.9H)	7.19(s.2H)	1.23(s.9H Bu-4), 1.43(s.18H Bu-2 6)	
		(7.02)	(1)2 $(1)4$	
11	١,	6.75-7.15(m,3H)	6H Me)	43
12	1	6.75-7.15(m,6H)	2 30(s,12H,Me)	-65
13	t	6.75-7.15(m,9H)	2 28(s, 18h Me)	-100.23
14	,	6.75-7.15(m.12H)	2 14/s 24h Max	111 27

^a Corresponding ligand values are in parentheses.

deprotonation of the phenol. The chemical shifts in the region δ 6.43-7.46 due to aromatic ring protons are almost unaltered compared to those of the corresponding parent phenols (δ 6.53-7.51).

The methyl signals of the organosilicon moieties are observed in the range δ 0.22-0.45 which exhibit deshielding of Si-CH₃ protons with increase in the number of aryloxo moieties attached to the silicon (Table-3). Similar observations were also observed for the derivatives of the types $Me_{4n}SiCl_n^{-12}$ and $Me_{4n}Si(ON=CEt_2)_n^{-13}$ such an observation tends to suggest that in organosilicon aryloxides $Me_{4n}Si(OAr)_n$, the deshielding caused by electronegative aryloxide groups and their bulk counterbalances the shielding effect brought about by the possibility of back bonding from aryloxo oxygen lone pairs into a vacant d orbital of silicon. However, a reverse trend for SiCH₃ proton resonances has been observed for $Me_{4n}Si(OEt)_n^{-14}$ derivatives, indicating the contributions of other factors also like electric field (σ^E), paramagnetic(σ^P) and diamagnetic shielding (σ^d), anisotropy(σ^{anis}) and van der Waals interaction between bulkier aryloxo groups and the Si-methyl protons. Further, hyperconjugation effects may also contribute to the observed behaviour.

Furthermore, in view of reported ²⁹Si chemical shifts, for Me_{4-n}SiCl₁¹¹ derivatives at δ +30.21 (n = 1), + 32.17 (n = 2) and + 12.47 (n = 3), the observed ²⁹Si NMR signal for the derivatives Me_{4-n}Si(OC₆H₃Me₂-2,6)_n at δ + 19.2, -7.95, -57.61 and -111.37, when n = 1,2,3 and 4 respectively, indicating enhancement of electron density at the silicon centre in the order Me₃Si(OAr) < Me₂Si(OAr)₂ < MeSi(OAr)₃ < Si(OAr)₄ which is consistent with the trend observed for the series Me_{4-n}Si(OEt)_n(n=1-3).¹⁴

¹³C NMR spectra for the derivatives $Me_3Si(OAr)$ (OAr = $OC_6H_3Me_2$ -2,6; $OC_6H_3Me_2$ -3,4; $OC_6H_7Me_3$ -2,4,6; $OC_6H_3Bu^4$,-2,6) in the range δ 0.88 to 1.07 exhibit resonances due to methylsilicon moieties (Table-4). The ¹³C NMR data for methylsilicon moieties tend to indicate increase in the deshielding effect, with increase in the bulk of the aryloxide groups. However, with the observed data for the series $Me_{3-n}Si(OAr)_n$ (n = 1,2 and 3, $OAr = OC_6H_3Me_2$ -2,6) no definite trend could be reflected.

The signals due to aromatic carbon attached to oxygen appear in the range δ 150.29 to 153.9, and depict a down field shift of 0.4-0.76 ppm, while chemical shifts for other carbons remain almost unaltered compared to those of the corresponding parent phenol. The observed ¹³C chemical shifts of aromatic carbons and for methyls present as substituent are assigned on the basis of the theoretical values calculated ¹⁵ using the formula. $\delta c = 128.5 + \Sigma Zi$, where

