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Abstract Considering time inconsistency and inter-temporal preference of the decision maker who is
facing inter-temporal choices, this paper employs hyperbolic discounting to reflect these characteristics
in governing inventory replenishment policy under inflation. The authors take the subjective perception
of the decision maker and the objective indicator from the capital market into consideration. The
decision maker’s subjective perception includes confidence towards future value of money and anxiety
to return the money, while the objective indicator is represented by the compounded discount rate. The
results suggest that over the given planning horizon, with more confidence, inventory policy of larger
order quantity and smaller order frequency should be adopted; with more anxiety within a threshold,
inventory policy of smaller order quantity and larger order frequency should be adopted, and with more
anxiety beyond this threshold, inventory policy keeps unchanged; with a larger discount rate, inventory
policy of smaller order quantity and larger order frequency should be adopted.

Keywords inventory; hyperbolic discounting; time value of money; time inconsistency; deteriorating

items

1 Introduction

The increasing consumer price index indicates the strengthening severity of inflation these
years in China. We realize that on the one hand, inventory replenishment policy is greatly
influenced by the external macroeconomics; on the other hand, it’s also explicitly impacted
by the decision maker’s subjective perception, such as his or her degree of confidence towards
future value of money and anxiety to return the money. Over the planning time horizon, given
the objective indicator, say, the compounded discount rate, the decision maker may prefer the
conservative replenishment policy, when his or her confidence perceived towards future value of
money is decreasing and anxiety to return the money is increasing. Moreover, when inflation

is more severe, the decision maker may not be patient and rational any more. Instead, he
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or she may become anxious and eager to return the money and gain the immediate benefit
by adjusting inventory replenishment policy. That’s to say, the decision maker will focus on
the present, instead of the future, to acquire immediate reward. How can we reflect these
characteristics in the inventory replenishment model? How do the degree of confidence and
anxiety change inventory replenishment policy? How can we combine the subjective perception
of the decision maker with the objective indicator from the capital market, to make better
inventory decisions? The traditional inventory replenishment models don’t provide with us the
lens through which we can look into these issues effectively.

Trading off cost and benefit over time, people actually have bounded rationality and reveal
time inconsistency. That’s, people’s preference for future reward may change over time and the
temptation of immediate reward can be considerably irresistible[! 5. Plenty of psychological
experiments and economic literature have supported these characteristicsl®=12l. When mak-
ing inter-temporal decisions, people outweigh the present, compared with the future. When
setting inter-temporal preference, their valuation of the outcome will be more discounted over
timel'3~16] The decision maker, who is making inventory replenishment policy under infla-
tion, also shows time inconsistency and inter-temporal preference when making inter-temporal
choices. The effect of time inconsistency and inter-temporal preference will be more salient when
inflation is more severe. Time inconsistency and inter-temporal preference can be represented
by hyperbolic discounting!*7].

For hyperbolic discounting function, its discount rate is /(1 + at), and a reward at future
time ¢ will be discounted by the factor (1—|—at)*7/a, where o and v are positive'819. Compared
with the constant discount rate under exponential discounting, the discount rate of hyperbolic
discounting is declining with regard to time ¢t. This feature implies time inconsistency of the
decision maker when making inter-temporal decisions. Due to analytical intractability of hy-
perbolic discounting function, quasi-hyperbolic discounting function is popularly employed!2°).
For the discrete quasi-hyperbolic discounting function, the discount factor is given as
D) = e 7t t €10,70),

ae” Mt t € [r,00),
where time interval [0, 79) is the present with exponential discounting and time internal [7g, o)
is the future with exponential discounting multiplying an factor o (0 < « < 1). Besides, the
length of the present 7y is stochastic and exponentially distributed with hazard rate A (A > 0).

For the continuous quasi-hyperbolic discounting function, the discount factor is given as
D(t) =e M+ (1 —e Mae™ " = ae ™ + (1 — a)e” OV

implying that D(t) is a linear combination of the exponential discount factor e~ with weight
« and the exponential discount factor e~ ("*Mt with weight (1 —@). In our inventory models to
reveal the decision maker’s time inconsistency, we use continuous quasi-hyperbolic discounting
function only.

