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Abstract This paper is concerned with testing for the varying coefficient spatial autoregressive mod-

els. Based on the profile likelihood estimation procedure, a profile generalized likelihood ratio test

procedure is proposed to test spatial lag effects, and a residual-based bootstrap procedure is used to

derive the p-value of the test. Some simulations are conducted to assess the performance of the test

and the results are satisfactory.
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1 Introduction

In the last three decades, spatial autoregressive models as a popular spatial econometric
method have received much attention in the literature. For a long time, however, its main
theory has centered around parametric models in which the relationship between the response
and the covariates is assumed to be linear. In recent years, many useful semiparametric spatial
autoregressive models have been proposed to relax traditional parametric models. Su and
Jin[1] proposed a partially linear spatial autoregressive model and studied the properties of the
profile quasi-maximum likelihood estimators for the parameters in the model. Li and Mei[2]

proposed a statistical test procedure to check a polynomial relationship of the non-parametric
component in partially linear spatial autoregressive models. Su[3] studied a nonprametric spatial
autoregressive model that the spatially lagged response variable enters the model linearly while
the covariates enter the model nonparametrically.

Like parametric models, semiparametric models have various forms. An alternative ap-
proach to relax the conditions imposed on traditional parametric models and explore the hidden
structure is varying coefficient models, which was introduced by Cleveland et al.[4] and pop-
ularized by Hastie and Tibshirani[5]. Varying coefficient model is a useful extension of linear
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regression model, by allowing all the regression coefficients to vary as unknown functions of
other factors. Due to its flexibility, varying coefficient model has been studied in many differ-
ent contexts and has been successfully applied to nonlinear time series analysis, longitudinal
and functional data analysis, and time-varying models in finance, see Fan and Zhang[6] for a
comprehensive survey. In this paper, we consider the following varying coefficient spatial au-
toregressive model by combining the spatial autoregressive model and the varying coefficient
regression model,

Yi = ρ
n∑

j=1

wijYj + XT
i α(Ui) + εi, i = 1, 2, · · · , n (1)

where Y ,
i s are responses, Xi = (Xi1, Xi2, · · · , Xip)T and Ui are associated covariates, α(·) =

(α1(·), α2(·), · · · , αp(·))T is a p-dimensional vector of unknown functions. W = (wij), 1 ≤ i, j ≤
n is a specified n × n spatial weight matrix, ε,

is are independent and identically distributed
random errors with zero mean and finite variance σ2. Obviously, when α(·) = α, model (1.1)
becomes the standard spatial autoregressive model, which was studied by Cliff and Ord[7],
Anselin[8], Kelejian and Prucha[9] and Lee[10,11]. When ρ = 0, the model (1.1) reduces to the
varying coefficient model.

For model (1), Li and Chen[12] proposed a profile likelihood approach based on the local
linear method to estimate the unknown coefficient functions α(·) and the spatial lag parameter
ρ. As we all know, an important question of spatial autoregressive model is to test the existence
of the spatial effects. This leads to the following testing problem

H0 : ρ = 0 VS H1 : ρ �= 0 (2)

For the standard linear spatial autoregressive models, Likelihood ratio test and Rao’s Score (La-
grange Multiplier ) test can be applied to solve this problem, details can be found in Anselin[8].
However, the test problem (2) is a semiparametric hypothesis versus another semiparametric
hypothesis testing problem. Many traditional tests cannot be directly applied to the above
hypothesis. For this kind of testing problem, Fan and Huang[13] proposed a profile generalized
likelihood ratio (PGLR) test based on the partially linear varying coefficient model. Thus, we
are motivated to extend the PGLR test procedure for the testing problem (2) of model (1).

The rest of this paper is organized as follows. In Section 2, the profile maximum likelihood
method to fit the varying coefficient spatial autoregressive model is briefly described to facilitate
our consequent discussions. In Section 3, the test statistic is proposed and the residual-based
bootstrap procedure is suggested to derive the p-value of the test. Simulations are conducted in
Section 4 to examine the finite sample performance of the proposed test procedure. Conclusion
is presented in Section 5.