derivatives.
for aryloxo
(8,ppm)
R data
¹⁵ C NMR
ole 4

$\mathbf{C_i} \qquad \mathbf{C_i} \qquad \mathbf{C_i} \qquad \mathbf{C_i} \qquad \mathbf{C_i}$ $\mathbf{C_i} \qquad \mathbf{C_i} \qquad \mathbf{C_i} \qquad \mathbf{C_i}$ $152.56 \qquad 121.41 \qquad 128.40 \qquad 128.51$ $152.99 \qquad 112.36 \qquad 130.24 \qquad 123.91$ $(152.0) \qquad \qquad$			California (AFP) and according to						
Me.Si R=Mc/P i/Bu¹ C_i C_j C_j C_i					***	3	-iS-0-		
C _i C _i C _i C _i C _i 0.88 17.67 (Me _i -2.6) 152.56 121.41 128.40 128.51 0.86 19.39 (Me _j) 152.99 112.36 130.24 129.91 0.82 22.87 (Me _j -CH) 149.60 120.80 133.76 123.42 0.93 17.62 (Me _j -CH) (149.6) 130.30 123.08 123.42 1.61 17.51 (Me _j -2.6) 150.29 130.30 128.08 129.11 0.93 17.62 (Me _j -2.6) 150.29 120.80 128.08 129.11 1.61 17.51 (Me _j -2.6) 150.29 120.66 128.29 128.56 128.79 1.16 17.51 (Me _j -2.6) 153.91 120.76 126.07 140.86 1.07 $30.45.31.43$ (Me _j -2.6) 153.62 122.56 128.56 129.05 - - - - - - - - - - - - - - - - - -	Compound	Me-Si	R=Me/Pr//Bu ^t		RAR	s s	/		
0.88 $17.67(Me_2,2,6)$ 152.56 121.41 128.40 128.51 0.86 $19.39(Me_2)$ 152.99 112.36 130.24 123.91 0.82 $22.87(Me_2CH)$ (152.0) 133.76 123.91 0.82 $22.87(Me_2CH)$ (149.6) 133.76 123.42 0.93 $17.62(Me_2CH)$ (149.6) 130.30 128.08 129.11 1.61 $17.51(Me_2L,6)$ 150.29 120.90 128.29 128.08 129.11 1.16 $17.51(Me_2L,6)$ 150.29 120.60 128.29 128.66 128.51 128.73 1.16 $17.57(Me_2L,6)$ 150.29 120.66 128.51 128.73 1.07 $30.45,31.43(Bu_2^*L,6)$ 153.22 153.91 120.76 126.07 140.86 1.07 $30.45,31.43(Bu_2^*L,6)$ 159.30 128.73 128.73 128.73 1.07 $17.40(Me_2L,6)$ 150.94 120.76 128.73 128.73 128.73 1.24 12.309 12.83 12.83				c'	°,	້ວ	້ວ	້ວ	င်
0.86 $19.39 (\text{Me})$ (152.9) 112.36 130.24 129.91 $1.96 (\text{Me})$ (152.0) $ -$	1	0.88	17.67(Me_i.2 ,6)	152.56	121.41	128 40	128.51	128.40	121.41
0.82 $22.87(\mathbf{M_{e_1}}CH)$ 149.80 120.80 133.76 123.42 $27.09 (\mathbf{M_{e_1}}CH)$ (149.6) (149.6) 150.29 $17.62(\mathbf{M_{e_1}}2.6)$ 150.29 130.30 128.08 129.11 $20.48(\mathbf{M_{e_1}}2.6)$ 150.29 130.30 128.08 129.11 1.61 $17.51(\mathbf{M_{e_1}}2.6)$ 151.75 121.90 128.29 128.56 1.16 $17.07(\mathbf{M_{e_1}}2.6)$ 150.29 122.66 128.51 128.73 $ -$	2	0.86	19.39(Me) 19.66 (Me)	(152.9) (152.0)	112.36	130.24	129.91	137.38	116 58
