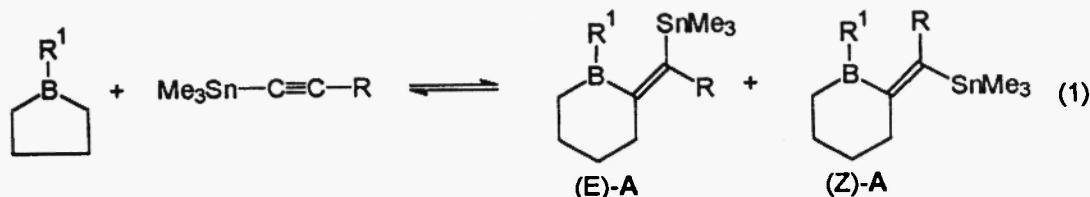
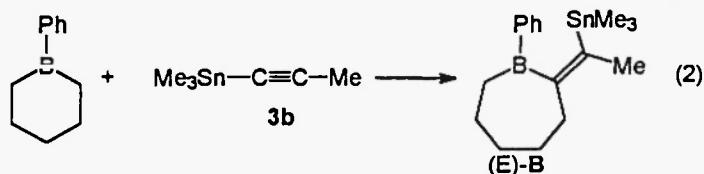


RING ENLARGEMENT OF 1-BORAINDANE AND 1-BORATETRALINE DERIVATIVES VIA 1,1-ORGANOBORATION OF 1-ALKYNYL-TRIMETHYLTIN COMPOUNDS

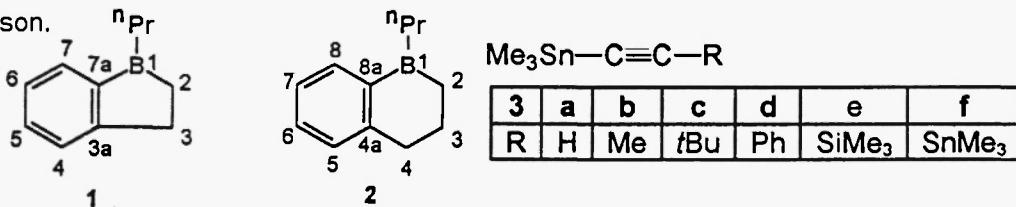
Bernd Wrackmeyer* and Hendrik Vollrath


Laboratorium für Anorganische Chemie, Universität Bayreuth, Postfach 101251, D-95440 Bayreuth, Germany

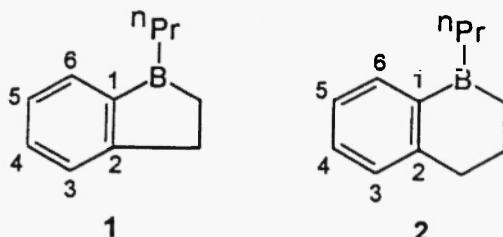
Abstract –


1-Propyl-1-boraindane (**1**) and 1-propyl-1-boratetraline (**2**) react with 1-alkynyl-trimethyltin compounds **3** [$\text{Me}_3\text{Sn}-\text{C}\equiv\text{C}-\text{R}$; $\text{R} = \text{H}(\text{a}), \text{Me}(\text{b}), \text{tBu}(\text{c}), \text{Ph}(\text{d}), \text{SiMe}_3(\text{e}), \text{SnMe}_3(\text{f})$] via 1,1-organoboration either via insertion into the B-Ar or B- CH_2 (ring) bond to give the new heterocycles **4** and **5** (starting from **1**), and **6** and **7** (starting from **2**), in which the boron containing ring is enlarged by one olefinic carbon atom. There is no indication of insertion into the exocyclic B- $n\text{Pr}$ bond. For comparison, the reaction between trimethyl-1-propynylsilane (**3b(Si)**) and **1** was studied: In addition to **4b(Si)** and **5b(Si)**, compound **6b(Si)** is formed, the product resulting from insertion into the B- $n\text{Pr}$ bond. In all cases, except when **1e** is used, the (E)-isomers are formed with the Me_3Sn group and the boron atom in *cis*-positions at the new C=C bond. The product distribution **4/5** and **6/7** depends mainly on steric interactions between the substituents at the new C=C bond and the other groups in **4** and **5** or **6** and **7**.

