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Abstract The spatial weights matrix is usually specified to be time invariant. However, when it are

constructed with economic/socioeconomic distance, trade /demographic/climatic characteristics, these

characteristics might be changing over time, and then the spatial weights matrix substantially varies

over time. This paper focuses on power of Moran’s I test for spatial dependence in panel data models

with where spatial weights matrices can be time varying (TV-Moran). Compared with Moran’s I test

with time invariant spatial weights matrices (TI-Moran), the empirical power of TV-Moran test for

spatial dependence are evaluated. Our extensive Monte Carlo simulation results indicate that Moran’s

I test with misspecified time invariant spatial weights matrices is questionable; Instead, TV-Moran test

has shown superiority in higher power, especially for cases with negative spatial correlation parameters

and the large time dimension.
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1 Introduction

As an important tool in economics, spatial econometric models are widely used in ap-
plied geographic and regional science studies, and have recently also been applied in empirical
finance[1−4]. Spatial econometric methods have been rapidly developed. Recently, time varying
spatial dependence is closed concerned. Generally, it includes two kinds: Time varying spatial
parameters and time varying spatial weights matrices. This paper focuses on the latter.
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Druska and Horrace[5] estimated a panel data model where disturbances were spatially cor-
related in the cross-sectional dimension, time varying spatial parameter and weights matrix were
also allowed by generalized moment methods. Kuethe et al.[6] combined existing spatial econo-
metric techniques with a model that allowed parameters to evolve over time, and captured
both the temporal and spatial dynamics of housing prices. Rambaldi and Rao[7] developed
a class of models with time varying hedonic coefficients and spatially correlated errors, con-
structed and compared the corresponding price index series, and furthermore the time varying
parameter with spatial errors were found to be the best model. Lee and Yu[8] first investigated
the quasi-maximum likelihood estimation of spatial dynamic panel data models where spatial
weights matrices could be time varying, and found that QML estimate was consistent and
asymptotically normal, however when spatial weights matrices substantially varied over time,
a model misspecification of a time invariant spatial weights matrix might cause substantial
bias in estimation. Hazir and Bernard[9] worked on a spatial Durbin model, which included
time varying spatial weights matrices, space and time lagged variables. Blasques et al.[10] in-
troduced a new model for time-varying spatial dependence, adopted the model to empirically
investigate spatial dependence between eight European sovereign CDS spreads over the period
2009–2014. Brännäs[11] considered a novel way of incorporating spatial weights matrix for both
time and space dynamic models with or without simultaneity, and studied count data models
corresponding to previously spatial econometric models for continuous variables.

As we know, the spatial weights matrix is an important characteristic element of spatial
econometric models and is cause of dispute in relation to what is it and how should it be
specified[12]. It’s mainly two steps for model estimation and tests for spatial dependence in
spatial econometric models. However, there are a few of literatures about tests for spatial
dependence with time varying spatial weights matrices so far. Ou[13] first investigated Moran’s
I test for spatial dependence in panel data models where spatial weights matrices can be time
varying, and Monte Carlo results indicate that based on time varying and misspecified time
invariant spatial weights matrices, size of Moran’s I test has no significant difference, and
power of Moran’s I test for spatial dependence with time varying spatial weights matrices is
much higher.

The main aim of this paper is to develop tests for spatial dependence in panel data models,
and further investigates the effectiveness of TV-Moran for different alternative hypothesis of
spatial dependence, for different cross-sectional dimensions and for different time dimensions
from the perspective of power. Based on extensive Monte Carlo simulations, we find that
Moran’s I test with misspecified time invariant spatial weights matrices is questionable; Instead,
TV-Moran test has shown superiority in higher power, especially for cases with negative spatial
correlation parameters and the large time dimension.

This paper is organized as follows. Section 2 is devoted to a description of Moran’s I test for
spatial dependence in panel data models with time varying spatial weights matrices. Section3
presents the design of Monte Carlo experiments and results. The conclusions are given in
Section 4.
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2 TV-Moran

The spatial autoregressive model (SAR) is a standard tool to analyze data with spatial
correlation. The spatial error autoregressive model (SEAR) is also usually one kind of spatial
econometric models. When spatial weights matrices are time invariant, SAR and SEAR models
are respectively the following Equations (1) and (2):

Y = ρ(IT ⊗ W )Y + Xβ + ε (1)

Y = Xβ + u, u = λ(IT ⊗ W )u + ε (2)

When spatial weights matrices in panel data models are changed over time, Equation (1)
becomes

Y = ρW̃Y + Xβ + ε (3)

and Equation (2) becomes
Y = Xβ + u, u = λW̃u + ε (4)

where both ρ and λ are spatial correlation parameters, and the NTXNT time varying spatial
weights matrix W̃ is as follows:

W̃ = (w̃ij,t)i,j=1,2,··· ,N,t=1,2,··· ,T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̃1 0 · · · 0 0

0 W̃2 · · · 0 0
...

...
...

