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Abstract This paper considers the uniform parallel machine scheduling problem with controllable

delivery times, which assumes that the delivery times of jobs are linear decreasing functions of the

consumed resource. It aims to minimize the maximum completion time under the constraint that the

total resource consumption does not exceed a given limit. For this NP-hard problem, we propose a

resource allocation algorithm, named RAA, according to the feasible solution of the uniform parallel

machine scheduling problem with fixed delivery times. It proves that RAA algorithm can obtain the

optimal resource allocation scheme for any given scheduling scheme in O(n log n) time. Some algorithms

based on heuristic algorithm LDT, heuristic algorithm LPDT and simulated annealing are proposed to

solve the uniform parallel machine scheduling problem with controllable delivery times. The accuracy

and efficiency of the proposed algorithms are tested based on those data with problem sizes varying

from 40 to 200 jobs and 2 to 8 machines. The computational results indicate that the SA approach is

promising and capable of solving large-scale problems in a reasonable time.

Keywords scheduling; uniform parallel machine; resource allocation; delivery times

1 Introduction

In the field of production scheduling, the tails of the jobs are a kind of common scheduling
parameters, which are corresponding to some products’ post-processing time in the reality, such
as the cooling process of hot products, and the shaded drying process. Especially the delivery
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times are treated as the tails when the scheduling problems in the direct distribution mode.
Generally, delivery time is regarded as a substitution word of tail in the field of scheduling.
The scheduling problems subject to delivery times(equal to tails) are researched extensively by
scholars.

At the earliest Carlier[1] considered the problem of scheduling independent jobs with tails
on m identical machines to minimize the makespan. Following him, Drozdowski and Kubiak[2]

considered scheduling of parallel tasks in which a linear programming was presented to find an
optimal schedule for a given sequence with tails. Lancia[3] dealt with the problem of assign-
ing a set of n jobs with tails, to either one of two unrelated parallel machines and scheduling
each machine so that the makespan is minimized. Sourd and Nuijten[4] discussed scheduling
problems that combine tails and deadlines or, equivalently, due delivery times and deadlines.
Mauguière et al.[5] considered the problem of the representation of a set of dominant schedules
by a sequence of groups of permutable jobs in a single machine problem with tails. Gharbi and
Haouari[6] considered the problem of minimizing the makespan on identical parallel machines
subject to delivery times. Vakhania[7] studied the problem of scheduling jobs with tails on a
single machine with the objective to minimize the makespan. Haouari and Gharbi[8] investi-
gated new lower bounds for the scheduling problem on identical parallel machines with tails.
Gharbi and Haouari[9] addressed the makespan minimization for parallel identical machines
subject to tails. Boxma and Zwart[10] gave an overview of recent researches on the impact of
scheduling on the tail behavior of the response time of a job. Li and Yang[11] considered the
uniform parallel machine scheduling problem with unequal release dates and delivery times to
minimize the maximum completion time. The delivery times(or tails) are all assumed to be
constant parameters in the above-mentioned classical deterministic situations, thus these could
be classified as the problems of scheduling jobs with fixed delivery times.

In reality, the production efficiency can be raised by investing additional resource, such as
money, energy, and catalyst. There is generally the assumption that additional resources inputs
affect the release times and processing times at present achievements. Release time is another
general parameter in scheduling problem. Job must be processed after its release time, so that
release time is called as head. For example, Janiak[12] studied an extension of the classical single
machine scheduling problem with release dates which is a positive linear decreasing function
with respect to the amount of a common resource. For the same problem as studied in [12], Li
et al.[13] designed a simulated annealing algorithm to obtain near-optimal solutions with high
quality. Computational results show that the proposed algorithm is promising and is capable
of solving large-scale problems in a reasonable amount of time. Zhang et al.[14] considered the
single-machine scheduling problems with release time which is a positive and strictly decreasing
function about resource consumption.