INTRODUCTION


1,1-Organoboration of 1-alkynyltin compounds is a powerful method for the synthesis of organometallic-substituted alkenes [1]. In most cases, this reaction is stereoselective, and alkenes are obtained in high yield with the boryl and the stanny group in *cis*-positions at the C=C bond. Mixtures of (Z/E)-isomers were observed if another organometallic group such as SiMe_3 is attached to the C=C bond [1,2] as in $\text{Me}_3\text{SnC}\equiv\text{CSiMe}_3$ (**3e**). The stereoselectivity may also be lost if cyclic organoboranes are used in 1,1-organoborations [3]. If there are different organyl groups attached to boron, e.g. in RBR_2^1 , R_2BR^1 or $\text{R}(\text{R}')\text{BR}^2$, a further problem arises, as to which of the B-R, B- R^1 or B- R^2 bonds is more reactive. Previously it was found that 1-organo-1-boracyclopentanes react with 1-alkynyl(trimethyl)tin compounds **3** by enlargement of the ring to give a mixture of (Z/E)-isomers **A** [eq. (1)], and it was shown that the 1,1-organoboration is readily reversible in these cases [3].

In the case of 1-phenyl-1-bora-cyclohexane, the reaction with **3b** affords selectively the enlarged ring system (*E*)-**B**, with the Me_3Sn group and the boron atom in *cis*-positions [eq. (2)], and it was found that this reaction was not readily reversible [4].



It was shown that di-*tert*-butyl(methyl)borane reacts with **3b** to give a non-statistical product distribution of (*E*)-isomers ($\approx 1:1$), resulting from insertion into the B-*t*Bu and the B-Me bond, respectively [3]. Mixtures of (*E*)-isomers were also obtained from the reaction between ferrocenyl(diphenyl)borane or various dialkyl(ferrocenyl)boranes and **3b** due to insertion into the B-ferrocenyl or B-Ph, B-ferrocenyl or B-alkyl bond [5]. In analogy to the other cyclic boranes, 9-alkyl-9-borabicyclo[3.3.1]nonanes react with 1-alkynyltin compounds via enlargement of the bicyclic system as the result of a kinetically controlled reaction [6]. The title compounds, 1-propyl-1-boraindane **1** and 1-propyl-1-boratetraline **2**, are particularly attractive for studying 1,1-organoboration reactions of 1-alkynyl-(trimethyl)tin compounds **3**, since there are three different B-C bonds. It is well known that 1-alkynylsilanes react in the same way as the corresponding tin compounds [1a, 7], and therefore, the reaction of **1** with trimethyl-1-propynylsilane (**3b(Si)**) was studied for comparison.

