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Abstract In terms of distance function and spatial continuity in Voronoi diagram, a generic gener-

ating method of Voronoi diagram, named statistical Voronoi diagram, is proposed in this paper based

upon statistics with mean vector and covariance matrix. Besides, in order to make good on the discrete-

ness of spatial Voronoi cell, the cross Voronoi cell accomplished the discrete ranges in its continuous

domain. In the light of Mahalanobis distance, not only ordinary Voronoi and weighted Voronoi are

implemented, but also the theory of Voronoi diagram is improved further. Last but not least, through

Gaussian distribution on spatial data, the validation and soundness of this method are proofed by

empirical results.

Keywords Voronoi; statistics; covariance; discreteness; Mahalanobis

1 Introduction

Since the Voronoi diagram, a spatial tessellation based on closeness to points in a specific
subset of a plane, was put forward by Russian mathematician Voronoi and named after him
in 1908[1], a multiple of academicians have conducted deeply researches on it, e.g., Voronoi
diagrams — A survey of a fundamental geometric data structure was investigated[2], as well
as the research about weighted Voronoi diagrams in raster[3, 4]; centroidal Voronoi tessellations
on applications and algorithms[5, 6]; Bregman Voronoi diagrams with Bregman divergence[7]

and the fast dynamic Voronoi treemaps in the application of hierarchical visualization[8]. The
investigations about Voronoi, e.g., Voronoi-based dynamic spatial data model[9], a Voronoi-
based 9-intersection model for spatial relations[10], Voronoi-based k-order neighbour relations
for spatial analysis[11] and an algorithm for the generation of Voronoi diagrams on the sphere
based on QTM[12], have a certain academic influence in this field. In addition, the computing
spatial relations in GIS were reviewed through Voronoi methods[13], and in order to reduce
the complexity of spatial tessellation, a backward inflation generating method for Voronoi di-
agram based on linear quadtree structure was proposed[14]. The other generating method of
Voronoi diagram, for instance, a sweepline algorithm for Euclidean Voronoi diagram by circles
was produced[15], and the algorithm for constructing network Voronoi diagram based on flow
extension ideas[16] was came up on the network path distance, etc.

First and foremost, from above presentation, it could be seen that most these kinds of
methods or algorithms expedite the development of Voronoi diagram undoubtedly in theory
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and application. However, there are still some certain deficiencies that the generating methods
or algorithms are on the ground of Euclidean distance or weighted Euclidean distance based on
vector or raster data. From the point of view of uncertainty, the relativity or some distribution
that exists in data objectively was not taken into consideration.

Second, the above mentioned Voronoi diagram is onefold and continuous in the neighborhood
of generating cell. However, in practice, the adjacent relation in Voronoi cell should certainly
exist the phenomenon that one Voronoi diagram crosses the other ones. In other words, although
the Voronoi diagram is obstructed by its neighbors, it could originally present a discrete form
to keep on extending the action range along its spatial domain.

Hence, on the issues, taking probability and statistics into consideration, this paper aims
to give a generic generating method of Voronoi diagram. In remaining parts, Section 2 is fo-
cused on the spatial uncertainty that could impact the location distribution of spatial data. In
Section 3, compared with ordinary and weighted Voronoi, the general definition of statistical
Voronoi diagram is proposed according to Mahalanobis distance function derived from spatial
uncertainty. In Section 4, the generating method of general Voronoi is presented by experi-
ments, particularly for the Voronoi cell that is equipped with cross characteristic. In Section 5,
discussion and further research are given.

2 Spatial Uncertainty

2.1 Data Uncertainty

The objective world is flooded with occasional events and the spatial entities in it are
featured with complexity and variability. The data described normally are far less than the
objective ones because the global data are usually approximated by expected values. Further-
more, some certain attributes are determined by adjacent relationship among entities, not by
the data per se[17]. Uncertain spatial location means that the location obtained is inconsistent
with its real location absolutely, but it could be referred by other entities through spatial rela-
tions correspondingly, such as linear reference in GIS. Usually the mean value and covariance
are employed to describe the consistency in distribution field[18]. For example, the following
Gaussian distribution shown in Figure 1 with one variate[19].
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Figure 1 Gaussian distribution by single parameter

Due to the dimensions of space and time, uncertainty in spatial data could produce uncertain
result and deviation. Generally, the sampling data acquired from current dimension are regarded
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as an unbiased estimation for global area. Precision is often regarded as a criterion for the data
in reality.

