APPLICATION OF 2D HETERONUCLEAR SHIFT CORRELATIONS TO THE DETERMINATION OF COUPLING SIGNS IN BIS(TRIMETHYLTIN) SULFIDE, SELENIDE, TELLURIDE, IN TRIMETHYLTIN METHYLSELENIDE AND IN BIS(TRIMETHYLSILYL) SELENIDE Bernd Wrackmeyer*, Kurt Bauer, Gerald Kehr and Udo Dörfler Laboratorium für Anorganische Chemie der Universität Bayreuth, D-95440 Bayreuth, Germany ## Abstract Signs of various coupling constants over one-, two-, three and four bonds have been determined by using 2D heteronuclear shift correlations for trimethyltin chalcogenides $(Me_3Sn)_2E$ [E = S (1), Se (2), Te (4)], Me₃SnSeMe (3), and bis(trimethylsilyl)selenide (2(Si)) for comparison. The signs of the geminal, vicinal and other long-range coupling constants have been determined for the first time. All geminal coupling constants $^2J(^{119}Sn^{117}Sn)$ have a negative sign and $^2J(^{119}Sn^{13}C)$ in 3 is positive ($^2K(^{119}Sn^{13}C)$ < 0). The 2D heteronuclear shift correlations enable the determination of small long-range coupling constants (e.g. $^3J(E^1H)$ (E = ^{77}Se ^{125}Te) or $^4J(^{117}/^{119}Sn^1H)$) which are normally not resolved in 1D 1H NMR spectra. These data can be used to optimize conditions for recording ^{77}Se or ^{125}Te NMR spectra via 1H polarization transfer techniques. ## INTRODUCTION ¹¹⁹Sn NMR parameters are exploited in many ways for the characterization of pure compounds, for the analysis of mixtures, and for studying the dynamic behaviour of compounds with regard to intra— and/or intermolecular exchange processes, to name only a few applications ¹. By making use of the ever-increasing performance of NMR spectrometers a large data set, in particular of coupling constants involving ^{117/119}Sn, is becoming available. A meaningful discussion of these data requires the information on the sign of the coupling, preferably on the absolute sign. For numerous different nuclei X the signs of one-bond coupling constants ¹J(¹¹⁹SnX) have already been determined ^{1,2}. In the case of geminal coupling constants, ²J(¹¹⁹SnX), or ⁿJ(¹¹⁹SnX) with n ≥ 3, the situation is less satisfactory, since coupling signs for a greater number of derivatives are known ¹ only for n = 2, 3 and X = ¹H, with a coupling pathway across one and two carbon atoms, respectively. There are rather few examples of coupling signs known for nuclei X other than proton although a large data set of magnitudes can be found in the literature. Here, we want to report on the determination of signs of various coupling constants in the organotin chalcogenides 1 to 4. For comparison, the bis(trimethylsilyl)selenide (2Si) was included. | Table 1. ¹ H-, ¹³ C-, ⁷⁷ Se-, ¹¹⁹ Sn- and ¹²⁵ Te NMR data ^[a] of the organotin chalcogenides 1 to 4 and of 2(Si) | | | | | | | | | | | |--|---|---|---|--|--|--|--|--|--|--| | Compound
Nr. | δ ¹³ C(SnMe) | δ ¹¹⁹ Sn | δ ⁷⁷ Se/δ ¹²⁵ Te | δ ¹ Η | | | | | | | | 1 | -2.5
[-353.7]
[5.5] | +87.1 ^[b]
[-215.8] | | 0.31
[+56.0]
[+0 .7] | | | | | | | | 2 | -2.3
[-337.8]
(-6.4) | +42.7 ^[c]
[-232.2]
(+1087) | -549.9 (⁷⁷ Se)
[+1087] | 0.37
[+55.7]
[+0.3]
(+1.5) | | | | | | | | 2 (Si) | 4.7 (SiMe)
<52.5>
(7.1) | +11.2 (²⁹ Si)
(-109.2) | -337.8 (⁷⁷ Se)
<-109.2> | 0.36
<+7.0>
<+0.5>
(+3.7) | | | | | | | | 3 | -6.0 , -4.1 ^[d]