RESULTS AND DISCUSSION

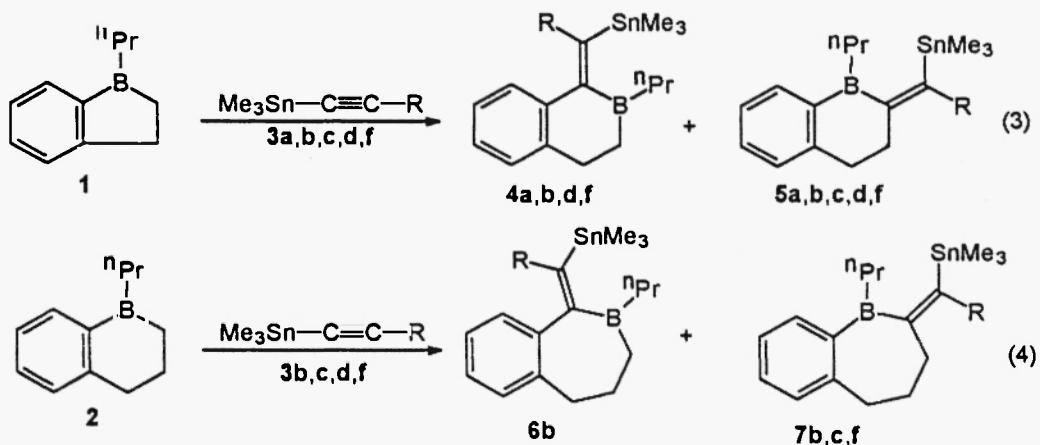

The boranes **1** and **2** can be obtained in an elegant way, in high purity, from the reaction between tripropylborane and styrene or allylbenzene, respectively [8,9]. They were characterized by their ^1H (see experimental part), ^{11}B and ^{13}C NMR data (Table 1). The assignment is based on 2D ^1H - ^1H COSY, 2D ^{13}C - ^1H heteronuclear shift correlations (HETCOR), and on the broad ^{13}C NMR signals of carbon atoms attached directly to boron, as a result of partially relaxed scalar ^{13}C - ^{11}B coupling [10,11b]. There is a noticeable magnetic deshielding of ^{13}C nuclei in ortho- and para-positions with respect to the boron atom, if one compares with $\delta^{13}\text{C}$ of the parent hydrocarbons [12]. This can be attributed to potential $\text{BC(pp)}\pi$ interactions as in other phenylboranes and related systems [13]. The $\delta^{11}\text{B}$ values for **1** (δ 82.7) and **2** (δ 76.8) are found in the typical range [11]. They differ because of the ring size, the ^{11}B nucleus in the five-membered ring being typically deshielded (e.g., 1-phenyl-1-boracyclopentane: $\delta^{11}\text{B}$ 84.5 [11a], and 1-phenyl-1-boracyclohexane: $\delta^{11}\text{B}$ 77.5 [11a]).

Table 1. ^{11}B and ^{13}C NMR data^[a,b] of 1-propyl-1-boraindane (1) and 1-propyl-1-bora-tetraline (2)


$\delta^{13}\text{C}$	B-CH ₂	Ar-CH ₂	CH ₂	1	2	3	4	5	6	B-nPr
1	25.2 (br)	32.8	-	144.3 (br)	164.9	125.5	132.9	125.2	131.9	24.5 (br) 19.3 17.4
2	27.0 (br)	34.1	23.3	136.9 (br)	150.1	128.3	132.7	125.4	134.1	24.7 (br) 18.7 17.1

[a] In CDCl_3 at $25 \pm 1^\circ\text{C}$ ($\approx 20\%$); (br) denotes a broad ^{13}C NMR signal of a boron-bonded carbon atom; the numbering in the formula does not correspond to nomenclature, but has been selected in order to enable the straightforward comparison with ^{13}C NMR data from Tables 2 and 3. [b] $\delta^{11}\text{B}$ 82.7 (1), 76.8 (2).

All 1,1-organoboration reactions are complete after warming the 1:1 mixture of **1** or **2** with the respective 1-alkynyltin compound from -78°C to room temperature. The reactions were monitored by ^{119}Sn NMR, but no intermediates were detected. The compounds **1** and **2** behave in a similar way as shown in eqs. (3) and (4). Enlargement of the boron-containing ring is always observed as found for boracyclopentanes and 1-phenyl-1-boracyclohexane [eqs. (1, 2)], but, in contrast to the boracyclopentanes [eq. (1)], the reactions proceed stereoselectively to give exclusively the E-isomers.

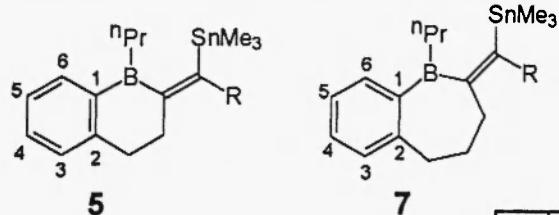
The reaction between **2** and **3e** ($R = SiMe_3$) is selective (> 95 %) and affords the product **(Z)-7e**, with the Me_3Si group and the boron atom in *cis*-positions [eq. (5)]. A similar result was observed for the 1,1-organoboration of **3e** using triethylborane [2].

Those compounds **4** or **6** which would result from insertion into the B-aryl bond of **1** or **2** are not formed at all or only in minor quantity if the group R in **3** is fairly bulky ($R = tBu, SiMe_3, SnMe_3$). This can be explained considering the energetically unfavourable steric interactions between R and the adjacent aromatic ring. It appears that the cyclic systems in both of the isomers **5** and **7** are more flexible in order to minimize steric interactions. If the steric requirements of the groups R become less demanding, a mixture of **4/5** and **6/7** is formed in each case. Although not detected here, it can be assumed that borate-like intermediates [1,14] such as **C** play an important role. The synthesis of the corresponding alkynylborate **D** with $R = Me$ was reported [15] but reactions with electrophiles were not carried out. Apparently, the preferred rearrangement of **C** to the products **4** or **5** ($n = 1$) and **6** or **7** ($n = 2$) is governed by the minimum of steric hindrance in the final products.