0.82 $22.87(\mathbf{Me_{2}} \cdot \mathbf{CH})$ 149 80 120.80 133.76 123.42 $27.09 (\mathbf{Me_{2}} \cdot \mathbf{CH})$ (149.6) 150.29 130 30 128.08 129.11 $20.48 \cdot \mathbf{Me_{2}} \cdot \mathbf{c}$ (149.62) 150.29 130.30 128.29 128.56 1.16 17.51($\mathbf{Me_{2}} \cdot \mathbf{c}$ 6) 151.75 121.90 128.29 128.56 1.16 17.07($\mathbf{Me_{2}} \cdot \mathbf{c}$ 6) 150.29 122.66 128.51 128.73 $ -$	ю	,					ı	1	1
27.09 (Me_2 -CH) (149.6) (149.6) (150.29 130.30 128.08 129.11 17.62(Me_2 -2,6) 150.29 130.30 128.08 129.11 1.61 17.07(Me_2 -2,6) 151.75 121.90 128.29 128.56 1.16 17.07(Me_2 -2,6) 150.29 122.66 128.51 128.73 1.07 30.45,31.43(Bu_1 -2,6) 153.91 120.76 126.07 140.86 34.41,35.22 17.50(Me_2 -2,6) 149.80 123.85 128.56 129.05 17.40(Me_2 -2,6) 150.34 122.71 128.51 128.73 128.73 128.73 128.73 128.73	4	0.82	22.87(Me ₃ -CH)	149.80	120.80	133.76	123.42	138.80	122 28
1.61 $17.51(\mathbf{Me}_2.2.6)$ 151.75 121.90 128.29 128.56 $1.28.51$ $1.28.51$ $1.28.51$ $1.28.73$ $ -$	٠,	0.93	27.07 (Me ₂ -2.6) 17.62(Me ₂ -2,6) 20.48(Me ₄)	150.29	130 30	128.08	129.11	128.08	130.30
1.16 $17.07(\mathbf{Me_{2}}, 2.6)$ 150.29 122.66 128.51 128.73	9	1.61	17.51(Me. 2.6)	151.75	121.90	128 29	128 56	128.29	121.90
1.07 $30.45,31.43(\mathbf{Bu}_{2}^{1}.2,6)$ 153.91 120.76 126.07 140.86 $34.41,35.22$ 1.7.50($\mathbf{Me}_{2}.2,6$) 149.80 124.28 128.56 129.05 1.7.40($\mathbf{Me}_{2}.2,6$) 150.34 122.71 128.51 128.73 1.7.40($\mathbf{Me}_{2}.2,6$) 150.94 123.09 128.51 128.73 1.7.40($\mathbf{Me}_{2}.2,6$) 150.94 123.09 128.51 128.73	7	1.16	$17.07(Me_2.2.6)$	150.29	122.66	128.51	128.73	128.51	122.66
1.07 $30.45,31.43(\mathbf{Bu_1^2-2,6})$ 153.91 120.76 126.07 140.86 $34.41,35.22$ 17.50($\mathbf{Me_2}$ -2,6) 149.80 124.28 128.56 129.05 17.40($\mathbf{Me_2}$ -2,6) 150.34 122.71 128.51 128.73 17.40($\mathbf{Me_2}$ -2,6) 150.94 123.09 128.51 128.73 17.40($\mathbf{Me_2}$ -2,6) 150.94 123.09 128.51 128.73	∞			•	t	ī	ı		•
34 41,35,22	6	1.07	$30.45,31.43(\mathbf{Bu}_{2},-2,6)$	153.91	120.76	126.07	140.86	124.99	119.79
- 17.50(Me_2 -2,6)			34 41,35.22	(153.52)					
- $17.50(\mathbf{Me_2} \cdot 2,6)$	10	,	1	ı	ſ	i	1		•
- $17.40(Me_2.2,6)$	11	,	$17.50(\mathbf{Me}_2, 2, 6)$	149.80	124 28	128.56	129.05	128.56	124.28
- $17.13(\mathbf{Me}_{2}-2.6)$ 150.34 122.71 128.51 128.73 - $17.40^{\circ}\mathbf{Me}-2.6i$ 150.94 123.09 128.51 128.73	12		17.40 (Me ₂ ·2,6)	149.80	123.85	128.45	128.99	128.45	123.85
- 17.40°Me - 2 6i 150.94 123.09 128.51 128.73	13		17.13 (Me ₂ -2,6)	150.34	122.71	128.51	128.73	128.51	122.71
	14		$17.40 (Me_2 - 2.6)$	150.94	123 09	128.51	128.73	128.51	123.09

^a Corresponding ligand values in parantheses.