Hyperbolic discounting has received some applications and provided valuable insights in

[21-23] [24]

behavioral operations management Recently, for revenue-management problem, Su

considered customers’ emphases on the immediate cost relative to the future benefit. For

(28] 26]

service systems, Huang et al.'*°! studied customers’ bounded rationality. Plambeck and Wang
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presented the optimal pricing and scheduling for an unpleasant service generating long-term
future benefits. For the newsvendor model, Chen et al.?) analyzed the role of mental accounting
on the effect of payment schemes on inventory decisions. In this paper, we research the impacts
of hyperbolic discounting on inventory replenishment policy.

Literature on the economic order quantity (EOQ) models with different demand function

28—31]

under inflation is abounding! All of these models are under exponential discounting,

which assumes absolute rationality and neglects time inconsistency of the decision maker. For

(32 initially exercised the discounted cash flow

the non-deteriorating item, Trippi and Lewin
(DCF) approach to get present value of the average inventory cost over the infinite time horizon.
Moon and Yun[®? introduced the DCF approach to consider the situation where the finite
planning horizon is a random variable. Harigal*¥ considered the replenishment policy with time
continuous non-stationary demand over a given finite planning horizon. For the deteriorating

[35—36] 7] took account of the EOQ model where demand is linear time-dependent

item , Bose
and shortages are allowed. Chung and Liul*®! explored a line search technique to decide the
optimal interval over the finite time horizon. Chung and Lin[*¥ investigated optimal inventory
replenishment policy without shortage and with shortages completely backlogged where demand
is stable. Moon et al.[*? took ameliorating/deteriorating items into account where demand is
time-varying. Gilding[*! formulated optimal inventory replenishment schedule subject to time-
dependent demand and inflation, with no restriction on the timing of the orders or the start
of the shortage periods . In this paper, however, we employ hyperbolic discounting to consider
time value of money for the deteriorating item over the given planning time horizon. We
research the impacts of time inconsistency and inter-temporal preference of the decision maker
on inventory replenishment policy. Besides, we consider the cases with stable demand where
there is no shortage and there are shortages with complete backlogging.

The rest of this paper is organized as follows. Section 2 presents the description of the
models. Section 3 formulates mathematical models in the case of no shortage and shortages
with complete backlogging, respectively. Section 4 provides numerical examples. Section 5

comes to the conclusions and managerial insights.

2 Model Description

Over a given finite planning time horizon under inflation, the decision maker is facing the
problem of how to determine the optimal order frequency and order quantity in each ordering
cycle, so as to maximize present value of total profit. All the costs and sales revenue are
discounted by continuous quasi-hyperbolic discounting . Total cost includes fixed ordering cost,
procurement cost, inventory holding cost and shortages cost (if shortages are allowed); total
revenue is from selling items; total profit is the difference between total revenue and total cost.

Assumptions:

1) Time horizon is finite and lead time is zero;

2) Demand rate of single items is constant and replenishment rate of items is infinite;

Notation:

H Finite planning time horizon;

T  Length of ordering cycle, decision variable;
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n  Order frequency, decision variable, n = H /T
@  Order quantity, decision variable;
T; Total elapsed time including the jth ordering cycle (j = 1,2,---,n), denoting the
occurrence of the (j + 1)th ordering. T; = jH/n = jT, where T; = H and Tj = 0;
t; The time at which the inventory level in the jth ordering cycle drops to zero in the case
of shortages (j = 1,2,--- ,n);
A Fixed ordering cost per ordering;
Demand rate;
Sale price per unit;
Procurement cost per unit;
Inventory holding cost per unit per time;
Shortage cost per unit per time;
Deterioration rate, 0 < 6 < 1;
Compounded discount rate, net of inflation, 0 <~y < 1;
Hazard rate, A > 0;

Confidence of the decision maker towards future value of money, 0 < a < 1.