2 Profile Likelihood Estimation Procedure

For the need of constructing the test statistic, we first introduce the profile likelihood
estimating approach of model (1) proposed by Li and Chen[12]. Let us work with the matrix
notation. Denote
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Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

...

Yn

⎤
⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎣

XT
1

XT
2

...

XT
n

⎤
⎥⎥⎥⎥⎥⎥⎦

, M =

⎡
⎢⎢⎢⎢⎢⎢⎣

XT
1 α(U1)

XT
2 α(U2)

...

XT
n α(Un)

⎤
⎥⎥⎥⎥⎥⎥⎦

, ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

...

εn

⎤
⎥⎥⎥⎥⎥⎥⎦

Then model (1) can be written as

Y = ρWY + M + ε (3)

Assume that ε ∼ N(0, σ2In), let θ = (ρ, σ2)T, the log-likelihood function of model (3) is

log Ln(Y |θ, α(U1), α(U2), · · · , α(Un))

= −n

2
log(2π) − n

2
log(σ2) + log|In − ρW | − (Y − ρWY − M)T(Y − ρWY − M)

2σ2
(4)

where In is the identity matrix of order n.
If the parameter ρ is known, then model (1) can be written as

Y ∗
i = α1(Ui)Xi1 + α2(Ui)Xi2 + · · · + αp(Ui)Xip + εi (5)

where (Y ∗
1 , Y ∗

2 , · · · , Y ∗
n ) = Y − ρWY = (In − ρW )Y . This transforms the varying coefficient

spatial autoregressive model (1) into the standard varying coefficient model (5). Now, we
apply a local linear regression technique to estimate the varying coefficient functions {αj(·), j =
1, 2, · · · , p} in the model (5). For u in a small neighborhood of u0, one can approximate αj(·)
locally by a linear function

αj(u) ≈ αj(u0) + α′
j(u0)(u − u0), j = 1, 2, · · · , p

This leads to the following weighted local least-squares problems: find
[
αj(u0), α′

j(u0)
]

to
minimize

n∑
i=1

⎡
⎣Y ∗

i −
p∑

j=1

{αj(u0) + α′
j(u0)(Ui − u0)}Xij

⎤
⎦

2

Kh(Ui − u0) (6)

where K is a kernel function, h is a bandwidth and Kh(·) = K(·/h)/h.
Let

Du0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

XT
1 (U1 − u0)XT

1

XT
2 (U2 − u0)XT

2

...
...

XT
n (Un − u0)XT

n

⎤
⎥⎥⎥⎥⎥⎥⎦

, S =

⎡
⎢⎢⎢⎢⎢⎢⎣

(XT
1 01×p){DT

u1
Ku1Du1}−1DT

u1
Ku1

(XT
2 01×p){DT

u2
Ku2Du2}−1DT

u2
Ku2

...

(XT
n 01×p){DT

un
KunDun}−1DT

un
Kun

⎤
⎥⎥⎥⎥⎥⎥⎦

with 01×p is the 1 × p zero matrix, and

Ku0 = diag{Kh(U1 − u0), Kh(U2 − u0), · · · , Kh(Un − u0)}.
The solution of the problem (6) is given by

[
α̂1(u0), · · · , α̂p(u0), α̂′

1(u0), · · · , α̂′
p(u0)

]T = {DT
u0

Ku0Du0}−1DT
u0

Ku0(In − ρW )Y .
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Then, we have

α̂(u0) = (Ip 0p){DT
u0

Ku0Du0}−1DT
u0

Ku0(In − ρW )Y (7)

where 0p is the p × p zero matrix.
We take u0 to be each of U1, U2, · · · , Un, then we can obtain the estimators of α̂(Uj), j =

1, 2, · · · , p. Then we can define the estimator for M as

M̄ =
[
XT

1 α̂(U1), XT
2 α̂(U2), · · · , XT

n α̂(Un)
]T

= S(In − ρW )Y (8)

