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Abstract This paper discusses linear quadratic Nash game of stochastic singular time-delay systems

governed by Itô’s differential equation. Sufficient condition for the existence of Nash strategies is

given by means of linear matrix inequality for the first time. Moreover, in order to demonstrate the

usefulness of the proposed theory, stochastic H2/H∞ control with multiple decision makers is discussed

as an immediate application.
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1 Introduction

Singular systems, also known as descriptor systems, generalized state-space systems or im-
plicit systems, are described by differential-algebraic equations. Singular systems have been
extensively studied over the past decades due to the fact that they can describe a great many
natural phenomena in physical systems such as microelectronic circuits, economics, demogra-
phy and so on (see, e.g., [1–3]). A great number of fundamental notions and results in control

Received April 12, 2015, accepted June 29, 2015
Supported by the National Natural Science Foundation of China (71171061), China Postdoctoral Science Foun-

dation (2014M552177), and Guangdong Natural Science Foundation (2014A030310366, 2015A030310218)



Linear Quadratic Nash Game of Stochastic Singular Time-Delay Systems with Multiple Decision Makers 473

and system theory based on state-space systems have been extended successfully to singular
systems (see, e.g., [4–8] and the references therein).

In the past few decades, stochastic systems governed by Itô’s differential equations have
received a great deal of research attention [9, 10]. Although a variety of results for optimal
control of linear stochastic systems have been reported, the dynamic games of such systems
have received comparatively little attention. Moreover, to the best of our knowledge, stochastic
Nash games for singular time-delay systems have not been fully investigated. Since delays
appear in many practical plants, the design of such strategy is an important issue that remains
open.

This paper is concerned with the problem of Nash game of stochastic singular time-delay
systems with multiple decision makers. In terms of a set of linear matrix inequalities, we present
a sufficient condition for the existence of both Nash strategies and the upper bound of the cost
function for the first time. Moreover, in order to demonstrate the effectiveness of the proposed
theory, stochastic H2/H∞ control with multiple decision makers is discussed as an immediate
application.

The rest of this paper is organized as follows. In Section 2, some preliminaries are given. In
Section 3, the main results are given, which generalizes the results of [11]. Section 4 discusses
the stochastic H2/H∞ control with multiple decision makers by using the obtained results.
Section 5 ends this paper with some comments.

Notations: Throughout this paper, unless otherwise specified, we will employ the following
notations. (Ω ,F , {Ft}t≥0, P) is a complete probability space with Ω being a sample space, F
being a σ-field, {Ft}t≥0 being a natural filtration and P being a probability measure. AT is
the transpose of a matrix A; A−1 is inverse of a matrix A; A > 0 means that A is positive
definite; In denotes the n×n identity matrix; rank(A) denotes the rank of A; deg (det(sI −A))
denotes degree of determinant sI − A. Rn is the n-dimensional Euclidean space; E[·] denotes
the expectation operator.

2 Preliminary Results

Consider the following time-invariant stochastic singular time-delay systems⎧⎪⎪⎨
⎪⎪⎩

Edx(t) = [Ax(t) + A1x(t − δ) + Bu(t)]dt +
M∑

p=1

Apx(t)dwp(t)

x(t) = ϕ(t), t ∈ [−δ, 0]

(1)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control vector; E is a known singular
matrix with rank(E) = r ≤ n; wp(t) ∈ R is a one-dimensional standard Wiener process defined
in the filtered probability space (Ω ,F , {Ft}t≥0, P). Without loss of generality, it is assumed that
wr(t) and ws(t) are mutually independent for all r, s = 1, 2, · · · , M , and E[w(t)wT(t)] = IM ,
where w(t) := [w1(t), w2(t), · · · , wM (t)]T. Here, the scalar δ > 0 is the time delay of the system.
ϕ(t) is a real-valued initial function. A, A1, B, Ap are given real matrices of suitable sizes.
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Let us consider the following stochastic linear quadratic control problem subject to (1):

minimize J(u(·), x(0)) = E
∫ ∞

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt

Q = QT ≥ 0, R = RT > 0
(2)

The following definitions are similar with Definition 3.1 which was introduced in [12].