For controllable processing time problem, Wei and Wang[15] considered single-machine
scheduling problems in which the processing time of a job is a function of its starting time
and its resource allocation. Zhao and Tang[16] considered the single machine scheduling prob-
lems with deteriorating jobs whose processing times are a decreasing linear function of their
starting time. Wang and Wang[17] studied a single-machine earliness-tardiness scheduling prob-
lem with due date assignment, in which the processing time of a job is a function of its starting
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time and its resource allocation. Wang and Wang[18] considered scheduling problems with
convex resource dependent processing times and deteriorating jobs, in which the processing
time of a job is a function of its starting time and its convex resource allocation. Janiak and
Portman[19] considered a single machine scheduling problem with job processing times depen-
dent on continuously-divisible resource. Li et al.[20] considered the identical parallel machine
problem to minimize the makespan with controllable processing times, in which the processing
times are linear decreasing functions of the consumed resource. A simulated annealing algorithm
was designed to obtain the near-optimal solutions with high quality. Hsu and Yang[21] analyzed
unrelated parallel-machine scheduling resource allocation problems with position-dependent
deteriorating jobs, in which each job processing time can be compressed through incurring an
additional cost.

In many practical cases, the job tails (delivery times) would be shortened by using additional
resources for increasing customer satisfaction just as release times and processing times. In such
cases, each delivery time is a decision variable to be determined by the scheduler, who can take
advantage of this flexibility to improve system performance. Scheduling problems with variable
delivery times are very interesting both from the practical and theoretical point of view. For
instance, such a problem arises in steel production, where color-coated steel sheets must be dried
in baking ovens by gas. The drying time is inversely proportional to the gas flow intensity. The
drying time of each color-coated steel sheet may be regarded as a tail time and its value is
a linear decreasing function of the consumed gas. Although the scheduling problems with
controllable release times or controllable processing times have been extensively studied, to the
best of our knowledge, there is no paper on controllable delivery times.

Consider a manufacturer that has m machines for processing jobs. Some of the machines
are newer models while others are older models. The machines are functionally the same; they
only differ in terms of speed. So uniform machines are the parallel machines with different
processing speeds. And uniform parallel machine problem is a extended version of identical
parallel machine problem in which the machines have the same speed. In this paper we study a
class of uniform parallel machine scheduling problem with controllable delivery times, in which
the delivery times of jobs are supposed to be the linear decreasing functions of the consumed re-
source. For convenient demonstration, UPCD is short for “Uniform parallel scheduling problem
with controllable delivery times”, and UPFD short for “Uniform parallel scheduling problem
with fixed delivery times”.

To solve the new UPCD problem, we extend the existing algorithms of the correspond-
ing UPFD problem firstly, and then introduce simulated annealing to obtain the solutions
with higher quality. Simulated annealing algorithm, which is a global optimization algorithm
based on neighborhood searching, has strong ability of jumping out of the local optimum and
searching the global optimum or approximate optimum, and is irrelevant to the initial solution.
Metropolis[22] first proposed the simulated annealing algorithm, which is an optimal algorithm
simulating solid annealing process. Kirkpatrick et al.[23] applied the simulated annealing in the
field of combinatorial optimization. Yin et al.[24] addressed a two-agent scheduling problem
on a single machine where the objective is to minimize the total weighted earliness cost of all
jobs, while keeping the earliness cost of one agent below or at a fixed level Q. A simulated
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annealing algorithm was developed to derive the near-optimal solutions. Bank et al.[25], Nouria
et al.[26] and Dai et al.[27] introduced the idea of simulated anneal to solve flow shop scheduling
problems. Naderi et al.[28] designed simulated annealing algorithm for the job shop scheduling
problem with sequence-dependent setup times. Shafia et al.[29] defined the train scheduling
problem as a job shop scheduling problem and developed a simulated annealing algorithm to
solve the problems with large-scales.

The paper is organized as follows. In Section 2, the problem description is provided. A
resource allocation algorithm is proposed in Section 3. Section 4 is devoted to three algorithms
for solving the considered UPCD problem. Section 5 lists a number of computational results to
analyze the performance of the three algorithms. Finally, some concluding remarks are provided
in Section 6.