[-335.7] [+16.6]
(-58.3) | | -284.7 (⁷⁷ Se)
[+1035] | 0.52, 1.94 ^[d]
[+55.7] [-31.2]
(+2.0) (+10.1) | | | | | | | | 4 | -3.4
[-316.4] | -68.2 ^[f]
[-226.8]
{-2817} | -1232.1 (¹²⁵ Te)
[-2817] | 0.48
[+55.0]
[+1.7]
{-3.0} | | | | | | | [a] Coupling constants $J(^{119}SnX)$ in [], $J(^{77}SeX)$ in () $J(^{125}TeX)$ in { } and $J(^{29}SiX)$ in \langle > (all in Hz); note that both $\gamma(^{119}Sn) < 0$ and $\gamma(^{125}Te) < 0$. – [b] $\delta^{119}Sn$ (CDCl₃) +93.9¹⁵. – [c] $\delta^{119}Sn$ (CDCl₃) +50.7¹⁵. – [d] Data for SeMe group. – [e] $\delta^{119}Sn$ +45.6, $\delta^{77}Se$ -276.7^{4b}. – [f] $\delta^{119}Sn$ (CDCl₃) -59.3¹⁵. # RESULTS AND DISCUSSION The 13 C-, 77 Se, 119 Sn- and 125 Te NMR data of the compounds 1 to 4 are listed in Table 1. The signs of 1 J(119 SnX) (X = 13 C³, 77 Se⁴ and 125 Te⁴) are in agreement with the literature data where the sign determinations were carried out using 1D heteronuclear double resonance techniques⁵. The magnitudes of 1 J(119 SnX) differ slightly from reported data which may be due to the effect of the solvent, and/or concentration, and/or temperature. So far no signs of couplings 2 J(119 SnX) (X = 13 C, $^{117}/^{119}$ Sn) across sulfur, selenium or tellurium are known. There are problems in the sign determination even with 2D heteronuclear shift correlations (HETCOR). Since the absolute sign is of particular interest, "key coupling constants" for which the absolute sign is known (such as 1 J(13 C¹H) > 0⁶ or 2 J(119 Sn 1 H_{Me}) 2,7) must be included in one of the comparisons of coupling signs. There is one approach, proposed recently and applied to 1^8 , which appears to be generally valid for many organotin compounds containing two or more tin atoms. This is based on the assumption that there should be long range coupling constants $^{17}J(^{119}Sn\sim SnC^{1}H_{SnMe})$ ($n\geq 4$) of small magnitude (≤ 1 Hz). If the $^{119}Sn/^{1}H$ HETCOR experiment can be based on such small scalar coupling, both ^{119}Sn and the distant ^{114}H are the active nuclei and the ^{117}Sn nucleus in the framework $^{119}Sn\sim ^{117}SnC^{1}H_{SnMe}$ is the passive nucleus. Thus, in the 2D HETCOR experiment the tilt of the respective cross peaks 9 enables the comparison of the signs of $^{17}J(^{119}Sn^{117}Sn)$ and of $^{2}J(^{117}Sn^{1}H_{SnMe})$. Since the latter is known to be positive 3 , 7 (certainly in the case of 1 to 4) with very few exceptions, the absolute sign of $^{17}J(^{119}Sn^{117}Sn)$ becomes available. | Fragment of isotopomer | | kperiment | Coupling signs compared | | |--|---|--|--|--| | ¹ H-C- ¹¹⁹ Sn-E-Sn | A | E/ ¹ H HETCOR | ² K(¹¹⁹ Sn ¹ H)/ ¹ K(¹¹⁹ SnE) | | | ¹ H-C-Sn-E- ¹¹⁹ Sn | В | E/1H HETCOR | ⁴ K(¹¹⁹ Sn ¹ H)/ ¹ K(¹¹⁹ SnE) | | | ¹ H-C- ¹¹⁹ Sn-E-Sn | С | ¹¹⁹ Sn/ ¹ H HETCOR | ³ K(E ¹ H)/ ¹ K(¹¹⁹ SnE) | | | ¹ H-C- ¹¹⁹ Sn-E- ¹¹⁷ Sn | D | 119Sn/1H HETCOR | ⁴K(¹¹⁷ Sn¹H)/²K(¹¹¹9Sn¹¹¹ ⁷ Sn) | | Scheme 1. Fragments of isotopomers of the compounds 2 and 4 are shown with $E = ^{77}$ Se and 125 Te. Since $\gamma(^{119}$ Sn) < 0 and $\gamma(^{125}$ Te) < 0, it is advisable to use the notation of reduced coupling constants $K(AX) = 4\pi^2 J(AX)(\gamma(A)\gamma(X)h)^{-1}$. Because of $^1K(^{119}$ SnE) < 0 (A) the sign of $^4K(^{119}$ Sn 1 H) (B) can