2.2 Distribution Probability

Probability theory is usually utilized to conduct data mining in spatial database and knowl-
edge discovery in uncertain discipline under the condition that the given hypothesis is true[20].
To some degree, normal distribution is arguably the most important concept in statistics. Mean-
while it is the base of inferential statistics, so most of phenomena follow normal distribution,
as following Lemma 1 Gaussian function and Figure 2 expressed. In daily life, the probability
distribution is unknown for lots of stochastic process, yet if a bunch of sampling actions are
added together to plot frequency of all those means, assuming that they all have the same dis-
tribution, the probability distribution was discovered that it obeys normal distribution through
mean frequency obtained. It is a good approximation for the sum or the mean of a lot processes
and it could establish a certain order for the chaos in the world.

Lemma 1

f(x) = (2π)−p/2
∣∣∣Σ−1/2

∣∣∣ exp{(x − μ)TΣ−1(x−μ)}

From the aspect of likelihood, on the assumption that a random process includes the
outcomes X1, X2, · · · , Xn, at a random experiment, if Xi occurs, then Xi has the largest
probability[21], as Lemma 2 expressed. Generally speaking, the event is determined by pa-
rameter, e.i., different parameters result to different outcomes. If one occurs, the corresponding
parameter is taken as likelihood estimation. Hence, the occurrence should not be measured
only by the data itself but rather by its spatial distribution.

Lemma 2

L(θ̂) = max
θ

f(x1, x2, · · · , xn;θ)

variable1    

variable2   

0      

Figure 2 Spatial distribution by bivariate

3 Generic Voronoi Diagram

3.1 Voronoi Diagram

Definition 1 Voronoi Diagram.
Provided that P is a spatial set of points with Cartesian coordinate system, for any point

lk(lx, ly) in P space, if the distance lk to the point pi(px, py) is not greater than that lk to the
other points X under the function of Euclidean distance d, then the domain maked up by its
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trajectory is a ordinary Voronoi diagram of pi, namely V (pi), as shown below:

V (pi) = {p|d(lk, pi) ≤ d(lk, X), j �= i, i, j ∈ I}
s.t.

d(lk, pi) =
√

(px − lx)2 + (py − ly)2

Voronoi diagram can be expressed by following formula V and Figure 3(a) in visualization.

V = {V (p1) , V (p2), · · · , V (pn)}
When the distance function is modified by d(lk, pi) − wi, the range marked up by this

weighted distance one the domain is weighted Voronoi diagram[22], as Figure 3(b) shows.

(a) Voronoi diagram (b) Weighted Voronoi diagram

Figure 3 Voronoi diagram by different Euclidean distance forms

Euclidean distance is known quite well and commonly used in application, but it still has
some defect and limitation, e.g., dimension closely related and without considering relativity
among data. Besides, from the aspect of statistics, the component vectors in Euclidean space
are not related and endowed with the same covariance, or rather, every component vector has
the same contribution (weight and covariance) to distance function. Only under this condition,
can it be proper in practice, or else it will not reflect actual situation faithfully. As a result,
the Voronoi diagram generated by the Euclidean distance will result to erroneous or uncertain
conclusions under uncertain data and distribution.

3.2 Statistical Voronoi Diagram

As Euclidean distance is inapplicable for most statistics, when the coordinates are measured
by random fluctuation range, those with larger variability should be weighted more than those
with less variability[23]. Consequently, the covariance and relativity need to be considered
closely. In multivariate statistics, Mahalanobis distance could rule out the dimension influence
obtained from spatial sampling[24], its distance function dm is expressed as below:

dm(x,μ) =
√

(x − μ)Σ−1(x − μ)T

In which, μ stands for mean value, and Σ stands for covariance.

Σ =

⎛
⎝ σ2

1 σ12

σ21 σ2
2

⎞
⎠
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When Σ is simplified into unit matrix, the distance function is modified into Euclidean
distance function, the circles in Figure 4 for instance.

Figure 4 Mahalanobis distance

In practice, the mean value μ̂ and covariance Σ̂ derived from samples X̄ , S, which are
regarded as an unbiased estimation for global calculation respectively, as below formula shows.

⎧⎨
⎩

μ̂ = X̄

Σ̂ =
S

n − 1

Definition 2 Statistical Voronoi Diagram.
On the assumption that P is a spatial set of points with Cartesian coordinate system, for

any point lk(lx, ly) in P space, if the distance lk to the point pi(px, py) is not greater than that
lk to the other points X in P space under the function of Mahalanobis distance dm, then the
range maked up by its trajectory on the domain is a statistical Voronoi diagram of pi, namely
Vm(pi).