O > 22 e o0 QA

3 Mathematical Models

Discount factor at any time ¢ with continuous quasi-hyperbolic discounting is given as
D) =eMe " 4 (1—eMae " =ae " + (1 —a)e” FV,

Let 8=1—a, n=+v+A, then D(t) = ae™* + Be™"t. Thus, quasi-hyperbolic discounting
could be regarded as the linear combination of exponential discounting e~7¢ with the discounted
weight a and exponential discounting e~ with the discounted weight 3. Here, make it clear
that a denotes confidence of the decision maker towards future value of money. A smaller
a means that the decision maker show less confidence towards future value of money, and the
same amount of money in the future will be more depreciated than that under constant discount
rate. A presents hazard rate, which could be understood as how soon the future perceived by
the decision maker will come. A larger A means that the sooner the future will come and the
more anxiety the decision maker will have. We use parameter o and A to reflect the decision

maker’s time inconsistency when facing inter-temporal choices.

3.1 No Shortage

In this subsection, we assume that shortages are not allowed.
Figure 1 shows the pattern of inventory level without shortage over the given planning time
horizon H.

The instantaneous inventory level I(¢) during the first ordering cycle is regulated by

YO o1y —a. 0<i<m (1)

For I(T) = 0, solution to (1) will be
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Figure 1 Inventory level of deteriorating items without shortage

Present value of holding cost during the first ordering cycle is

T
Cleh/
0

T 71.0(T—t) _ T qref(T—1) _
d 1 d 1
= ah/ ue*wdt + ﬂh/ ue*mdt
0 0 0 0

0 0+~ * ol 0 0+n * Ui

and present value of holding cost over the entire time horizon H is

0H —yH H
CH:ahd(e /n— e /"+e K /”—1>z:e_ayTJ !

0 0+~
60H/n — n n
+¥(e H/ 9——:3 nH/ +e —nH/ _1>Ze nTj_1
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_ahd efH/n _ g=vH/n L e vH/m 1\ 1—eH
0 0+~ ol 1—eH/m
Bhd e@H/n_e—nH/n +e—?7H/n_1 1 —enH
0 0+n 7 1 —e-n/n’

Present value of ordering cost over the entire time horizon H is

1—e 1—e

YT -1 nT; -1 _ I
(Zae —l—Zﬁe = ) aAl—e vH/n+BA1_e*nH/n'

Present value of procurement cost over the entire time horizon H is

j=1 7j=1
d n n
c (eeH/n 1) < Z ae~7Ti-1 4 Z 5e"TJl>
j=1 j=1
_ o orpn gy L= Bed gy gy L=

1 —e7H/n 0 1 —enH/n’

Hence, present value of total cost over the entire time horizon H is
TC =Cy +Co + Cp.
Present value of revenue during the first ordering cycle is

T T
R= p/ dD(t)dt = pd/ (ae™ " + Be ") dt = apd
0 0

(1—e7H/m) 4 %(1 — e /),

ahd (eéH/n _ e—'yH/n e~ YH/n _ 1) N Bhd (eéH/n — e~ nH/n e—nH/n _ 1) (3)

(8)
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and present value of total revenue over the entire time horizon H is

apd - Bpd -
TR = %(1 — e VH/m Ze*"/Tj—l + %(1 e mH/my Ze*nTgfl
j=1

=1
1—e 1—e

apd
= ®

=1 - e—vH/n)

Bpd -
gl [ —omm o, 4= "

Hence, present value of total profit over the entire time horizon H is
TP=TR-TC. (10)
Combining all the above equations and rearrange the results, we obtain

TP(n) = a{ﬁu — e VH/my ﬁ(e“f/n -1)
v

0
hd e0H/n _ ef'yH/n efA/H/n -1 1— eva
(et e )y
0 04~ v 1—eH/n
d d
+p{ B - ey - eorin )
n

0H/n _ ,—nH/n —nH/n __ _ ~—nH
_@<e e e 1)—A} 1—e (1)

0 6+ n ™ n 1 —enH/n"
Theorem 1 Present value of total profit function T P(n) is concave with regard to n.

Before proving Theorem 1, let
cd hd [ e?H/m — e=vH/n  o=vH/n _q 1—eH
TC(n) = — (/" — 1) 4+ — Ay ———m—
(n) {e(e )+ 7 7 + 5 + ==y

then we have the following lemma.

Lemma 1 Function TC(n) is convex with regard to n.