Definition 1 The system (1) is called mean-square stable if there exists a linear state
feedback law u(t) = Kx(t), K ∈ Rm×n, such that the resultant closed-loop system is asymp-
totically stable in mean-square, i.e., its trajectories satisfy limt→∞ E ‖x(t)‖2 = 0, for any ϕ(0).

Definition 2

(I) The system (1) is said to be regular if det(sE − A) is not identically zero;

(II) The system (1) is said to be impulse-free if deg(det(sE − A)) = rank(E);

(III) The system (1) is said to be mean-square admissible, if the system is regular, impulse-free
and mean-square stable.

The following lemma plays a key technical role in this paper.

Lemma 1 Assume that for any u(t), the closed-loop system is mean-square admissible.
Suppose that there exists two real symmetric matrix P > 0 and W > 0, such that

Υ(P ) =

⎡
⎣ Ξ ETPA1

AT
1 PE −W

⎤
⎦ ≤ 0 (3)

where

Ξ = ETPA + ATPE +
M∑

p=1

AT
p PAp − ETPBR−1BTPE + Q + W

Then the optimal feedback strategy for the stochastic linear quadratic control problem is

u∗(t) = K∗x(t) = −R−1BTPEx(t) (4)

Moreover, the optimal value of cost function

J(u∗(·), x(0)) ≤ E[xT(0)ETPEx(0)] + E
[∫ 0

−δ

ϕT(τ)Wϕ(τ)dτ

]
(5)

Proof Its proof can be demonstrated by using the square completion technique. First,

define the following quadratic function

V (t) = xT(t)ETPEx(t) +
∫ t

t−δ

xT(τ)Wx(τ)dτ (6)

where P = PT > 0, W = WT > 0.
Applying Itô’s formula to the stochastic system (1), we have

d[V (t)] =
{

xT(t)
[
ETPA + ATPE +

M∑
p=1

AT
p PAp + W

]
x(t) + 2uT(t)BTPEx(t)

+2xT(t)ETPA1x(t − h) − xT(t − h)Wx(t − h)
}

dt + {· · · }dwp(t) (7)
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where {· · · } does not affect the calculation results and can be omitted.
Integrating (7) from 0 to ∞, taking expectations E[·] on both sides, one gets

E[V (∞)] − E[V (0)]

= E
∫ ∞

0

{
xT(t)

[
ETPA + ATPE +

M∑
p=1

AT
p PAp + W

]
x(t) + 2uT(t)BTPEx(t)

+2xT(t)ETPA1x(t − h) − xT(t − h)Wx(t − h)
}

dt (8)

Under the assumption that the closed-loop system is mean-square admissible, we get E[V (∞)]
= 0. Thus, adding this to (2) and, using the square completion technique, we have

J(u(·), x(0)) − E[V (0)]

= E
∫ ∞

0

ηT(t)Υ(P )η(t)dt + E
∫ ∞

0

[u(t) + R−1BTPEx(t)]TR[u(t) + R−1BTPEx(t)]dt

≥ E
∫ ∞

0

ηT(t)Υ(P )η(t)dt

= J(u∗(·), x(0)) (9)

where ηT(t)=[xT(t) xT(t − δ) ].
Thus, the feedback control (4) is the optimal control. On the other hand,

J(u∗(·), x(0)) − E[V (0)] = E
∫ ∞

0

ηT(t)Υ(P )η(t)dt ≤ 0 (10)

Thus, if (3) holds, then the desired result is obtained.

3 Main Results

In this section, we will utilize the obtained results of stochastic linear quadratic optimal
control to derive the results of stochastic Nash games.