2 Problem description

This paper considers a class of UPCD problem, in which the job’s delivery times are assumed
as the linear decreasing function of resources consumed. The objective is to minimize the
maximum completion time under the given total resources. The job completion time equals to
the sum of the finished time and the corresponding delivery time. Assume there are m machines
Mi(i = 1, 2, · · · , m), the processing speed of which have constant difference, the processing speed
of machine Mi is si(si > 0). Given n jobs Jj(j = 1, 2, · · · , n), the corresponding basic processing
time is pj(pj > 0) if it is processed by a machine with speed 1. Job Jj(∀j = 1, 2, · · · , n) can be
processed on any machine, and if Jj is processed at machine Mi, the actual processing time is
pij = pj/si. Job Jj(j = 1, 2, · · · , n) has a post process after the completion, the time qj of which
is the linear decreasing function of resources consumed uj , qj = q̄j − uj, in that q̄j(q̄j ≥ 0) is
the basic delivery times of job Jj without any additional resources, and uj(0 ≤ uj ≤ q̄j)
is the additional resources for shorting the delivery times. This problem can be denoted as
Qm|qj = q̄j − uj,

∑
uj ≤ Û |Cmax with the three parameters notation, where Qm means that

the scheduling type is uniform parallel machine, qj = q̄j −uj means that the delivery times has
the linear decreasing relation with the additional resources, the objective is to minimize Cmax

under the constraint that the total resource consumption does not exceed a given limit Û .

Let Π be the universal set of scheduling schemes, π(π ∈ Π) is a feasible scheduling scheme
that can be run for π = {π1, π2, · · · , πm}, and πi(i = 1, 2, · · · , m) is the sub-scheduling scheme
at the machine Mi. We use |πi| to represent the number of the sub-scheduling scheme πi,
πi

k(0 ≤ k ≤ |πi|) to be the kth job in the sub-scheduling scheme πi, and k = 0 if and only
if |πi| = 0, when there are not any jobs in the sub-scheduling scheme πi. Similarly, as U

is the universal set of resource allocation schemes, u(u ∈ U) is a feasible resource allocation
scheme that can also be run for u = {u1, u2, · · · , um} corresponding to the scheduling scheme,
and ui(i = 1, 2, · · · , m) is the sub scheme formed by the resource allocation of each job in the
sub-scheduling scheme at the machine Mi, with ui

k(0 ≤ k ≤ |πi|) to be the additional resources
allocated on the kth job in the sub-scheduling scheme πi. Note the processing time and the
delivery times of πi

k as pi
k(pi

k = p(πi
k)/si) and qi

k(qi
k = qi

k − ui
k), with p(πi

k)/si and qi
k to be the

basic processing time and the delivery times of πi
k. A feasible solution (π, u) can be described as

a two-tuples made up by scheduling scheme π and its corresponding resource allocation scheme
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u. Under the precondition without ambiguity, U(π, u) shows the resources consumed by the
feasible solution (π, u), that is U(π, u) =

∑m
i=1

∑|πi|
k=0 ui

k.
Given a feasible solution (π, u), S(πi

k), c(πi
k), C(πi

k, ui
k) are indicated as the starting time,

the finished time and the completion time (the sum of the finished time and the delivery time)
of the job πi

k. Then

S(πi
k) =

⎧⎪⎪⎨
⎪⎪⎩

k−1∑
r=1

pi
r; 1 < k ≤ |πi

k|

0; k = 1

(1)

c(πi
k) = S(πi

k) + pi
k =

k∑
r=1

pi
r; 1 ≤ k ≤ |πi

k| (2)

C(πi
k, ui

k) = c(πi
k) + qi

k =
k∑

r=1

pi
r + qi

k − ui
k; 1 ≤ k ≤ |πi

k| (3)