Trimethyl-1-propynylsilane (**3b(Si)**) reacts with **1** after 24 h in boiling toluene to give a 1:0.6:1 mixture [eq. (6)] consisting of the expected compounds **4b(Si)** and **5b(Si)**, in addition to **8b(Si)**. The latter product is the result of insertion into the exocyclic B-*nPr* bond which was never observed in the case of the 1-alkynyltin compounds. Considering the rather harsh reaction conditions, compound **8b(Si)** could be the result of thermodynamic control. The structure of **8b(Si)** follows from a consistent set of ^{13}C NMR data (Table 4) in comparison with that of **1** (Table 1) and of (E)-3-diethylboryl-2-trimethylsilyl-2-butene [7b]. The $^{13}C(=C-Si)$ nuclei in **4b(Si)** and **5b(Si)** are markedly better shielded than $^{13}C(Sn-C=)$ in the corresponding tin compounds **4b** and **5b**. This is not only due to the influence of the silicon atom but is also the result of a more pronounced twisting of the C=C-B plane against the C-B-C= plane [16]. The steric repulsion between the B-*nPr* and the $SiMe_3$ group **4b(Si)** and **5b(Si)** appears to be stronger than between the B-*nPr* and the $SnMe_3$ group in **4b** and **5b**.

¹³C and ¹¹⁹Sn NMR data of the compounds **4** and **6** are collected in Table 2, and Table 3 contains ¹³C and ¹¹⁹Sn NMR data of **5** and **7**. The structural assignment of the respective products is straightforward since in **4** and **6** the ¹³C(B-aryl) NMR signal is absent, whereas in **5** and **7** the ¹³C(B-CH₂-ring) NMR signal is missing. Together with other ¹³C NMR data as well as ¹H and ¹¹⁹Sn NMR data, the approximate ratio of **4/5** (**4a/5a** 1.4 : 1; **4b/5b** 2 : 1; **4c/5c** 0 : 1; **4d/5d** 0.6 : 1; **4f/5f** 0.4 : 1) and **6/7** (**6b/7b** 1 : 1) can be obtained.

Table 2. ¹³C and ¹¹⁹Sn NMR data^[a] of the 1,1-organoboration products **4** and **6**


			<table border="1"> <tr> <td></td><td>a</td><td>b</td><td>c</td><td>d</td><td>e</td><td>f</td></tr> <tr> <td>R =</td><td>H</td><td>Me</td><td>tBu</td><td>Ph</td><td>SiMe₃</td><td>SnMe₃</td></tr> </table>		a	b	c	d	e	f	R =	H	Me	tBu	Ph	SiMe ₃	SnMe ₃
	a	b	c	d	e	f											
R =	H	Me	tBu	Ph	SiMe ₃	SnMe ₃											

	4a	4b	6b	4d	4f
R	-	23.2 [59.8]	21.5 [62.7]	146.2 [37.4] 126.2 [18.3] 129.4 [7.3] 127.8	-5.0 [319.3, 6.1]
Sn-C=	147.2 [463.8]	147.1 [501.8]	136.5 [519.5]	153.6 [462.0]	157.3 [317.4, 286.9]
B-C=	167.4 (br)	160.2 (br)	165.1 (br)	160.0 (br)	182.7 (br)
B-CH ₂	29.9 (br)	31.3 (br)	33.7 (br)	31.7 (br)	30.2 (br)
CH ₂	-	-	27.3	-	-
Ar-CH ₂	28.3	29.4	35.2	29.4	28.7
1	143.4 [84.8]	138.6 [85.9]	138.9 [89.4]	138.7 [78.2]	145.4 [61.1, 74.5]
2	139.8	142.8	141.0 [3.3]	142.7	142.5
3 [b]	127.1	128.7 [7.1]	129.1 [3.3]	128.3	126.9
4 [b]	126.4	125.7	126.0	125.5	126.3
5 [b]	125.0	125.3	126.9	124.7	126.2
6 [b]	126.8	127.2	129.2	126.8	129.7
SnMe ₃	-7.0 [350.3]	-6.5 [330.2]	-8.3 [324.8]	-6.0 [338.1]	-4.3 [286.9, 6.7]
nPr	24.5 (br) 18.7, 17.4	25.7 (br) 18.9, 17.4	29.1 (br) 18.4, 17.4	25.7 (br) 18.8, 17.5	24.6 (br) 18.6, 17.5
¹¹⁹ Sn	-57.0	-42.6	-39.0	-41.4	-39.5 [849.7] -43.8 (R)

[a] In CDCl₃ at 25 ± 1 °C (≈ 10 - 20 %); coupling constants [Hz] J(¹¹⁹SnX) (X = ¹³C, ¹¹⁷Sn) are given in square brackets; (br) denotes a broad ¹³C NMR signal for a boron-bonded carbon atom. The numbering scheme is used for simplicity.

[b] Assignment can be reversed.