3.1 Problem Formulation

Consider the following stochastic singular time-delay systems with N decision makers in-
volving state-dependent noise⎧⎪⎪⎨

⎪⎪⎩
Edx(t) =

[
Ax(t) + A1x(t − δ) +

N∑
i=1

Biui(t)
]
dt +

M∑
p=1

Apx(t)dwp(t)

x(t) = ϕ(t), t ∈ [−δ, 0]

(11)

where A, A1 and Ap are n × n real matrices, ui(t) ∈ Rmi , i = 1, 2, · · · , N , is the i-th control
input, which represents the player i’s control strategy of this game, Bi, i = 1, 2, · · · , N , are
n × mi real matrices.

The cost function for each decision maker is defined by

Ji(u1(·), u2(·), · · · , uN (·), x(0)) = E
∫ ∞

0

[
xT(t)Qix(t) + uT

i (t)Riui(t)
]
dt (12)

where i = 1, 2, · · · , N , Qi = QT
i ≥ 0, Ri = RT

i > 0.
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It should be noted that uj(·), j �= i does not appear in the cost function. However, since
they are included in the stochastic systems (11), they must have impacts on the cost functions
(12).

Without loss of generality, the strategies in this paper are restricted as linear state feedback
strategies, such as ui(t) = Fix(t), where Fi is a constant matrix of suitable sizes.

Let FN denote the set of all (F1x(t), F2x(t), · · · , FNx(t)) such that the following closed-loop
stochastic system

Edx(t) =
(

A +
N∑

i=1

BiFi

)
x(t)dt + A1x(t − δ)dt +

M∑
p=1

Apx(t)dwp(t)

is mean-square admissible.
Our problem is to look for a strategy set (u∗

1(·), u∗
2(·), · · · , u∗

N(·)) which is called the stochas-
tic Nash equilibrium strategy set for the game, if for each i = 1, 2, · · · , N , the following inequal-
ity holds:

Ji(u∗
1(·), · · · , u∗

N(·), x(0)) ≤ Ji(u∗
1(·), · · · , u∗

i−1(·), ui(·), u∗
i+1(·), · · · , u∗

N (·), x(0)) (13)

for all x(0) and (F ∗
1 x(t), F ∗

2 x(t), · · · , F ∗
Nx(t)) that satisfy (F ∗

1 x(t), F ∗
2 x(t), · · · , F ∗

Nx(t)) ∈ FN .

3.2 Solution to Stochastic Nash Games

The following theorem generalizes the existing results of [11].
Theorem 1 Assume that for all ui(t), i = 1, 2, · · · , N , the resultant closed-loop system is

mean-square admissible. Suppose that N real symmetric matrices Pi > 0 and N real symmetric
matrices Wi > 0 exist such that

Υi(P1, · · · , PN ) =

⎡
⎣ Ξi ETPiA1

AT
1 PiE −Wi

⎤
⎦ ≤ 0 (14)

where i = 1, 2, · · · , N ,

Ξi = ETPiA−i + AT
−iPiE +

M∑
p=1

AT
p PiAp − ETPiBiR

−1
i BT

i PiE + Qi + Wi

A−i = A −
N∑

j=1,j �=i

BjR
−1
j BT

j PjE

Define the strategy set (F ∗
1 x(t), F ∗

2 x(t), · · · , F ∗
Nx(t)) by

u∗
i (t) = F ∗

i x(t) = −R−1
i BT

i PiEx(t), i = 1, 2, · · · , N (15)

Then, (F ∗
1 x(t), F ∗

2 x(t), · · · , F ∗
Nx(t)) ∈ FN , and this strategy set denotes the stochastic Nash

equilibrium. Furthermore, the optimal value of cost function

Ji(F ∗
1 x(t), F ∗

2 x(t), · · · , F ∗
Nx(t), x(0)) ≤ E[xT(0)ETPiEx(0)] + E

[∫ 0

−δ

ϕT(τ)Wiϕ(τ)dτ

]
(16)

Proof Now, let us consider the following problem in which the cost functional (17) is

minimal at ui(t) = u∗
i (t).