Cmax(π, u) = max
1≤i≤m

max
1≤k≤|πi|

C(πi
k, ui

k) = max
1≤i≤m

max
1≤k≤|πi|

( k∑
r=1

pi
r + qi

k − ui
k

)
(4)

The objective of this problem is to find π∗ and its corresponding u∗, makes

Cmax(π∗, u∗) = min
π∈Π

min
u∈U

Cmax(π, u) (5)

s.t. U(π∗, u∗) ≤ Û (6)

3 Resource Allocation Algorithm

This section assumes (π, 0) to be an arbitrary feasible solution of UPCD, in which any
job’s resource allocation amount is 0, obviously (π, 0) is a feasible solution of the corresponding
UPFD problem. Then we try to construct a resource allocation algorithm named RAA, which
can improve the existing UPFD algorithm to solve the UPCD.

Algorithm RAA (Resource allocation algorithm of UPCD)

Step 1 Given a feasible solution (π, 0) of UPCD;

Step 2 Calculate the sum of job’s completion times C(π, 0), and sequence n jobs in non-
increasing order of the completion times;

Step 3 Let j = 1, C(πn+1, 0) = 0;

Step 4 If j > n, then end; else �= C(πj , 0) − C(πj+1, 0);

Step 5 qmin = q1; for k = 1 to j: qmin = min(qmin, qk);

Step 6 If �> qmin and Û ≥ j ·qmin, then Cmax(π, u) = C(π1, 0)− qmin, return Cmax(π, u), end.

Step 7 If �> qmin and Û < (j + 1) · qmin, then Cmax(π, u) = C(π1, 0) − Û/(j + 1), return
Cmax(π, u), end.

Step 8 If �< qmin and Û < (j + 1)· �, then Cmax(π, u) = C(π1, 0) − Û/(j + 1), return
Cmax(π, u), end.

Step 9 If �< qmin and Û ≥ (j + 1)· �, then Û = Û − (j + 1)· �. If Û = 0, then return
Cmax(π, u), end.
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Step 10 For k = 1 to j: qk = qk− �, C(πk, 0) = C(πk, 0)− �; If qk = 0, then return Cmax(π, u),
end; Else j = j + 1, go to Step 4.

Theorem 1 For any feasible solution (π, 0) of UPCD, suppose that the resource allocation
scheme obtained by RAA algorithm is u∗, then u∗ is the optimal resource allocation scheme of
scheduling scheme π.

Proof Assuming that (π, 0) is the feasible solution of UPCD, u∗ = {u1, u2, · · · , un} is the
resource allocation scheme obtained by RAA algorithm. From the resource allocating for jobs
by RAA, the completion times have C(πi

1, 0) ≥ C(πi
2, 0) ≥ · · · ≥ C(πi

n, 0). The property is
proven by induction of n: Since n = 1, Property 1 is established apparently. Since n = 2,
� = C(πi

n−1, 0) − C(πi
n, 0); suppose qmin = q1, for k = 1 to n − 1: qmin = min(qmin, qk); There

are three cases to be considered:
Case 1: Û ≤ (n − 1)�, u∗ is the optimal resource allocation scheme apparently.
Case 2: Û ≤ (n − 1) · qmin and qmin ≤ �, u∗ is the optimal resource allocation scheme

apparently.
Case 3: Û ≤ (n− 1) · qmin and qmin > �, after allocating resources for scheduling scheme π

using RAA algorithm, u∗ = {u1, u2} is a resource allocation scheme of π with Cmax(π∗, u∗) =
C(π1, 0) − (u1 + u2), u1 = � , u2 = min(U/n, qmin) where qmin = q1, for k = 1 to n: qmin =
min(qmin, qk).

Resources are allocated to the job with the longest completion time firstly, then the second-
longest. u1 is the maximum level of shortening of job J1’s delivery times, the same to u2 for
job J2. Thus, u∗ = {u1, u2} is the optimal resource allocation scheme. Since n = 3, take the
first two jobs as one job after one allocation, and then the situation is similar to n = 2. Since
n = k, take the first j jobs as one job after one allocation, and then the situation is similar to
n = k − 1. Therefore, the resource allocation scheme obtained by RAA algorithm is optimum.