Replacing M of (4) by M̄ , we obtain the following profile log-likelihood function

log Ln(Y |θ) = −n

2
log(2π) − n

2
log(σ2) + log|In − ρW |

− 1
2σ2

[
Y − ρWY − M̄

]T [
Y − ρWY − M̄

]

= −n

2
log(2π) − n

2
log(σ2) + log|A(ρ)|

− 1
2σ2

[(In − S)(In − ρW )Y ]T [(In − S)(In − ρW )Y ] (9)

Given ρ, by differentiating log Ln(Y |θ) with respect to σ2, we obtain the following equation:

∂log Ln(Y |θ)
∂σ2

= 0 ⇒ nσ2 = [(In − S)(In − ρW )Y ]T [(In − S)(In − ρW )Y ] (10)

Then, the profile maximum likelihood estimator of σ2 can be obtained as

σ̂2(ρ) =
1
n

Y T(In − ρW )T(In − S)T(In − S)(In − ρW )Y (11)

Furthermore, the concentrated log-likelihood function of ρ is

log Ln(ρ) = −n

2
[log(2π) + 1] − n

2
log[σ̂2(ρ)] + log|In − ρW | (12)

Maximizing log Ln(ρ) leads to the estimator ρ̂ of ρ. Then, we can define the final estimator of
σ2 as σ̂2 = σ̂2(ρ̂). Substituting ρ̂ into (8), we can obtain the estimator of M as

M̂ = S(I − ρ̂W )Y (13)

Finally, the residual vector is

ε̂ = Y − ρ̂WY − M̂ (14)

3 Profile Generalized Likelihood Ratio Test

3.1 Construction of the Test Statistic

On one hand, under the alternative hypothesis H1, we can obtain the profile log-likelihood
as

l(H1) = −n

2
[log(2π) + 1] − n

2
log[σ̂2(ρ̂)] + log|In − ρ̂W | (15)

On the other hand, if the null hypothesis H0 is true, model (1) reduces to the following standard
varying coefficient model

Yi = XT
i α(Ui) + εi, i = 1, 2, · · · , n (16)
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As a special case of model (3), we can obtain the profile log-likelihood of model (16) as

l(H0) = −n

2
[log(2π) + 1] − n

2
log(σ̃2) (17)

with

σ̃2 =
∑n

i=1[Yi − XT
i α̃(Ui)]2

n
, α̃(Ui) = (Ip 0p){DT

Ui
KUiDUi}−1DT

Ui
KUiY

Following Fan and Huang[13], we define the profile generalized likelihood ratio test statistic

T = l(H1) − l(H0) =
n

2
log

(
σ̃2

σ̂2(ρ̂)

)
+ log|In − ρ̂W | (18)

Intuitively, if H0 is true, there should not be significant difference between RSS(H0) and
RSS(H1). Otherwise, RSS(H0) − RSS(H1) will tend to take a large positive value as RSS(H0)
should become systematically larger than RSS(H1) under H1. Hence, a large value of the test
statistic Tn indicates that the null hypothesis should be rejected. If we denote the observed
value of T by t, the p-value of the test is

p = PH0(T ≥ t) (19)

where PH0(·) refers to the probability computed under the null hypothesis H0. For a given
significance level a, if p < a then reject H0; otherwise not reject H0.

3.2 Calculation of the p-Value by the Residual Based Bootstrap Approach

For the proposed test statistic T , it is difficult to obtain its asymptotic null distribution as
the presence of the spatial lag term in model (1). To solve this problem, the bootstrap approach
was suggested to obtain the p-value by many researchers (Cai et al.[14], Fan and Jiang[15], Hall
and Hart[16], Herwartz and Xu[17]). In the following, we propose here a residual based bootstrap
procedure to derive the p-value of the test.

Step 1 Based on the data set {Yi, Xi, Ui}n
i=1, under H1, compute the residual vector ε̂1 =

(ε̂11, ε̂21, · · · , ε̂n1) shown in (14) and centralize it to obtain ε̂ = (ε̂11 − ¯̂ε1, ε̂21− ¯̂ε1, · · · , ε̂n1− ¯̂ε1)
in which ¯̂ε1 = 1

n

∑n
i=1 ε̂i1. Furthermore, with the estimation results under both H0 and H1,

compute the observed value t of the test statistic T by (18).