Proof Following a similar way used by Chung and Lin®®, one can easily derive Lemma 1.
We omit the proof for brevity.

In what follows, we show the proof of Theorem 1. According to Lemma 1, —T'C(n) is

concave with regard to n.
Let

TPi(n) = {p_d(l _e—wH/n) _ ﬂ e@H/n_l) _ @(

( eé)H/n
y 0 0

_ g YH/n e~ YH/n _ 1 1—eH
_A 7
0+~ y 1—e7H/n

pd —nH/ny _ Cd, gm/n hd [/ — e nH/n  gmnH/n 1—e "H
TPi(n)=3 —(1—e" - -1) = — -A
) = { B a ey — iy M (ST e T e e

then TPy (n) and T Py(n) is concave with regard to n, respectively.

Therefore, T P(n), the linear combination of TPy (n) and T P»(n), is concave with regard to
n. We complete the proof of Theorem 1.

Based on Theorem 1, the solution procedure to determine the optimal order frequency n*
and present value of total profit TP(n*) is provided by the following algorithm.

Algorithm 1

Step 1 Input the values of all the parameters, and set TP(0) = 0 and n=1;

Step 2 Calculate TP(n) from (11);
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Step 3 If TP(n) > TP(n—1), then set n =n + 1 and go back to Step 2; otherwise, stop
and set n* =n — 1.
Thus, we get the optimal order frequency n*, and the optimal present value of total profit

TP(n*). The optimal order quantity in each ordering cycle and length of ordering cycle are
given as Q* = Z(e?H/n" — 1), T* = H/n".
3.2 Shortages with Complete Backlogging
In this subsection, we assume that shortages are allowed and completely backlogged.
With shortages allowed, suppose that (n+1) orderings are conducted over the given time
horizon H. The last replenishment is made at time ¢ = H, only to replenish the last short-
age quantity produced in the last cycle. Assume that in each ordering cycle [T;_1,T;] (j =
1,2,---,n — 1), there are no-shortage period KT (0 < K < 1) and shortage period (1 — K)T.
Shortages occur at time t; = (K +j—1)T (j =1,2,--- ,n—1).

Figure 2 shows the pattern of inventory level with shortages completely backlogged over the
A

\\M—KH" lz—(KJrlx K Kn_(lﬁn- 1)Hn
» Time
=0

Ti=Hn I=2Hn T-H

given planning time horizon H.

Inventory level

H

Figure 2 Inventory level of deteriorating items with shortages

The instantaneous inventory level I(t) of the no-shortage period is ruled by
dI(t)

The shortages inventory level S(t) is governed by
dsS(t)
——==—d, t; <t<T. 13
dt ’ 1 >0 ( )
For I(T) = 0, solutions to (12) and (13) will be
9(t1—t) _ 1
I(t):%, 0<t<t, (14)
St)=dt—t1), t1<t<T. (15)

Let Iy and Sy be the initial inventory level and the maximum shortage quantity, respectively,
then we have

o= S(&n 1), (16)
So = M (17)

n
Present value of holding cost during the first ordering cycle is

Ciy = h /0 " 1Dyt
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t1 O(t1—t) _ t O(ti—t) _

d 1 d 1

= ah/ ue—vtdt + ﬂ/ Me_mdt
0 0

0 0
Cyhd<eeKH/n_e'yKH/n eA/KH/n_l)
=— -
0 0+ vy
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Johd e : + 2 , (18)
0 0+n n
and present value of holding cost over the entire time horizon H is
0K H —vKH —~KH n
CH_ahd<e /m e /"+e v /”—1>Ze—7TJ~_1
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ﬁhd eGKH/n _ e—nKH/n N e—nKH/n -1 zn:e—nTj_l
0 0+n n =
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0 ( 0+ + v >1_e—vH/n
hd OKH/n _ ,—nKH/n 7nKH/n_1 1—enH
n 0 e e n e e . (19)
6 0+n n 1 —enH/n
Present value of shortage cost during the first ordering cycle is
T
Cor =5 / S(H)D(t)dt
t1
T T
:as/ d(t —ty)e Vidt + 53/ d(t —t1)e” ™dt
t1 ty
asd |[vH(K —1 sd|nH(K —1
— {% LK) H/n 1} | fed {% e/ 1] (90
and present value of shortage cost over the entire time horizon H is
n
O =S [YHE=1) | sna-rm S e
72 n
j=1
n
y Bsd [nH(K —1)  wna-k)m _ g et
n? n
j=1
_asd[YH(K =1) | sna-rom _ | L=
2 n 1 —e7H/n
ﬁsd nH(K — 1) H(l—K)/ 1-— e_nH
Present value of ordering cost over the entire time horizon H is
n H/n _ ,—~vH nH/n _ ,—nH
_ Ty oty o€ e e e
CO—AZ(O&G’Y‘—FBQT]‘)—OKAW‘F W (22)