Theorem 2 The time complexity of resource allocation algorithm RAA is O(n log n).

4 Algorithms for UPCD

The resource allocation algorithm RAA in the previous section can find the optimal resource
allocation scheme in polynomial time for any given feasible solution (π, 0) of UPCD; therefore,
this section design algorithms for UPCD based on it. We allocate resources to the solution
of LDT (largest delivery time firstly) and LPDT (largest processing and delivery time firstly)
algorithm for obtaining the corresponding UPCD problem solution firstly, and then construct
optimization algorithm for UPCD based on simulated annealing to obtain satisfactory solution
of higher quality.

4.1 Algorithms for UPCD Based on Heuristic Rules

In solving UPFD problem, the most common heuristic rules are LDT and LPDT. [30] ad-
dressed the LDT algorithm for UPFD problem, and demonstrated that LDT algorithm is the
((m − 1)s1/

∑m
i=1 si + 1)-approximation algorithm to UPFD, where s1 is the fastest process-

ing speed of the machines. Although the LDT rules can obtain the optimal solution for the
corresponding single machine problem with fixed delivery times, but there is a clear defect in
solving UPFD problem. Due to the different speed of the machine in the uniform parallel ma-
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chine problem, the faster machine is usually given the priority for making full use of processing
capacity of the machine. Taking the job with longer delivery times precedence in the LDT
algorithm may make a short job assigned a faster machine, and a long job assigned to a slower
one. While the delivery times of the two jobs only have small differences, longer job gets very
big completion time on slow machine, so as to make the poor solution. In [31] we constructed a
heuristic algorithm named LPDT, which gives priority to the job with the largest sum of deliv-
ery and processing time when assigning machine for jobs. It usually can get a better solution
than LDT, and avoid the large completion time situation caused by assigning long job on the
slow machine in LDT algorithm. Thus we realize the optimal allocation of resources based on
LDT algorithm and LPDT algorithm of UPFD, and then the corresponding UPCD solving.

Algorithm LDT-RAA (LPDT-RAA)

Step 1 Sort all the jobs in the non-increasing order of delivery time in the job queue; (in LPDT-
RAA, the jobs are sorted in the non-increasing order of the sum of the processing time
and the corresponding delivery time);

Step 2 Put the job in the job queue on the machine with the smallest Cmax (If there are more
than one, then choose the slow machine), and delete the job from the collection;

Step 3 If the job queue is empty, then generate the solution (π, 0), end; else go to Step 2;

Step 4 Implement RAA algorithm on the solution (π, 0), get the resource allocation scheme
u, and thus the solution (π, u) of UPCD are generated. Return (π, u) and Cmax(π, u),
end.

4.2 Simulated Annealing Algorithm for UPCD

Simulated annealing algorithm is based on neighborhood searching; therefore we construct
the neighborhood generation methods firstly. Here we construct two neighborhood generation
methods, swap neighborhood and insertion neighborhood.

A swap neighbor is obtained by exchanging the positions of a pair of selected jobs. The swap
neighborhood N1 is the universal set of all the swap neighbors of the current schedule. Here
we generate two random integer numbers r2, r3(r2, r3 ∈ [1, n]; r2 �= r3) and the job Jr2 and Jr3

are not processed by the same machine. Exchange job Jr2 and Jr3 to generate a new sequence
(π′, 0), and then a new neighborhood solution (π′, u′) can be obtained by RAA algorithm.

An insertion neighbor is obtained by inserting a selected job into a different position in
the current schedule. The insertion neighborhood N2 is the universal set of all the insertion
neighbors of the current solution. In the simulated annealing algorithm, we generate two random
integer numbers r4(r4 ∈ [1, n]) and r5(r5 ∈ [1, m]), and job Jr4 is not in the sub-scheduling on
machine Mr5 . Insert job Jr4 on the machine Mr5 to generate a new schedule (π′, 0), which is
distributed resources for new neighborhood solution (π′, u′) according to RAA algorithm.