...
...

0 0 · · · W̃T−1 0

0 0 · · · 0 W̃T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

W̃t =

⎡
⎢⎢⎢⎢⎢⎢⎣

w̃11,t w̃12,t · · · w̃1N,t

w̃21,t w̃22,t · · · w̃2N,t

...
...

...
...

w̃N1,t w̃N2,t · · · w̃NN,t

⎤
⎥⎥⎥⎥⎥⎥⎦

where W̃t(t = 1, 2, · · · , T ) is an N×N row-normalized spatial weights matrix with zero diagonal
in the t-th period, and when spatial weights matrices are time invariant, the sub-matrix W̃1 =
W̃2 = · · · = W̃t and W̃ = IT ⊗ W .

Hypothesis tests for spatial dependence are a common practice for the identification and
estimation of a spatial econometric model. Moran’s I test is a simple and popular test for
spatial dependence[14−20]. Therefore, when spatial weights matrices change over time, Moran’s
I tests for spatial dependence in panel data models become:

I =
e′W̃e

e′e
(5)

where the residual e = (INT − X(X ′X)−1X ′)Y = MY . In this case, the matrix M is still a
real symmetric idempotent matrix, and the spatial weights matrix W is still row standardized,
which is similar to the cross sectional case[15,16]. Tiefelsdorf[21] derived approximate distribution
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of Moran’s I by its moments when the disturbance vector ε is an independent and identically
distributed (i.i.d.) random variable. Furthermore, we can develop asymptotic distribution of
Moran’s I test from panel data models with time invariant spatial weights matrices to those
with time varying spatial weights matrices. Moran’s I statistic in Equation (5) is asymptotic
normal distributed, and its’ expectation and variance follow that:

E(I) =
trace(MW̃ )

NT − k

V (I) =
trace(MW̃MW̃ ′) + trace(MW̃ )2 + [trace(MW̃ )]2

(NT − k)(NT − k + 2)
− [E(I)]2

Then we can obtain the standardized Moran’s I statistic and its’ distribution by using the
z-transformation of Moran’s I:

Z =
I − E(I)√

V (I)
Asy∼ N(0, 1) (6)

When spatial weights matrices substantially vary over time, tests for spatial dependence
may be bias, and Equation (6) should be reasonably used. In the next section, we further
investigate the performance of Moran’s I test for spatial dependence with time varying spatial
weights matrices.

3 Monte Carlo Simulation

In this section, based on Moran’s I test for spatial dependence in panel data models with
time varying spatial weights matrices, power are used to evaluate the performance of the test
when there is spatial dependence. Specifically, given spatial dependence, we expect that the test
will show a large probability of rejecting the null hypothesis of spatial independence, namely
the power of the test.

3.1 Experimental Design

Given the null hypothesis of spatial independence, the alternatives under consideration
include a spatial autoregressive model (SAR) and a spatial error autoregressive model (SEAR).
In order to study the power of Moran’s I test, two alternative models are used to generate
spatial dependence data with time varying spatial weights matrices. The SAR and SEAR
models are respectively defined by: Y = ρW̃Y + Xβ + ε, and Y = Xβ + u, u = λW̃u + ε.
X is an NTX3 matrix, generated from the independent uniformly distribution in [0, 10]. ε

is an NTX1 vector, generated from the independent standardized normal distribution. When
the alternative hypothesis model (SAR) is true, ρ = −0.8,−0.6, · · · , 0.6, 0.8, and for another
alternative hypothesis model (SEAR), λ = −0.8,−0.6, · · · , 0.6, 0.8. The significance level is
0.05. For time varying spatial weights matrices, we choose a random pattern. Any element of
the t-th spatial weights matrix Wt is randomly drawn from 0 and 1. All these spatial weights
matrices are row-normalized and zero diagonal. We also compare power of Moran’s I test for
spatial dependence with time varying spatial weights matrices (TV-Moran) and time invariant
spatial weights matrices (TI-Moran). 1000 replications are carried out.
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3.2 Results

The power curves of TV-Moran and TI-Moran are compared for different alternative models,
for different cross-sectional dimensions, and for different time dimensions.