=0
Present value of procurement cost over the entire time horizon H is

n

n
Cp=cly Z (e Ti=1 4 Be™Ti-1) 4 ¢S, Z (ae™ L5 + Be1T5)

=1 j=1
n n
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- oz_cd(eeKH/n —1) 1—e# @(QGKH/n —1) 1—e
0 1—eH/n 0 1 —enH/n
acdH(1 - K)1—e"H  BedH(1 - K) 1—e "

i n eYH/n — 1 n entl/n — 1"

Hence, present value of total cost over the entire time horizon H is given as
TC=Cyg+Co+Cp+Cs. (24)

Present value of revenue during the first ordering cycle is

t1 t1 t1
R= pd/ D(t)dt :apd/ e tdt + ﬁpd/ e Mdt
0 0 0

:@(1 _ e KH/my | @(1 — e niH/My (25)
n

and present value total revenue over the entire time horizon H is given as

n n

TR = O‘_pd(l _ evaH/n) Ze”Tﬂ'*l + @(1 _ eanH/n) ZefnTj—l
n

v j=1 Jj=1

—~H —nH
opd | garmm LZe 7 Bed ey 1
1—eH/n 1 —enH/n

apdH(1-K)1—e " pBpdH(1 - K) 1—e "
* n evH/n — 1 n enfl/n — 1"

(26)
Hence, present value of total profit over the entire time horizon H is

TP=TR-TC. (27)
Combining all the above equations and rearrange the results, we obtain

TP(n, K)

OKH/n —vKH/n —vKH/n
—ad{ P = eKHmy _ E(oxnm gy _Rfe il Y Militen
~ 0 0 0+~ v

r —~H
YH(K —1) _’_e'yH(lK)/n_]_:|} l—e™

s
el n 1—eH/n

E(eeKH/n h(QOKH/n—enKH/n eT]KH/n_1>

p —nKH/n
+8d{ L@ —em - —1)— = +
pa{ B - ey - ¢ -5 (e A
_ S _nH(K_1)+enH(1K)/n_1:|} 1_ean dH(]_—K)]_—e*’YH

Ui n 1 —e-nH/n +alp—c) n evH/n — 1

2

dH(1 - K)1—enH AeVH/" —eVH eMt/n _ o=nH
n e"H/"—l_a eYH/n 1 ent/n _ 1

+6(p—o) (28)

Theorem 2 For the given n, present value of total profit function TP(n, K) is concave
with regard to K.
Proof Let

1—e"H 1—enH 1—eH 1—enH

Uy = ——— 1 U= —————, V= ————, Uy = ——.
T 1 —eyH/m T ] _emnH/m? T gyH/m 17 T gnH/n
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For the given n, we have

oTP
0K
_ uyodH o YKH/n _ (OKH/n _ VK H/m — oy KH/n _ f[l _ e’yH(l—K)/n]
n b 0+ 2
OKH —nKH
+u,,ﬁdH {pe—nKH/n _ e/ KH/n _ h(e /m—em /n) _ f[l _ enH(l—K)/n]}
n 0+n n
d(p —c)H dlp—c)H
Lo (p—c) _ vy Bd(p — ¢) 7 (29)
n n
o’°TP
0K?2
2 OKH/n —~KH/n
_ _UWQZH {BevKH/n+CgeeKH/n+h<ge /9‘:_76 KA )_’_SeA/H(lK)/n}
n Y Y
2 OKH/n —nKH/n
_UniciH {%enKH/n+CgeeKH/n+h<ge /9‘:_77; e/ >+SenH(1K)/n}.(30)

Therefore, for the given n, égTTf < 0, TP(n,K) is concave with regard to K. We complete
the proof of Theorem 2.