Algorithm SA for UPCD

Step 1 As dependency of SA to initial solution is not strong, then order all jobs with the rules
LDT to (π, 0), which is implemented the RAA algorithm to generate initial solution
(π, u) and the sum of completion times Cmax(π, u);



532 LI K, LI H, CHENG B Y, et al.

Step 2 Set the initial temperature T = 100;

Step 3 If T ≤ ε (where ε = 0.001) or there is no new solution at the same temperature, then
return (π, u) and Cmax(π, u),end.

Step 4 Set the iteration length L at the same temperature (where L := n/2);

Step 5 Generate a random number r1(r1 ∈ [0, n]);

Step 6 If r1 < 0.7, then goto Step 7; else goto Step 8;

Step 7 Generate the new neighborhood solution (π′, 0) from swap neighborhood N1, and get
the corresponding solution (π′, u′) and Cmax(π′, u′); goto Step 9;

Step 8 Generate the new neighborhood solution (π′, 0) from insertion neighborhood N2, and
get the corresponding solution (π′, u′) and Cmax(π′, u′); goto Step 9;

Step 9 � Cmax := Cmax(π′, u′)−Cmax(π, u). If � Cmax < 0, then (π, u) := (π′, u′), Cmax(π, u) :=
Cmax(π′, u′); goto Step 11;

Step 10 Generate a random number r6(r6 ∈ [0, 1]). If exp(− � Cmax/T ) > r6, then (π, u) :=
(π′, u′), Cmax(π, u) := Cmax(π′, u′);

Step 11 L := L− 1. If L = 0, then T := αT (where α = 0.8) and goto Step 5; else goto Step 3.

Table 1 Experiments with shorter basic delivery times and more resources

m n CLDT−RAA
max CLPDT−RAA

max CSA
max Gap(SA) Time(SA)

2 40 162.62 174.87 172.12 1.578 0.15

80 386.50 383.37 383.37 0.000 1.28

120 587.75 585.37 585.37 0.000 4.17

160 813.37 812.25 812.00 0.031 9.82

200 1005.88 1001.75 1005.00 0.025 19.67

4 40 120.13 114.50 112.38 1.852 0.14

80 247.20 243.38 242.13 0.514 0.56

120 379.62 371.00 369.50 0.404 4.14

160 515.80 512.00 510.60 0.273 9.90

200 635.37 630.80 630.25 0.087 19.65

6 40 62.50 60.50 59.00 2.480 0.12

80 135.25 128.60 127.00 1.244 1.26

120 197.60 194.90 193.00 0.515 4.25

160 271.00 266.90 266.00 0.337 10.00

200 332.40 327.80 327.40 0.122 20.25

8 40 44.75 39.88 38.00 4.714 0.11

80 86.10 81.60 80.22 1.691 1.28

120 126.44 123.70 122.78 0.744 4.19

160 173.50 168.11 168.00 0.065 10.25

200 212.22 207.89 207.67 0.106 20.77
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5 Experiment Results and Analysis

In this section, we describe the numerical experiments to evaluate the algorithm proposed
in the previous section. All algorithms are enabled by C++ language in BloodShed Dev-C+
+ 4.9.9.2. Experimental environment is the Pentium (R) 3.2 GHZ Dual-Core CPU, with 4GB
memory and the Microsoft Windows XP professional operating system. All the experimental
data are generated randomly by computer.

In order to make the experiment results more objective, four groups results cross combined
by longer, shorter delivery times, more and little resources are given. In each experiment,
UPCD problem with 2, 4, 6, 8 machines, 40, 80, 120, 160, 200 jobs are considered. We select
various parameters for the actual production environment: 1) Set the speed si of machine Mi

to a integer in [1, 10]; 2) Take the job length pj to a integer [1, 100] in randomly; 3) Longer
basic delivery times q̄j ∈ U(50, 100) and shorter basic delivery times q̄j ∈ U(0, 30); 4) More
resources U = 3, 000 and little resources U = 150.