Vm (pi) = {p|dm(lk, pi) ≤ dm(lk, X), j �= i, i, j ∈ I}

The statistical Voronoi diagram can be expressed by formula Vm and Figure 5 in visualiza-
tion, including Voronoi and weighted Voronoi in a wide sense.

Vm = {Vm (p1) , Vm (p2) , · · · , Vm (pn)}
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(a) Gaussian Voronoi diagram
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(b) Gaussian weighted Voronoi diagram

Figure 5 Statistical Voronoi diagram
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4 Empirical Results and Analyses

The samples in this experiment include different existing formulations of Voronoi diagram
because of diverse covariance matrices. For example, covariance matrix of the same correlation
value in the same direction, covariance matrix of different correlation values in the same direc-
tion and covariance matrix of different correlation values in different directions. The simulated
analog spatial data that follows Gaussian distribution in experiment is acquired by Matlab 6.5
in this paper. The Voronoi can be produced by covariance matrix with the same correlation
value in the same direction and the weighted Voronoi could be generalized by covariance ma-
trix with different correlation values in the same direction, and the statistical Voronoi can be
produced by covariance matrix with different correlation values in different directions through
Mahalanobis distance function. Furthermore, the statistical Voronoi, e.i., cross Voronoi, is pre-
sented by several separated parts and expressed in a form of discreteness. Therefore, cross
Voronoi diagram could extend its action range along the spatial distribution direction of the
generating domain cell.
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Figure 6 Voronoi diagram in the same covariance matrix

The formula 1 visualized by Figure 6 refers to the same correlation value in the same
direction in covariance matrix:

Formula 1

μ1
1 =

(
3 6

)T

; μ1
2

=
(

4 3
)T

; μ1
3

=
(

6 5
)T

Σ1
1

=

⎛
⎝ 1 0

0 1

⎞
⎠ ; Σ1

2
=

⎛
⎝ 1 0

0 1

⎞
⎠ ; Σ1

3
=

⎛
⎝ 1 0

0 1

⎞
⎠
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The formula 2 visualized by Figure 7 refers to the different correlation values in the same
direction in covariance matrix.
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Figure 7 Voronoi diagram in unequal covariance matrix

Formula 2

μ2
1

=
(

3 6
)T

; μ2
2

=
(

4 3
)T

; μ2
3

=
(

6 5
)T

Σ2
1

=

⎛
⎝ 2 0

0 2

⎞
⎠ ; Σ2

2
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⎛
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⎛
⎝ 1 0

0 1
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The formula 3 visualized by Figure 8 refers to the different correlation values in different
directions in covariance matrix:

Formula 3

μ3
1

=
(

3 6
)T

; μ3
2

=
(

4 3
)T

; μ3
3
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(

6 5
)T

Σ3
1
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Figure 8 Voronoi diagram in different covariance matrix
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Taking the existing data relativity into consideration, Voronoi diagram is produced by the
same covariance matrix as Figure 6 shows. The weighted Voronoi diagram is generated with
unequal covariance matrix as Figure 7 shows. So the Voronoi diagram and weighted Voronoi
diagram could be generated through the definition of Mahalanobis distance, ruling out the extra
weight parameter in the distance function. In addition, the cross Voronoi diagram is generated,
which breaks the traditional scenario that one Voronoi diagram is merely in one range under
its continuous domain. As Figure 8 shows, statistical Voronoi domain I is divided by Voronoi
domain II, namely, a part of Voronoi range I crosses Voronoi domain II to extend its action
range, its action range is not only a continuous part any more, but also it could be existing in
two discrete forms in space.

5 Conclusions

For the limitation of traditional Voronoi and weighted Voronoi diagram, a new definition
of statistical Voronoi diagram is proposed through statistical function of Mahalanobis distance
and there is no need to think about the weight parameter which is determined adaptively by
the spatial distribution in data itself. The definition of statistical Voronoi diagram makes the
Voronoi diagram be more generalizable. Not only does it expand the theory research scope, but
also produces the cross Voronoi range, redeeming the divisibility of one Voronoi domain.

In summary, the extensive definition of Voronoi diagram, namely statistical Voronoi dia-
gram, on one hand, generalized the distance definition of Voronoi diagram and weighted Voronoi
diagram; on the other hand, the produced cross Voronoi region, which was obstructed by the
other Voronoi diagram in this paper, will be a certain alternative for practical applications. For
the underlying effect on it, there still need further research and make efforts in this field.

References
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