Based on Theorem 2, the solution procedure to determine the optimal order frequency n*
and its corresponding K* is provided by the following algorithm.

Algorithm 2

Step 1 Input the values of all the parameters, and set TP(0) = 0 and n=1;

Step 2 Find the solution to (29). Let K = K (n)denote the solution;

Step 3 Calculate TP(n, K) from (28). Let TP(n, K(n)) denote the result;

Step 4 If TP(n,K(n)) > TP(n—1,K(n—1)), then set n =n + 1 and go back to Step 2;
otherwise, stop and set n* =n — 1, K* = K(n — 1),

Thus, we get the optimal order frequency n*, its corresponding K* and the optimal present
value of total profit TP(n*, K*). The optimal order quantity in each ordering cycle, back-
order quantity and length of ordering cycle are given as Q* = %(eeK*H/”* - 1), BQ* =
dA=KDH e — H/n*,

n

4 Numerical Example
For the hazard rate, A > 0, assume A € {0, 1,12,52,365,00}. That’s, if A = 0, the future

never comes; if A = 1,12,52, 365, the future arrives on average once a year, once a month, once
a week, once a day, respectively; if A = oo, the future arrives instantaneously. Values of other
parameters are given as: H=1 year, A=50 $/ordering, d=8000 units/year, p=1 $/unit, c=0.4
$/unit, h=0.15 $/unit/time, 6=0.02, v=0.02, =0.7, A=12.

4.1 Example 1: No Shortage

Following the solution procedure provided in subsection 3.1, we obtain the following optimal
solutions in this case: n* = 6, T* = 2month, Q*=1336 units, T P*=3035 $.
To observe the impact of parameter a on the optimal results, we change its value from 0 to

1 in step by 0.2. The results are showed in Table 1.
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Table 1 Impact of parameter o on the optimal results in the case of no shortage

! n* T (month) Q" TP*
1 4 3 2005 4389
0.8 5 2.4 1603 3476
0.6 7 1.714 1145 2602
0.4 9 1.333 890 1758
0.2 12 1 667 948
0 22 0.545 364 199

Parameter o mirrors the confidence of the decision maker towards future value of money.
Obviously, Table 1 displays that with the increase of parameter «, the optimal order frequency
decreases, order quantity in each ordering cycle increases, and present value of total profit
increases. If the decision maker reveals more confidence towards future value of money, inventory
replenishment policy of larger order quantity in each ordering cycle and smaller order frequency
should be employed to govern inventory.

Worthy of noting is that when o = 1, the present model coincides with the counterpart
under exponential discounting. Table 1 shows that the optimal present value of total profit
under exponential discounting is greater than that under quasi-hyperbolic discounting. The
main reason stems from the assumption of exponential discounting that the decision maker
is absolutely rational. Under quasi-hyperbolic discounting, the decreasing confidence towards
future value of money leads to conservative ordering.

We also observe the impact of parameter A on the optimal results, which is displayed in
Table 2.

Table 2 Impact of parameter A on the optimal results in the case of no shortage

A n* T (month) Q" TP*
0 4 3 2005 4389
1 5 2.4 1603 3823
12 6 2 1336 3035
52 6 2 1336 2911
365 6 2 1336 2873
00 6 2 1336 2866

Parameter A, the hazard rate with exponential distribution, reflects how soon the future
perceived by the decision maker will come. If A doesn’t exceed a threshold, with the increase
of A\, the optimal order frequency increases, the order quantity in each ordering cycle decreases,
and present value of total profit decreases; and that if A is greater than this threshold, with the
increase of A\, both the optimal order frequency and order quantity in each ordering cycle remain
unchanged, but present value of total profit keeps decreasing further, though the decreasing pace
slows down. Known from Table 2, the threshold in this case is A = 12, indicating the arrival
of the future on average once a month is the decision maker’s upper limit. The decision maker
will become indifferent to the hazard rate if A is greater than this threshold and A will exert
very little influence on inventory replenishment policy in this context. This kind of perception,

a presentation of anxiety to return the money, actually prevails among the decision makers,
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especially when inflation is quite severe. Therefore, if the decision maker reveals more anxiety
within a certain limit to return the money, inventory replenishment policy of smaller order
quantity in each ordering cycle and larger order frequency should be employed, in order to
lower its influence and generate more profit; otherwise, if this anxiety to return the money is
beyond this upper limit, the decision maker become indifferent to its influence and inventory
replenishment policy will not be changed any more.