be determined, and this can be used to obtain the absolute sign of $^2K(^{119}$ Sn 117 Sn) (D). In addition, the sign of $^3K(E^1$ H) is also available (C). If the intervening atom happens to be a spin-1/2 nucleus such as ⁷⁷Se or ¹²⁵Te, another method is also feasible, provided that there are small long-range coupling constants ⁿJ(¹¹⁹Sn¹H) (e.g. n = 4 in 2 and 4) and ⁿJ(⁷⁷Se¹H) or ⁿJ(¹²⁵Te¹H) (n = 3 in 2 and 4). The strategy (Scheme 1) corresponds to that used for sign determination of ²J(¹¹⁹SnN¹¹⁷Sn) in tris(trimethylstannyl)amine ¹⁰ when the magnetically active ¹⁵N nucleus served the same purpose as ⁷⁷Se or ¹²⁵Te in the present study. Relevant experiments are shown in Figures 1 and 2 and analogous experiments were also carried out for 3. The possibility of determining long-range coupling constants involving ¹H which are not resolved in normal ¹H NMR spectra from the 2D HETCOR experiments offers certain other advantages. These data can help to improve the measurement of ⁷⁷Se or ¹²⁵Te NMR spectra by application of the INEPT pulse sequence ¹¹ as has been shown in the case of ferrocene derivatives with organotin chalcogenide substituents ¹². The negative sign of ${}^2K(SnSn)$ in **1**, **2**, **4** and of ${}^2K(Sn^{13}C)$ in **3** can be rationalized considering the sign dependence of geminal couplings on one-bond interactions and bond angles 13 . If this dependence on the bond angle SnESn in bis(triorganotin)chalcogenides is significant, one expects a change in the sign of ${}^2K(SnSn)$ for E = 0 because bond angles SnOSn are frequently larger than 120^0 (in contrast with E = S, Se, Te), and there are also examples of linear SnOSn arrangements for which $|{}^2J(SnOSn)|$ can be as large as FIG 1. 157.6 MHz 125 Te / 1 H HETCOR experiment of bis(trimethylstannyl)telluride (4) based on 3 J(125 Te SnC 1 H) [spectral windows: F_2 = 3500 Hz (2K) and F_1 = 70 Hz (128 experiments of 128 transients each), zero-filling and Gaussian enhancement in both dimensions]. The positive tilt of all cross peaks for the $^{117/119}$ Sn satellites indicate that the signs of the pairs 2 K($^{117/119}$ Sn 1 H) (< 0)/ 1 K(125 Te $^{117/119}$ Sn) (< 0) and 4 K($^{117/119}$ SnTeSnC 1 H) (< 0)/ 1 K(125 Te $^{117/119}$ Sn) (< 0) are all alike. FIG 2. 186.5 MHz 119 Sn/ 1 H HETCOR experiment of bis(trimethylstannyl)selenide (2), based on 2 J(119 Sn 1 H) [spectral windows: F_{2} = 1500 Hz (4K) and F_{1} = 12 Hz (128 experiments of 8 transients each), zero-filling and Gaussian enhancement in both dimensions]. The negative tilt of the cross peaks for the 77 Se satellites indicate that 1 K(119 Sn 77 Se) (< 0) and 3 K(77 Se 1 HSnMe) (> 0) are of opposite sign; the positive tilt of the cross peaks corresponding to the 117 Sn satellites prove that the signs of 4 K(117 SnSeSnC 1 H) (< 0) and 2 K(119 Sn 117 Sn) (< 0) are alike. 