Step 2 Generate the bootstrap residuals ε̂∗ = (ε̂∗1, ε̂
∗
2, · · · , ε̂∗n) from the empirical distribu-

tion function of ε̂. Define

Y ∗
i = XT

i α̃(Ui) + ε̂∗i

Step 3 Calculate the bootstrap test statistic T ∗
n based on the data set {Y ∗

i , Xi, Ui}n
i=1.

Step 4 Repeat Steps 2 and 3 k times and obtain a bootstrap sample of the test statistic
T as T ∗

1 , T ∗
2 , · · · , T ∗

k . The p-value is then estimated by

p̂ =
�{T ∗

i : T ∗
i ≥ t}

k

where t is the observed value of the test statistic T obtained in Step 1 and �A denotes the
number of the elements in set A.

For the sake of simplicity, we use the same bandwidth in calculating T ∗
i as that in t.
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4 Simulation Studies

In this section, we shall conduct some simulations to examine the performance of the pro-
posed estimate procedure.

Assume that the observations are collected from a uniform, two-dimensional grid consisting
of m × m lattice points with unit distance between any two neighboring points along the
horizontal and vertical axes. These m2 points are arranged in an orthogonal coordinate system.
We generate the spatial weight matrix W according to the principle of Rook contiguity.

The data are generated from the following varying coefficient spatial autoregressive model

Yi = ρ
n∑

j=1

wijYj + α1(ui)xi1 + α2(ui)xi2 + εi

where x1i ∼ U(−2, 2), x2i ∼ N(1, 1), ui ∼ U(0, 1), and α1(ui) = sin(2πui) + 1, α2(ui) =
2e−2(2ui−1)2 + 3ui. The spatial lag parameter ρ took each of the values in the set (−0.15,−0.1,

−0.05, 0, 0.05, 0.1, 0.15). To gain an idea of the effect of the distribution of the error on our
results, we take the following two different types of the error distribution, 1) εi ∼ N(0, 1), 2)
εi ∼ U(−√

3,
√

3). In the simulation, the kernel function was taken to be the Gaussian kernel
K(z) = 1√

2π
exp(− z2

2 ), and the smoothing parameter h was taken as sun−1/5 for simplicity,
where su is the sample standard deviation of u1, u2, · · · , un.

For each given value of ρ and each type of error distribution and bandwidth, 1000 replications
with n = 102, 152 were run and the rejection rate at the significance level α = 0.05 was computed
as the simulated power of our proposed test procedure. And for each replication, the p-value
was computed based on m = 500 bootstrap samples. The results are shown in Table 1.

Table 1 The Rejection frequencies for H0 : ρ = 0 at the significance level α = 0.05

ρ ε ∼ N(0, 1) ε ∼ U(−√
3,
√

3)

m = 10 m = 15 m = 10 m = 15

−0.15 0.944 0.999 0.954 1.000

−0.1 0.692 0.964 0.691 0.956

−0.05 0.229 0.453 0.245 0.464

0 0.055 0.059 0.049 0.054

0.05 0.256 0.549 0.237 0.538

0.1 0.768 0.977 0.737 0.986

0.15 0.980 1.000 0.998 1.000

We summarize our findings as follows. When the null hypothesis is true (that is ρ = 0), the
rejection frequencies (estimated sizes) of our proposed test are quite good and close to their
nominal level 0.05 under different error distributions. Under the alternative hypothesis, the
rejection rate seems very robust to the variation of the type of error distribution, and increases
rapidly as the alternative hypothesis deviates from the null hypothesis.
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5 Conclusion

In this paper, a test approach is proposed to check the existence of spatial effects in vary-
ing coefficient spatial autoregressive models, in which a residual-based bootstrap procedure is
suggested to derive the p-value of the test. The simulation experiment demonstrates that the
proposed test performs satisfactorily.
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