Zi is the substituent constant for α -, β -, γ -positions.

All the organosilicon aryloxides show infrared absorptions characterstic of methylsilicon moieties in the region 1254-1209 (ν Si-CH₃ deformation), 932-797 (ν Si-Me asym. rocking), 706-778 (ν Si-CH₃ sym. rocking) and 650-733 (ν Si-C asym. stretching). The new derivatives exhibit disappearance of the absorption due to the phenolic OH in the range 3680-3560 cm⁻¹. The new band appearing between 945 and 800 cm⁻¹ may be assigned to Si-O stretch.¹⁵ The ν (C-O) is observed at 1267-1337 cm⁻¹, indicating a lowering of ~19 cm⁻¹ compared with that of the parent aryloxo ligand.

Experimental

The reactions were carried out under strictly anhydrous conditions. All solvents were dried by standard methods¹⁶ and distilled prior to use. Organosilicon chlorides were distilled before use: Me₃SiCl(b.p.=60°C), Me₂SiCl₂(b.p.=70°C), MeSiCl₃(b.p.=67°C). Phenols were either distilled (under reduced pressure) or recrystallised (from n-hexane). silicon was estimated as silicon oxide.¹⁷ IR spectra in the range 4000-200 cm⁻¹ were recorded on a Perkin Elmer-557 spectrophotometer using nujol mull. NMR spectra (¹H at 89.55 MHz, ¹³C at 22.49 MHz and ²⁹Si at 17.75 MHz) were recorded in CDCl₃ solution on a JEOL FX-90Q spectrometer using TMS as an internal reference.

Synthesis of Organosilicon Aryloxides

Since a number of derivatives have been prepared by similar procedures, only typical preparations are being illustrated below. Further details have been compiled in Table-1.

(a) $Me_3SiOC_6H_3Me_2-2,6$

To a benzene (~30 ml) solution of $Me_3SiCl(2.85g, 26.22 \text{ mmol})$ was added a solution containing pyridine (2.07g, 26.1 mmol) and 2,6-dimethylphenol (3.01g, 24.66 mmol) in benzene (~20 ml), and allowed to stir at room temperature for 12h. The precipitated $C_5H_5NHCl(2.84g, 24.56 \text{ mmol})$ was removed by filtration. Removal of the volatiles from the filtrate under reduced pressure, afforded $Me_3Si(OC_6H_3Me_2-2,6)$ as a colourless liquid (4.2g, 88.0%), which distilled at 90-95°C/.8 mm in 82% yield.

Similar procedures were adopted for the syntheses of Me₂SiOC₂H₂Me₂-3,4 (b.p.110°C/.

8 mm), Me₃SiOC₆H₃Me₂-3,5(b.p.95°C/.9 mm),Me₃SiOC₆H₂Me₃-2,4,6 (b.p.95-110°C/.8 mm). Further details are listed in Table-1.

(b) Me₃SiOC₆H₂Bu^t₃-2,4,6

As the above procedure failed to yield the desired product in this case, it was modified as discribed below:

KOC₆H₂Bu⁴₃-2,4,6 (prepared by refluxing K (0.16g, 4.13 mmol) and phenol (1.06g, 4.06mmol) in THF) was added to Me₃SiCl (0.56g, 5.15 mmol) in benzene (20ml). The resulting reaction mixture was refluxed for 8h, followed by cooling to room temprerature and filtration to remove the precipitated KCl (0.25g, 3.37 mmol). Removal of volatiles (under reduced pressure) from the filtrate, afforded light yellow solid product Me₃SiOC₆H₂Bu⁴₃-2,4,6 (1.32g, 98.05%), which was distilled at 140°C/.8 mm in 93% yield.