Table 3. ^{13}C and ^{119}Sn NMR data^[5] of the 1,1-organoboration products **5** and **7**

	a	b	c	d	e	f
R=	H	Me	tBu	Ph	SiMe ₃	SnMe ₃

	5a	5b	5c	7c	5d	7e	5f	7f
R [b]	-	22.2 [65.9]	35.5 [9.1]	33.2 [25.6]	146.9 [41.5]	-2.1 [11.6]	-5.6 [306.4, 8.0]	-5.3 [302.7, 10.7]
				32.7 [26.3]	40.3 [58.6]	126.2 [18.3]		
						127.9 [6.1]		
						128.1		
Sn-C=	145.0 [474.9]	152.2 [513.6]	165.5 [535.3]	154.8 [541.4]	156.1 [467.5]	144.1 [302.7]	154.9 [293.0, 339.4]	144.2 [292.4, 344.2]
B-C=	164.6 (br)	159.5 (br)	161.4 (br)	159.8 (br)	159.5 (br)	179.2 (br)	181.7 (br)	182.2 (br)
=CH ₂	44.6 [88.5]	31.6 [72.0]	39.6 [54.9]	37.3 [98.9]	34.8 [67.1]	46.4 [112.3]	46.6 [129.4, 105.6]	48.3 [111.1, 131.8]
CH ₂	-	-	-	31.5 [6.1]	-	23.8 [8.5]	-	23.9 [8.5, n.o.]
CH ₂ - Ar	35.6 [6.7]	34.5	37.3	33.8	35.9	33.9	36.5	33.8
1	138.0 (br)	139.3 (br)	139.1 (br)	137.6 (br)	144.0 (br)	136.5 (br)	132.7 (br)	136.7 (br)
2	150.5	150.3	150.1	150.2	150.5	150.5	150.2	150.7
3	128.1	127.9	127.7	127.5	128.1	128.4	128.1	128.4
4	132.8	132.2	131.9	132.8	132.8	133.1	134.8	125.5
5	125.4	125.5	125.7	125.4	125.2	125.6	125.6	133.4
6	135.5	134.4	134.4	136.8	135.7	137.2	132.7	125.5
SnMe ₃	-7.3 [346.1]	-6.5 [330.2]	-2.6 [316.8]	-2.7 [310.1]	-6.4 [336.9]	-4.7 [301.5]	-5.2 [314.9, 8.0]	-6.1 [31.1.2, 10.4]
nPr	24.5 (br)	25.7 (br)	30.1 (br)	26.0 (br)	26.6 (br)	26.7 (br)	28.6 (br)	26.0 (br)
	19.9	19.7	19.6	23.7	19.7	23.9	19.3	23.7
	17.8	17.9	18.0	15.2	17.9	14.9	17.7	14.7
δ ¹¹⁹ Sn	-60.5	-46.5	-54.5	-59.1	-47.4	-66.1	-42.9 [889.9]	-44.9 [905.7]
							-54.6 (R)	-54.0 (R)

[a] In CDCl_3 at $25 \pm 1^\circ\text{C}$ ($\approx 10 - 20\%$); coupling constants [Hz] $J(^{119}\text{Sn}X)$ ($X = ^{13}\text{C}$, ^{29}Si , ^{117}Sn) are given in square brackets; (br) denotes the broad ^{13}C NMR signal for a boron-bonded carbon atom. The numbering scheme is used for simplicity. - [b] $\delta^{29}\text{Si} - 6.0$.

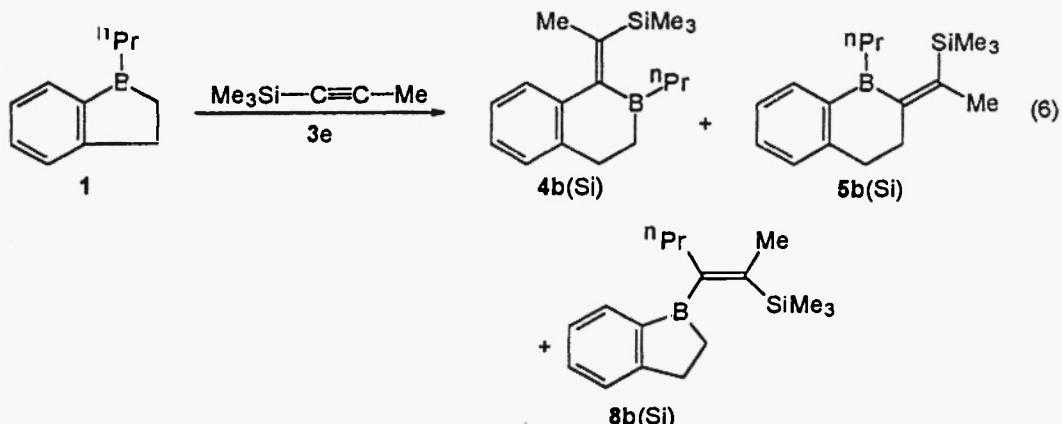
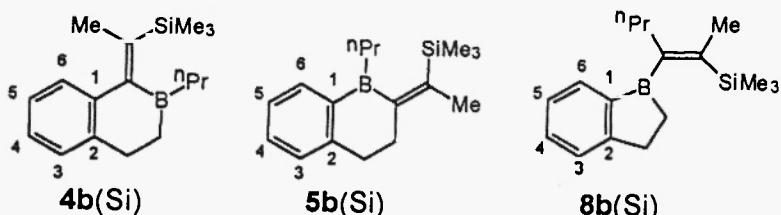