φ(ui(·), x(0)) = E
∫ ∞

0

[
xT(t)Qix(t) + uT

i (t)Riui(t)
]
dt (17)
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where x(t) follows from

⎧⎪⎪⎨
⎪⎪⎩

Edx(t) = [A−ix(t) + A1x(t − δ) + Biui(t)]dt +
M∑

p=1

Apx(t)dwp(t)

x(t) = ϕ(t), t ∈ [−δ, 0]

(18)

Note that the function φ coincides with function J(u(·), x(0)) in Lemma 1. Applying
Lemma 1 to this optimization problem as

A−i ⇒ A, Bi ⇒ B, Qi ⇒ Q, Ri ⇒ R

yields the fact that the function φ is minimal at

u∗
i (t) = F ∗

i x(t) = −R−1
i BT

i PiEx(t) (19)

Moreover, the optimal value of cost function is less than or equal to

E[xT(0)ETPiEx(0)] + E
[∫ 0

−δ

ϕT(τ)Wiϕ(τ)dτ

]

This completes the proof.

Remark 1 Note that when rank(E) = r = n, i.e., E = I, the inequality (14) is a normal
matrix inequalities. This type of matrix inequalities was proposed in [11]. In this section, it is
extended to the stochastic singular time-delay system case and it has more universality than
the stochastic delay system.

Remark 2 Nash strategy Fix(t) of (15) can be obtained by solving the matrix inequali-
ties (14). It should be noted that the matrix inequalities (14) can be assessed by applying the
Newton’s iterative method, which was proposed in [11].

4 Application to Stochastic H2/H∞ Control

Over the last decade, stochastic control problems governed by Itô’s differential equation
have attracted considerable research interest. Recently, stochastic linear quadratic and H∞
control problems with state- and control-dependent noise have been investigated (see, e.g.,
[13, 14]). They have received much attention and have been widely used in various fields. In
particular, the stochastic H2/H∞ control with state dependent noise and state, control and
disturbance-dependent noise have been addressed (see, e.g., [10, 15, 16]), but up to present,
stochastic H2/H∞ control with multiple decision makers have not been reported, and the design
of such strategy is an issue that remains to be considered.

Now, we apply the above proposed theory to solve some problems related to stochastic
H2/H∞ control with multiple decision makers.

Consider the following stochastic controlled system with state-dependent noise, which in-
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volve N -decision makers⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Edx(t) =
[
Ax(t) + A1x(t − δ) + Bv(t) +

N∑
i=1

Biui(t)
]
dt + Apx(t)dw(t)

zi(t) =

⎡
⎣ Cix(t)

Diui(t)

⎤
⎦ , z(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Cx(t)

D1u1(t)
...

DNuN(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

x(t) = ϕ(t), t ∈ [−δ, 0]

(20)

where DT
i Di = Imi , C = [ CT

1 CT
2 · · · CT

N
]T, x(t) ∈ Rn, z(t) ∈ Rm, v(t) ∈ Rl, ui(t) ∈

Rmi stand for the system state, controlled output, exogenous disturbance signal and i-th control
input, respectively. All coefficient matrices are assumed to be real constant.

Given a disturbance attenuation level γ > 0, define performance functions

J0(u1, u2, · · · , uN , v) = E
∫ ∞

0

[
γ2vT(t)v(t) − zT(t)z(t)

]
dt (21)

and

Ji(u1, u2, · · · , uN , v) = E
∫ ∞

0

zT
i (t)zi(t)dt (22)

The infinite-time horizon stochastic H2/H∞ control with multiple decision makers of system
(20) can be stated as follows.

Definition 3 For any given disturbance attenuation level γ > 0, find if possible strategies
u∗

i (t) ∈ Rmi , i = 1, 2, · · · , N such that:

(i) u∗
i (t) makes system (20) mean-square admissible, i.e., when v(t) = 0 and ui(t) = u∗

i (t), the
closed-loop system is regular, impulse-free and mean-square stable.