Specially, when A\ = 0, the present model degenerates into its counterpart under exponential
discounting. The optimal present value of total profit under exponential discounting is greater
than that under quasi-hyperbolic discounting. This is rooted in the ground that under quasi-
hyperbolic discounting, the anxiety to return the money induces the decision maker to acquire
immediate reward and gain instantaneous satisfaction facing.

Likewise, the impact of parameter v on the optimal results is also observed and shown in
Table 3.

Table 3 Impact of parameter v on the optimal results in the case of no shortage

5 n* T (month) Q" TP*
0.001 6 2 1336 3068
0.01 6 2 1336 3053
0.05 6 2 1336 2984
0.1 6 2 1336 2901
0.5 7 1.714 1145 2337
1 9 1.333 890 1825

Table 3 shows that for v € (0,0.1), the optimal order frequency and order quantity in each
ordering cycle remain unchanged, which means that time value of money has little influence
on inventory replenishment policy in this situation; for v € [0.1, 1], with the increase of -, the
optimal order frequency increases and order quantity in each ordering cycle decreases. That’s
to say, when inflation is more severe, inventory replenishment policy of smaller order quantity

in each ordering cycle and larger order frequency should be adopted.

4.2 Example 2: Shortages with Complete Backlogging
Suppose that s=1.2 $/unit/time and that all the other parameters keep the same as in the

Example 1. Following the solution procedure provided in subsection 3.2, we have the following
optimal results:

n* =5, K* =0.7925, T* = 2.4month, Q*=1270 units, BQ* = 332 units, T P*=3034 $.

The impact of parameter « is shown in Table 4.

From Table 4, similarly, it’s obvious that with the increase of parameter «, the optimal
order frequency decreases, order quantity in each ordering cycle increases and present value of
total profit increases. In other words, if the decision maker reveals more confidence towards
future value of money, inventory replenishment policy of larger order quantity in each ordering
cycle and smaller order frequency should be employed.

Fraction of shortages plays the role on adjusting inventory level. With the increase of a,
K™ increases. That’s to say, the more confidence towards future value of money, the smaller

fraction of shortages in each ordering cycle will be. This provides the decision maker with the
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leverage on which inventory can be adjusted to be consumed within the nearer future, when
confidence towards future value of money strengthens.

Table 4 Impact of parameter « on the optimal results in the case of shortages

! n* K* T (month) Q" BQ* TP*
1 3 0.8796 4 2352 321 4361
0.8 5 0.8241 2.4 1321 281 3468
0.6 6 0.7601 2 1015 320 2613
0.4 8 0.6939 1.5 695 306 1787
0.2 10 0.6270 1.2 502 298 990
0 17 0.5761 0.7059 271 199 235

The impact of parameter A is shown in Table 5.

Table 5 Impact of parameter A on the optimal results in the case of shortages

A n* K* T (month) Q" BQ* TP*
0 3 0.8796 4 2352 321 4361
1 4 0.8433 3 1690 313 3816
12 5 0.7925 2.4 1270 332 3034
52 6 0.7905 2 1055 279 2912
365 6 0.9167 2 1224 111 2857
) 6 0.9429 2 1259 76 2849

From Table 5, similarly, we know that generally, if A doesn’t exceed a threshold, with the
increase of A, the optimal order frequency increases, the order quantity in each ordering cycle
decreases, and present value of total profit decreases; and that if A is greater than this threshold,
with the increase of A, both the optimal order frequency and order quantity in each ordering
cycle remain unchanged, but present value of total profit keeps decreasing further with a slower
pace. Known from Table 5, the threshold in this case is A = 52, indicating the arrival of
the future on average once a week is the decision maker’s upper limit. In other words, if the
decision maker reveals more anxiety within a certain threshold to return the money, inventory
replenishment policy of smaller order quantity in each ordering cycle and larger order frequency
should be employed to lower its influence and generate more profit; otherwise, if this anxiety
to return the money is beyond this upper threshold, the decision maker become indifferent to
its influence and inventory replenishment policy will not be changed any more.