Table 4. ^{13}C and ^{29}Si NMR data^[a] of the 1,1-organoboration products **4b(Si)**, **5b(Si)** and **8b(Si)**

	4b(Si)	5b(Si)	8b(Si)
R	19.6	17.3	18.3
Si-C=	137.6	140.0	134.9
B-C=	155.8 (br)	159.5 (br)	160.0 (br)
B-CH₂	32.7 (br)	-	25.0 (br)
=CH₂	-	32.8	-
CH₂-Ar	33.1 [b]	35.2	33.3 [b]
1	138.4	140.0 (br)	145.2 (br)
2	143.9	149.7	164.6
3	129.2 [b]	128.0	126.0 [b]
4	125.4 [b]	131.9	133.2 [b]
5	125.5 [b]	125.6	125.4 [b]
6	127.0 [b]	133.8	132.0 [b]
SiMe₃	0.7 [b]	0.5	-0.4 [b]
nPr	17.4 18.7 26.4 (br)	17.4 19.5 29.3 (br)	14.8 22.5 29.7
$\delta^{29}\text{Si}$	-4.3 [b]	-4.8	-5.9 [b]

[a] In CDCl_3 at $25 \pm 1^\circ\text{C}$ ($\approx 20\%$); (br) denotes the broad ^{13}C resonance signal for a boron-bonded carbon atom; $^{13}\text{C}(\text{Si-C=})$ NMR signals were assigned by refocused INEPT experiments with ^1H -decoupling [18], based on long range coupling constants $^3\text{J} (= ^{13}\text{CSiC}^1\text{H})$ and $^2\text{J} (= ^{13}\text{C}^1\text{HMe})$. The numbering scheme is used for simplicity.

[b] Assignment can be reversed.

EXPERIMENTAL

All handling of the compounds and all synthetic work was carried out in an inert atmosphere of Ar or N₂, observing all precautions to exclude traces of oxygen and moisture. The syntheses of the boranes **1** and **2** was described [9a]. The 1-alkynyl(trimethyl)tin compounds **3** were prepared following literature procedures [17].

NMR spectra were measured from samples dissolved in C₆D₆ or CDCl₃ in 5 mm (o.d.) tubes, using JEOL FX 90 Q, BRUKER WP 200, ARX 250, AC 300 and AM 500 spectrometers, all equipped with multinuclear units. ²⁹Si NMR spectra were measured by using the refocused INEPT pulse sequence [18] (based on ²J(²⁹Si, ¹H_{Me}) ≈ 7.0 Hz) with ¹H decoupling. ¹¹⁹Sn NMR spectra were measured by inverse gated ¹H decoupling and also by using the refocused INEPT pulse sequence [18] (based on ²J(¹¹⁹Sn, ¹H) ≈ 55 Hz) with ¹H decoupling. Routine parameters served for the measurement of all other nuclei. Chemical shifts are given with respect to Me₄Si (δ ¹H(C₆D₆) = 7.15; δ ¹³C(C₆D₆) = 128.0; δ ²⁹Si with Ξ (²⁹Si, Me₄Si) = 19.867184 MHz), Et₂O-BF₃ (δ ¹¹B with Ξ (¹¹B, Et₂O-BF₃) = 32.083971 MHz) and Me₄Sn (δ ¹¹⁹Sn with Ξ (¹¹⁹Sn, Me₄Sn) = 37.290665 MHz).

1: ¹H NMR (CDCl₃, 25 ± 1°C): δ ¹H = 7.73 (m, 1H), 7.31 (m, 2H), 7.13 (m, 1H), 2.89 (m, 2H, CH₂-Ar), 1.48 (m, 2H, CH₂-CH₂Ar), 1.63, 1.60, 1.01 (m, m, t, 7H, B-nPr).