Table 2 Experiments with longer basic delivery times and more resources

m n CLDT−RAA
max CLPDT−RAA

max CSA
max Gap(SA) Time(SA)

2 40 179.37 175.00 172.12 1.573 0.14

80 386.00 383.88 383.37 0.133 1.20

120 588.88 585.50 585.37 0.022 4.41

160 819.12 812.75 812.00 0.093 9.81

200 1004.38 1002.25 1005.00 0.075 19.37

4 40 114.75 115.00 112.50 1.961 0.15

80 249.87 244.00 242.00 0.820 1.28

120 379.00 370.38 369.50 0.237 4.10

160 514.38 511.88 510.60 0.250 10.00

200 636.80 631.20 630.25 0.151 20.01

6 40 63.25 63.75 58.60 8.078 0.12

80 133.70 129.88 127.20 2.056 1.2

120 199.40 194.80 193.00 0.924 4.12

160 271.60 267.00 266.00 0.357 10.12

200 336.60 328.20 327.30 0.274 20.18

8 40 40.70 48.56 37.75 7.248 0.12

80 84.70 81.56 80.00 1.913 1.22

120 128.77 124.67 122.80 1.500 4.12

160 174.75 168.00 167.40 0.357 9.94

200 213.60 208.80 207.66 0.274 20.56

In these four tables, LDT-RAA gets the objective function value based through carrying
out RAA on LDT algorithm with LPDT-RAA and SA corresponding to the algorithm, and



534 LI K, LI H, CHENG B Y, et al.

defines Gap(SA) as follows:

Gap(SA) =
min{CLDT−RAA

max , CLPDT−RAA
max } − CSA

max

min{CLDT−RAA
max , CLPDT−RAA

max } × 100 (7)

in which min{CLDT−RAA
max , CLPDT−RAA

max } is the less between objective function values of LDT-
RAA and LPDT-RAA algorithm, CSA

max is objective function values of SA algorithm, obviously
the Gap(SA) is expressed as the quality’s percentage of the best situation between another two
algorithms’ solution improved by SA, and time(SA) is the running time of SA algorithm in
seconds.

Table 3 Experiments with longer basic delivery times and little resources

m n CLDT−RAA
max CLPDT−RAA

max CSA
max Gap(SA) Time(SA)

2 40 195.56 200.40 195.04 0.266 0.17

80 396.28 397.50 394.71 0.396 1.28

120 597.57 599.76 594.00 0.597 4.13

160 823.23 822.69 819.75 0.357 10.26

200 1011.13 1013.64 1010.23 0.089 20.17

4 40 146.52 147.97 142.75 2.573 0.15

80 266.61 270.23 265.70 0.341 1.29

120 392.19 398.10 389.69 0.637 4.39

160 532.13 534.44 530.48 0.310 10.31

200 651.60 655.44 650.15 0.222 20.84

6 40 104.94 105.14 103.03 0.876 0.12

80 164.01 162.79 160.00 0.631 1.25

120 224.82 228.41 223.66 0.516 4.31

160 277.32 300.90 295.57 0.558 10.59

200 358.39 361.32 356.49 0.530 20.12

8 40 92.36 95.13 91.96 0.433 0.10

80 119.93 121.73 118.83 0.834 1.31

120 160.33 162.64 159.58 0.468 4.34

160 203.52 206.33 202.66 0.423 10.14

200 243.27 245.57 242.07 0.493 21.11

What can be seen from the analysis of experimental data in these four tables are:
1) SA algorithm improves most on 8.078%, least on 0.000%, overall average on 0.922%. In

addition to corresponding SA algorithms of 2 machines 80 jobs, 120 jobs in the Table 1 and
Table 4 not improving the quality of the solution, which explains that the objective function
value solved by SA algorithm is very close to the optimal solution, the rest of the SA algorithm’s
performance is all superior to LDT–RAA and LPDT–RAA algorithm.