We first present the simulation results for SAR and SEAR models with the cross-sectional
dimension N =25, 49, and 81 and the time dimension T=5, 10 and 15. At 5% nominal level of
significance, Figures 1 and 2 plot the power curves for three different cross sectional dimensions
and for three time dimensions of two spatial model specifications, respectively. Three rows in
the graphs correspond to three cross sectional dimensions 25, 49, and 81. Three columns are
for three different time dimensions 5, 10, and 15 under consideration. In each of the 3 by 3 grid
of graphs, “TV” and “TI” denote the power curves of Moran’s I test for spatial dependence
with time varying and misspecified time invariant spatial weights matrices, respectively.

From Figures 1 and 2, at 5% nominal level of significance, when the alternative model is
truly the SAR model, power of TV-Moran is much higher than that of TI-Moran when spatial
correlation is negative. When spatial correlation is positive, they become equivalent. Both
cross sectional dimensions and the alternative models have no significant influence on power of
TV-Moran and TI-Moran tests for spatial dependence. We observe that power of TV-Moran
in the SAR model is slightly higher than that in the SEAR model.

Figure 1 Power of Moran’s I test for spatial dependence against the

SAR model, for different spatial correlation parameters

Next given the spatial correlation parameter (ρ or λ = −0.7,−0.3, 0.3, 0.7), we consider
power of TV-Moran and TI-Moran for different time dimensions. At 5% nominal level of
significance, Figures 3 and 4 plot power curves for four spatial correlation parameters of two
alternative models, respectively. From Figures 3 and 4, when spatial correlation is negative,
the blue solid curve “TV” is much higher than the red dotted curve “TI”. Specifically, when



468 OU B L, ZHAO X, WANG M X.

ρor λ = −0.3, there becomes longer distance between the blue solid curve and the red dotted
curve with larger time dimension; and however when ρ or λ = −0.7, it’s on the contrary.

Figure 2 Power of Moran’s I test for spatial dependence against the

SEAR model, for different spatial correlation parameters

Figure 3 Power of Moran’s I test for spatial dependence against the

SAR model, for different time dimensions, given N=49

In a word, when spatial correlation is weak, power of TV-Moran is much higher than that
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of TI-Moran as time dimensions increase. For positive and strong spatial correlation, power of
TV-Moran is slightly higher than that of TI-Moran.

Finally given spatial parameter (ρ or λ = −0.7,−0.3, 0.3, 0.7), we consider power of TV-
Moran and TI-Moran for different cross sectional dimensions. Figures 5 and 6 indicate that
cross sectional dimensions have no significant influence on power. Specifically, when spatial
correlation is negative, power of TI-Moran is much less than 0.1, and however power of TV-
Moran is much higher than that of TI-Moran, especially ρ or λ = −0.7. When spatial correlation
is positive, power of TV-Moran is similar to that of TI-Moran.

Figure 4 Power of Moran’s I test for spatial dependence against the

SEAR model, for different time dimensions, given N=49

Figure 5 Power of Moran’s I test for spatial dependence against the SAR

model, for different cross-sectional dimensions, given T=10
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In summary, based on our extensive Monte Carlo experiments, when there is negative
spatial correlation, Moran’s I test for spatial dependence with misspecified time invariant spatial
weights matrices may cause substantial reduction in power, and TV-Moran is proven to have
much higher power than TI-Moran.

Figure 6 Power of Moran’s I test for spatial dependence against the SEAR

model, for different cross-sectional dimensions, given T=10

4 Conclusion

In this paper, we further investigate and develop Moran’s I tests for spatial dependence
in panel data with substantially time varying spatial weights matrices. It’s known that TI-
Moran with misspecified time invariant spatial weights matrices performs poorly with weak
power when spatial correlation is negative. Our Monte Carlo experiments confirm that with
time varying spatial weights matrices, Moran’s I test is superior to that with misspecified time
invariant spatial weights matrices in the view of power. Specifically, when spatial correlation
is negative, power of TV-Moran is much higher than that of TI-Moran. The time dimension is
larger, and the power of TV-Moran is higher. Nevertheless, the alternative models and cross
sectional dimensions have no significant influence on power of TV-Moran.
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