2: ¹H NMR (CDCl₃, 25 ± 1°C): δ ¹H = 7.79 (m, 1H), 7.28 (m, 1H), 7.12 (m, 2H), 2.70 (m, 2H, CH₂-Ar), 1.75 (m, 2H, CH₂-CH₂Ar) 1.47 (m, 2H, CH₂-CH₂CH₂Ar), 1.00, 1.60, 1.00 (m, m, t, 7H, B-nPr)

1,1-Organoboration of trimethyl-1-propynyltin (3b) using 1-phenyl-1-boracyclohexane:

1-Phenyl-2-[(E)-2'-trimethylstannyl-1'-propylidene]-1-boracycloheptane (E)-B

A solution of 0.62 g (3 mmol) of **3b** in 15 ml of hexane was cooled to -78°C and 0.475 g (3 mmol) of 1-phenyl-1-boracyclohexane were added in one portion through a syringe. After warming to room temperature, the solvent was removed in vacuo, and 1.09 g of a colourless oil was left which was identified as pure (> 97 % according to ¹H NMR) (E)-B. - ¹H NMR (CDCl₃, 25 ± 1°C): δ ¹H [J (¹¹⁹Sn, ¹H)] = -0.25 [52.0] (s, 9H, SnMe₃), 0.8 - 2.8 (m, 10H, -(CH₂)₅-), 2.1 [54.0] (s, 3H, =CCH₃), 6.9 - 8.2 (m, 5H, C₆H₅); the *cis*-positions of Me₃Sn and B-Ph group were evident from ¹H/¹H NOE difference spectra [19]. - ¹³C NMR (CDCl₃, 25 ± 1°C): δ ¹³C [J (¹¹⁹Sn, ¹³C)] = -8.1 [324.0] (SnMe₃), 140.4 [530.0] (Sn-C=), 162.0 (broad, B-C=), 31.3 [86.6] (=CH₂-), 30.3, 24.8, 27.7 (CH₂), 20.3 [66.0] (=Me); Ph: 141.0 (broad, i), 137.0 (o), 127.8 (m), 132.5 (p). - ¹¹B NMR (CDCl₃, 25 ± 1°C): δ ¹¹B = 75.0. - ¹¹⁹Sn NMR (CDCl₃, 25 ± 1°C): δ ¹¹⁹Sn = -46.9.

*1,1-organoboration of the 1-alkynyl-trimethyltin compounds **3** using the boranes **1** and **2**; general procedure:* The reactions were carried out in the same way as described for (E)-B, except in the case of **3a** where a THF-solution (1M) was used. In all cases,

oily residues were obtained after all volatile material was removed in *vacuo*. The compounds or the mixture of isomers were pure (> 90 %) according to ^1H NMR spectra. For ^{13}C and ^{119}Sn NMR data, see Tables 1 and 2. A complete set of ^1H NMR data **4/5** and **6/7** was obtained, and the data are available on request. The ^{11}B NMR spectra show broad ($\Delta\nu_{1/2} > 800$ Hz) signals at δ 74 \pm 4.

*1,1-Organoboration of trimethyl-1-propynylsilane **3b**(Si) using the borane **1***

A mixture of .. g (3 mmol) and 0.475 (3 mmol) of **1** in 15 ml of toluene was heated up to reflux for 24 h. After removing the solvent and other volatile material in *vacuo*, an oily liquid was left which turned out to be a 1:0.6:1 mixture of the compounds **4b**(Si), **5b**(Si) and **8b**(Si) (see Table 4 for ^{13}C and ^{29}Si NMR data). This composition did not change significantly after distillation ($70^\circ\text{C}/10^{-3}$ Torr).

Acknowledgments

Support of this work by the *Deutsche Forschungsgemeinschaft*, *Volkswagen-Stiftung* and the *Fonds der Chemischen Industrie* is gratefully acknowledged. We thank *Prof. Dr. R. Köster*, Mülheim, for a generous gift of the 1-boraindane and 1-boratetraline derivatives.