Reactions of Trimethylsilicon Aryloxides With Early Transition Metal Chlorides

(a) With TiCl,

To a n-hexane (~25ml) solution of TiCl₄(0.51g, 2.68 mmol) was added Me₃SiOC₆H₃Me₂-3,5 (0.53g, 2.73 mmol) and allowed to stir at room temperature for ~12h, during which the colour of the reaction mixture changed from light yellow to red; a red solid was precipitated out, which was removed by filtration and washed several times with n-hexane to obtain TiCl₃(OC₆H₃Me₂-3,5) in 93% yield. Similar procedure was adopted for the synthesis of TiCl₂(OC₆H₃Me₂-3,5)₂, NbCl₄(OC₆H₃Me₂-3,4), and NbCl₃(OC₆H₃Me₂-3,5)₂.

Acknowledgements

We thank University Grants Comission, New Delhi and Department of Chemistry, University of Rajasthan, for the award of a JRF to Miss Manju Goyal under the Special Assistance Programme.

References

- 1. Eaborn C., Organosilicon Compounds, Butterworth, London, (1960).
- 2. Mehrotra R.C., Pure. Appl. Chem., (1966),13, 111.
- 3. Swamy K.C.K., Chandrasekhar V., Harland J.J., Holmes J.M., Dayand R.O. and Holmes R.R., J. Am. Chem. Soc., (1990), 112, 2341.
- 4. Corriu R., Guerin C., Henner B. and Wang Q., *Inorg. Chim. Acta.*, (1992), 198-200, 705.
- 5. Ultra Structure Processing of Ceramics, Glasses and Composistes, Eds. Hench L.L. and Ulrich D.R., John Wiley, New York, (1984).
- 6. (a) Structure and Bonding, (1992) 77, pp1-36; 89-151; (b) Haas P.A., Chem., Eng. Prog., (1989) 85, 44-52
- 7. (a) Laguerre M., Dunogues J., Calas et R., Duffaut N., J. Organomet Chem., (1975) 93, C17-C19; (b) Birkofer L. and Sommer P., J. Organomet Chem., (1975), 99, C1-C4.
- 8. Yarosh O.G., Voronkov M.G., Izv. Akad. Nauk SSSR Ser Khim., (1975) 3, 714.
- 9. Healy M.D., Barron A.R., J. Organomet. Chem., (1990), 381, 165.
- 10. Yasuda H., Nakayama Y., Takei K, Nakamura A., Kai Y. and Kanehisa N., J. Organomet Chem., (1994) 473, 105.
- 11. Gupta R., Singh A. and Mehrotra R.C., Indian J. Chem, (1990), 29A, 596.
- 12. Van Den Berghe E.V., Van Derkelen G.P., J. Organomet. Chem., (1973), 59, 175.
- 13. (a) Singh A., Ph.D Thesis, University of Rajasthan, Jaipur, (1972), (b) Singh A., Rai A.K. and Mehrotra R.C. J. Chem. Soc., Dalton Trans., (1972), 1911.
- 14. Ostdick T., McCuskers P.A., Inorg. Chem., (1967) 6, 98.
- 15. Dudley H.W. and Fleming I., Spectroscopic Methods in Organic Chemistry, Tata McGraw Hill Edition (1988).
- 16. Perrin D.D., Amarego and Perrin D.R., *Purification of Laboratory Chemicals*, 2nd Ed., Pergamma Press (1980).
- 17. Vogel A.I., A Text Book of Quantitative Inorganic Analysis, Longmans, London, (1961).

Received: February 22, 1996 - Accepted: March 14, 1996 - Received in revised camera-ready format: July 3, 1996