1000 Hz¹⁴. Work in this direction is in progress. As for many other combinations of nuclei, the vicinal reduced coupling constants ${}^{3}K(E^{1}H)$ (E = ${}^{77}Se$, ${}^{125}Te$) and ${}^{3}K(Sn^{1}H)$ (in 3) are all positive. The sign of ${}^{4}K({}^{119}Sn^{1}H)$ is negative and this is also true for ${}^{4}K({}^{29}Si^{1}H)$ in 2(Si). However, the absolute values are very small, and the authors believe that a change in the sign of these parameters may readily take place. #### **EXPERIMENTAL** All samples were handled in an N_2 atmosphere, observing all precautions to exclude traces of moisture and oxygen. The compounds $\mathbf{1}^{15}$, $\mathbf{2}^{15}$, $\mathbf{2}^{15}$, $\mathbf{3}^{17}$ and $\mathbf{4}^{15}$ were prepared following literature procedures. NMR measurements were carried out using Bruker AC 300 [pulse lengths for 90^{0} pulses: 1 H (35 μ s), 13 C (11 μ s), 29 Si (12 μ s), 77 Se (12 μ s), 125 Te (13 μ s), 119 Sn (14 μ s)] and Bruker AM 500 [pulse length for 90^{0} pulses: 1 H (11 μ s), 13 C (5.5 μ s), 77 Se (8 μ s), 119 Sn (7 μ s), 125 Te (7 μ s)] instruments, equipped with multinuclear units, for samples in 5 mm o.d. tubes with 10–20% solutions in C_6D_6 at 26 \pm 1 0 C. Chemical shifts are given with respect to internal Me₄Si (δ^{1} H (C_6D_6) = 7.15; δ^{13} C(C_6D_6) = 128.0; δ^{29} Si with Ξ (²⁹Si) = 19.867184 MHz), Me₂Se (δ ⁷⁷Se with Ξ (⁷⁷Se) = 19.071523 MHz), Me₄Sn (δ ¹¹⁹Sn with Ξ (¹¹⁹Sn) = 37.290665 MHz) and Me₂Te (δ ¹²⁵Te with Ξ (¹²⁵Te) = 31.549802 MHz. Ξ values were taken from Ref. 18. # **ACKNOWLEDGEMENT** Support of this work by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged. #### REFERENCES - J.D. Kennedy and W. McFarlane, Revs. Silicon, Germanium, Tin, Lead. Compds. 1 (1974) 235-298. (b) PJ Smith and A.P. Tupciauskas, Ann. Rep. NMR Spectrosc. 8 (1978) 291. (c) B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 16 (1985) 73-186. - 2. (a) J.D. Kennedy and W. McFarlane, in J. Mason (ed.), *Multinuclear NMR*, Plenum Press, New York 1987, pp. 305-333. - 3. W. McFarlane, J. Chem. Soc. (A) (1967) 528. - 4. (a) J.D. Kennedy and W. McFarlane, *J. Organomet. Chem.* **94** (1975) 927. (b) J.D. Kennedy and W. McFarlane, *J. Chem. Soc. Dalton Trans.* (1973) 2134. - 5. W. McFarlane, Ann. Rep. NMR Spectrosc. 1 (1968) 135-168; 5A (1972) 353-393. - 6. C.J. Jameson, in J. Mason (ed.), Multinuclear NMR, Plenum Press, New York 1987, pp 89-131. - 7. J.D. Kennedy and W. McFarlane, J.Chem.Soc. Chem.Commun. 1974, 983. - 8. B. Wrackmeyer and G. Kehr, Z. Naturforsch., Teil B, 49 (1994) in the press. - 9. (a) A. Bax and R. Freeman, *J. Magn. Reson.* **45** (1981). (b) T.C. Wong, V. Rutar and J.S. Wang, *J.Am.Chem.Soc.* **106** (1984) 7046. - 10. B. Wrackmeyer and H. Zhou, *Magn.Reson.Chem.* 28 (1990) 1066. - (a) G.A. Morris and R. Freeman, J. Am. Chem. Soc. 101 (1979) 760. (b) G.A. Morris, J. Am. Chem. Soc. 102 (1980) 428. (c) D.P. Burum and R.R. Ernst, J. Magn. Reson. 39 (1980) 163. - 12. M. Herberhold, M. Hübner and B. Wrackmeyer, Z. Naturforsch., Teil B, 48 (1993) 940. - 13. C.J. Jameson, J. Am. Chem. Soc. 91 (1969) 6232. - S. Kerschl, B. Wrackmeyer, D. M\u00e4nnig, H. N\u00f6th and R. Staudigl, Z. Naturforsch., Teil B, 42 (1987) 387. - 15. F.W.B. Einstein, C.H.W. Jones, T. Jones and R.D. Sharma, Can. J. Chem. 61 (1983) 2611. - 16. M.R. Detty and M.D. Seidler, J. Org. Chem. 47 (1982) 1354. - 17. E.W. Abel, B.C. Crosse and G.V. Hutson, J. Chem. Soc. (A) (1967) 2014. - 18. J. Mason (ed.), Multinuclear NMR, Plenum Press, New York, 1987, pp 625-629. Received: June 14, 1994 - Accepted: August 1, 1994 - Received in revised camera-ready form: September 14, 1994