REFERENCES

- [1] [1a] B. Wrackmeyer, *Coord. Chem. Rev.*, (1995) in press. - [1b] B. Wrackmeyer, Organoboration of Metal Alkynes, *Proceedings of the 6th International Conference on Boron Chemistry (IMEBORON VI)* (S. Hermanek, ed.), World Scientific, Singapore 1987, pp. 387-415. - [1c] B. Wrackmeyer, *Revs. Silicon, Germanium, Tin, Lead Compds.* **6** (1982) 75.
- [2] B. Wrackmeyer, *Polyhedron*, **5** (1986) 1709.
- [3] A. Schmidt, B. Wrackmeyer, *Z. Naturforsch., Teil B*, **33** (1978) 855.
- [4] B. Wrackmeyer, University of Munich, 1981, unpublished results.
- [5] B. Wrackmeyer, U. Dörfler, M. Herberhold, *Z. Naturforsch., Teil B*, (1996) in press.
- [6] [6a] C. Bihlmayer and B. Wrackmeyer, *Z. Naturforsch., Teil B*, **36** (1981) 1265. - [6b] C. Bihlmayer, B. Wrackmeyer, S.T. Abu-Orabi, *J. Organomet. Chem.* **322** (1987) 25. - [6c] B. Wrackmeyer, G. Kehr, R. Boese, *Chem. Ber.* **125** (1992) 643. - [6d] B. Wrackmeyer, U. Klaus, W. Milius, E. Klaus, T. Schaller, *J. Organomet. Chem.* (1996) submitted.
- [7] [7a] B. Wrackmeyer, *J. Chem. Soc. Chem. Commun.* (1988) 1624. - [7b] R. Köster, G. Seidel, B. Wrackmeyer, *Chem. Ber.* **122** (1989) 1825. - [7c] B. Wrackmeyer, D. Wettinger, W. Milius, *J. Chem. Soc. Chem. Commun.* (1995) 399.
- [8] R. Köster, K. Reinert, *Angew. Chem.* **71** (1959) 521.

[9] [9a] R. Köster, G. Benedikt, W. Fenzl, K. Reinert, *Justus Liebigs Ann. Chem.* **702** (1967) 197. - [9b] R. Köster, Heterocyclic Organoboranes, *Adv. Organomet. Chem.* **2** (1964) 257-324.

[10] B. Wrackmeyer, *Progr. NMR Spectrosc.* **12** (1979) 227.

[11] [11a] H. Nöth, B. Wrackmeyer, ^{11}B Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, in *NMR - Basic Principles and Progress* (P. Diehl, E. Fluck, R. Kosfeld, eds.), Vol. 14, Springer, Heidelberg 1978. - [11b] B. Wrackmeyer, R. Köster, Analytik der Organobor-Verbindungen, in *Houben-Weyl Methoden der Organischen Chemie* (R. Köster, ed.), Vol. XIII/3c, pp. 377-611, Thieme, Stuttgart 1984.

[12] H.O. Kalinowski, S. Berger, S. Braun, ^{13}C NMR Spektroskopie, Thieme, Stuttgart 1984.

[13] J.D. Odom, T.F. Moore, R. Goetze, H. Nöth, B. Wrackmeyer, *J. Organomet. Chem.* **173** (1979) 15.

[14] [14a] B. Wrackmeyer, S. Kundler, R. Boese, *Chem. Ber.* **126** (1993) 1361. - [14b] B. Wrackmeyer, S. Kundler, W. Milius, R. Boese, *Chem. Ber.* **127** (1994) 333. - [14c] B. Wrackmeyer, G. Kehr, S. Ali, *Inorg. Chim. Acta* **256** (1994) 51. - [14d] B. Wrackmeyer, G. Kehr, A. Sebald, J. Kümmerlen, *Chem. Ber.* **125** (1992) 1597. - [14e] B. Wrackmeyer, G. Kehr, R. Boese, *Angew. Chem.* **103** (1991) 1374; *Angew. Chem. Int. Ed. Engl.* **30** (1991) 1370.

[15] P. Binger, G. Benedikt, G.W. Rotermund, R. Köster, *Justus Liebigs Ann. Chem.* **717** (1968) 21.

[16] R. Köster, G. Seidel, B. Wrackmeyer, *Chem. Ber.* **126** (1993) 319.

[17] [17a] W.E. Davidsohn, M.C. Henry, *Chem. Rev.* **67** (1967) 73. - [17b] L. Brandsma, H.D. Verkruissse, *Synthesis of Acetylenes, Allenes and Cumulenes*, Elsevier, Amsterdam, 1981.

[18] [18a] G.A. Morris, R. Freeman, *J. Am. Chem. Soc.*, **101** (1979) 760. - [18b] D.P. Burum, R.R. Ernst, *J. Magn. Reson.*, **39** (1980) 163. - [18c] G.A. Morris, *J. Magn. Reson.*, **41** (1980) 185.

[19] J.K.M. Sanders, J.D. Mersh, *Progr. NMR Spectrosc.*, **15** (1982) 353.

Received: December 14, 1995 - Accepted: January 9, 1996 -
Accepted in revised camera-ready form: January 29, 1996