(ii)

∥∥Lu∗
i

∥∥2 = sup
v �=0,x(0)=ϕ(t)≡0,

t∈[−δ,0]

E
∫ ∞
0

[
‖Cx(t)‖2 +

∑N
i=1 ‖u∗

i (t)‖2
]
dt

E
∫ ∞
0

[
‖v(t)‖2

]
d2

< γ2 (23)

(iii) When the worst case disturbance v∗(t) ∈ Rl, if it exists, is applied to (20), u∗
i (t) minimizes

the output energy

Ji(u1, u2, · · · , uN , v∗) = E
∫ ∞

0

‖zi(t)‖2 dt = E
∫ ∞

0

(
‖Cix(t)‖2 + ‖ui(t)‖2

)
dt (24)

If the above (u∗
1, u

∗
2, · · · , u∗

N , v∗) exist, we say that the infinite-time horizon stochastic
H2/H∞ control with multiple decision makers is solvable. Obviously, (u∗

1, u
∗
2, · · · , u∗

N , v∗) are
the Nash equilibria of the two functions (21) and (22), which satisfy

J0(u∗
1, u

∗
2, · · · , u∗

N , v∗) ≤ J0(u∗
1, u

∗
2, · · · , u∗

N , v), ∀v ∈ Rl (25)

Ji(u∗
1, u

∗
2, · · · , u∗

N , v∗) ≤ Ji(u∗
1, u

∗
2, · · · , u∗

i−1, ui, u
∗
i+1, · · · , u∗

N , v∗), ∀ui ∈ Rmi (26)
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According to Theorem 1 discussed in Section 3, a solution to the stochastic H2/H∞ control
can be obtained straightly.

Theorem 2 Assume that for all ui(t), i = 1, 2, · · · , N , the resultant closed-loop system
is mean-square admissible. Suppose that N + 1 real symmetric matrices (P0, P1, · · · , PN ) with
Pi > 0, and N + 1 real symmetric matrices (W0, W1, · · · , WN ) with Wi > 0 exist such that

Υ0(P0, P1, · · ·PN ) =

⎡
⎣ Ξ0 E

T
P0A1

AT
1 P0E −W0

⎤
⎦ ≤ 0 (27)

Υi(P0, P1, · · ·PN ) =

⎡
⎣ Ξi E

T
PiA1

AT
1 PiE −Wi

⎤
⎦ ≤ 0 (28)

where i = 1, 2, · · · , N ,

Ξ0 = ETP0A−F + AT
−F P0E + AT

p P0Ap + W0 − CTC −
N∑

j=1

KT
j Kj − γ−2ETP0BBTP0E

Ξi = ETPiA−i + AT
−iPiE + AT

p PiAp + CT
i Ci + ETWiE − ETPiBiB

T
i PiE

A−F = A +
N∑

i=1

BiKi, A−i = A + BF +
N∑

j=1,j �=i

BjKj

F = −γ−2BTP0E, Ki = −BT
i PiE

If system (20) is mean-square admissible, then the set (u∗
1, u

∗
2, · · · , u∗

N) with

u∗
i (t) = Kix(t) = −BT

i PiEx(t), i = 1, 2, · · · , N (29)

denotes the infinite-time horizon stochastic H2/H∞ control. Moreover, the worst case distur-
bance

v∗(t) = Fx(t) = −γ−2BTP0Ex(t) (30)

5 Conclusions

In the present paper, we have dealt with the Nash game for stochastic singular time-delay
systems with multiple decision makers in infinite-time horizon. In terms of a set of linear matrix
inequalities, sufficient condition for the existence of Nash strategies is given for the first time.
Moreover, the infinite-time horizon stochastic H2/H∞ control with multiple decision makers are
treated by using these obtained results.
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