If A doesn’t exceed this threshold, with the increase of parameter A\, K* decreases; if A is
greater than this threshold, with the increase of parameter \, K* increases. That’s to say, if
the decision maker reveals more anxiety within this threshold to return the money, fraction
of shortages increases; otherwise, if this anxiety to return the money is beyond this upper
threshold, fraction of shortages decreases. The leverage of fraction of shortages on inventory
level can be adjusted based on the decision maker’s anxiety to return the money.

The impact of parameter  is shown in Table 6.
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Table 6 Impact of parameter v on the optimal results in the case of shortages

vy n* K* T (month) Q" BQ* TP*
0.001 5 0.7950 2.4 1274 328 3067
0.01 5 0.7938 2.4 1272 330 3051
0.05 6 0.7897 2 1054 280 2986
0.1 6 0.7835 2 1046 289 2906
0.5 7 0.7451 1.7143 853 291 2362
1 8 0.7127 1.5 713 287 1865

Table 6 shows that on the whole, with the increase of the compounded discount rate -,
the optimal order frequency increases, order quantity in each ordering cycle decreases, and
present value of total profit decreases. This result is mainly originated from the depreciation
of money as time goes on. In other words, when the effect of inflation strengthens, inventory
replenishment policy of smaller order quantity in each ordering cycle and larger order frequency
should be adopted.

With the increase of v, K* decreases. That’s to say, with greater depreciation of money in
the future, the fraction of shortages in each ordering cycle will be larger. The decision maker

can adjust the level of shortages according the degree of inflation so as to maximize profit.

5 Conclusions

Trading off cost and benefit over time, people reveal time inconsistency and are not patient
enough towards their investment in the future. They have the inclination to gain immediate
reward, which may produce high instantaneous fulfillment but low long-term benefit. Thus, we
employ hyperbolic discounting to reflect this time inconsistency and inter-temporal preference
in inventory replenishment policy. Under hyperbolic discounting, we combine the subjective
perception of the decision maker with the objective indicator from the capital market to research
inventory replenishment policy. From our research, we come to the conclusions as follows.

For the impact of confidence towards future value of money, if embracing more confidence,
the decision maker should employ the inventory replenishment policy of larger order quantity
in each ordering cycle and smaller order frequency, which can generate more profit. If shortages
are allowed, fraction of shortages in each ordering circle should decrease with the increase of
this confidence.

For the impact of anxiety to return the money, if anxiety within a certain threshold, the
decision maker should employ the inventory replenishment policy of smaller order quantity in
each ordering cycle and larger order frequency; if anxiety beyond this threshold, the decision
maker will become indifferent to its impact and the inventory replenishment policy will keep
unchanged. If shortages are allowed, fraction of shortages in each ordering circle should decrease
with the increase of the anxiety within a certain threshold; fraction of shortages should increase
with the increase of the anxiety beyond this threshold. The threshold of the anxiety in the case
of shortages can be different from that in the case of no shortage.

For the impact of the compounded discount rate, if inflation becomes more severe, the
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decision maker should employ the inventory replenishment policy of smaller order quantity in
each ordering cycle and larger order frequency, which can generate more profit. If shortages
are allowed, fraction of shortages in each ordering circle should increase with the intensifying
of inflation.

In all the cases, the optimal present value of total profit under hyperbolic discounting is
smaller than that under exponential discounting. This result originates from the assumption of
absolute rationality and the neglect of time inconsistency under exponential discounting, when
the decision maker is facing time tradeoff to make inter-temporal decisions.

Hyperbolic discounting provides us with the insights into which we can shed light on the time
inconsistency and inter-temporal preference of the decision maker facing inter-temporal choices
to schedule inventory replenishment policy. Taking these insights into accounts, hyperbolic

discounting impacts inventory replenishment policy.
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