2) SA algorithm improves 0.839% in Table 1, 1.431% in Table 2, 0.579% in Table 3, 0.839%
in Table 4 on average. When the delivery times are longer, the average percentage improve-
ment of SA algorithm with more resources is better than the one with little resources. When
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there are sufficient resources, the average percentage improvement of SA algorithm with longer
delivery times is better than shorter ones. It’s because that SA algorithm can make full use of
resources in the process of finding the optimal solution with larger resources, but the degree of
resource utilization with shorter delivery times is lower than the longer ones for the delivery
time limitation under the circs of the definite resource.

Table 4 Experiments with shorter basic delivery times and little resources

m n CLDT−RAA
max CLPDT−RAA

max CSA
max Gap(SA) Time(SA)

2 40 176.63 174.88 172.12 1.578 0.15

80 386.50 383.37 383.37 0.000 1.28

120 587.75 585.37 585.37 0.000 4.29

160 813.87 812.25 812.00 0.031 10.07

200 1005.88 1001.75 1001.50 0.025 19.53

4 40 120.13 114.50 112.83 1.852 0.14

80 247.20 243.38 242.13 0.514 0.23

120 379.63 371.00 369.50 0.404 4.12

160 515.80 512.00 510.60 0.273 9.92

200 635.37 630.80 630.25 0.087 19.85

6 40 60.25 60.50 59.00 2.480 0.12

80 135.25 128.60 127.00 1.244 1.21

120 197.60 194.00 193.00 0.515 4.21

160 271.00 266.90 266.00 0.337 10.26

200 332.40 327.80 327.40 0.122 20.17

8 40 44.75 39.88 38.00 4.714 0.12

80 86.10 81.60 80.22 1.691 1.21

120 126.44 123.70 122.78 0.744 4.20

160 173.50 168.11 168.00 0.065 10.26

200 212.22 207.89 207.67 0.106 20.82

3) SA algorithm improves greater with the increase of machines with the definite jobs in
Tables 1, 2, 4. The reason for this is that resources are more plentiful in Tables 1, 2, 4 and the
increase of machine number would weaken the difference of jobs’ completion times at some level.
The difference of jobs’ completion times after non-increased sorting become smaller with the
increase of jobs under the same machine number and therefore SA algorithm improves lesser.
In Table 3 data do not show the above rules because of the insufficient resources.

4) The corresponding objective function values of LDT-RAA, LPDT-RAA and SA algorithm
in the Table 1 are fundamentally the same as the Table 4. With shorter delivery times in Tables
1 and 4, jobs processed in the machines can’t be fully allocated the resources, so the same data
value occurs in Tables 1 and 4.

5) As SA algorithm here can solve problem of 200 jobs in 23 seconds, the computation
efficiency is acceptable and SA algorithm’s solution accuracy is obviously superior to other
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algorithms.

6 Conclusion

We address a class of uniform parallel machine scheduling problem with that job’s delivery
times is linear decreasing functions of the consumed resource. The objective is minimizing the
maximum completion time based on total given resource, for whose restriction to delivery times,
RAA is designed. Considering the NP-hard characteristics of this problem, we construct the
simulated annealing algorithm to solve the problem for approximate optimal solution, in which
exchanging neighborhood and inserting neighborhood are employed. To evaluate the quality
of the solution, LDT-RAA and LPDT-RAA algorithm are presented for UPCD problem on
the existing heuristic algorithm. Plenty of experimental data and analyzing results show that
simulated annealing algorithm can solve 200 operation scales’ problem effectively in 23 seconds,
and the quality is better than the other two algorithms.

Future research will be focused on solving large-scale hybrid flow shop and flexible job shop
problems. We would expect that the good performance of SA would prove to be useful to
achieve this goal, but this requires further investigation.
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