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Abstract The real-time pricing plays an important role in demand-side management for smart grid.

In this paper, we study real-time pricing strategy of electricity retailers by means of game theory in

smart grid. The retailers are in the game situation where there is one leader with multi-followers. We

propose a real-time electricity demand function and analyze the interactions between the retailers, then

obtain its equilibrium solution. The analysis and simulation results of the equilibrium solution show

the effectiveness of the proposed method.
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1 Introduction

The development of the contemporary economy and industry leads to the rapid growth in

energy demand, therefore how to solve the energy shortage is an urgent issue to be solved. Smart

grid, as the future area of the development of electric grid[1,2] and a positive means to solve

the shortage of energy, is expected to play a vital role. Demand-side management (for short

DSM) has been one of the important topics which aim to solve the matching problem between

enhanced demand for electricity and efficiency of supply, taking the user effectiveness, cost and

price into account because it can be used to change the behavior of energy consumption.

The research based on the demand-side management has drawn a lot of attention. Various

DSM solutions have been designed or investigated in a number of publications with a strong

focus on the needs of supply adjustment, user utility maximization and cost reduction. These

researches are based on convex programming, machine learning and game theory, see for in-

stance, [3–8], but fail to reflect the value and cost of electricity at different periods in time by

giving users varying electricity price.
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As the core content and the economic lever in the electricity market, the price plays a

decisive role in electricity trading by regulating. The factors affecting the price are diverse.

The traditional electricity pricing theory is not effective to reflect the security status of the

power system properly. Deriving from short-run marginal cost theory, the real-time pricing (for

short RTP) is based on the instantaneous supply-demand balance of the power system, and

take into account the safe operation of the power system. Therefore, the RTP is not only an

effective regulation means of the electricity market, but also an essential DSM strategy which

achieves truly effective demand response and in which users actively adjust the load, shift the

load, and optimize the allocation of resources.

RTP is a new approach to DSM, which has been dealt with in many publications. Mohsenian-

Rad and Leon-Garcia[6] developed a local residential load control method in the RTP environ-

ment, where each device runs along with the minimization of electricity payment and the waiting

time as a response to the changes in the real time electricity tariffs. Asadi et al.[9] set up an

optimization model to maximize the benefit of users, in which users adjust their hourly energy

consumption according to the real-time hourly price information. Asadi and Xu[9,10] proposed

a RTP algorithm so as to maximize the benefit of all users in the system and minimize the cost

of electricity suppliers on the condition that the total power consumption is kept lower than

the generation capacity. Mohsenian-Rad et al.[6] proposed a residential load control scheme

based on the feasibility of real-time pricing calculation and automatic optimization in the retail

electricity market. However, these researches have not considered the effect of the interaction

between different retailers on RTP.

The focus of this paper goes as follows.

1) We propose a one leader with multi-followers game decision for multiple retailers in the

electricity market in order to maximize the profits of all retailers while considering the user

demand response through the use of real-time pricing DSM.

2) We use a new utility function to simulate the power users’ preferences and electricity

consumption patterns. Retailers plan how much power to buy and at what price to sell to the

users to maximize their revenues. The electricity demand function is re-constructed to describe

how the different price of retailers affects real-time pricing decision.

3) We conduct an example using a collection of data to obtain the equilibrium solution by

deducing. With an appropriate parameter, the simulation results demonstrate the effectiveness

of the proposed model.

Our work differs from some related literatures in the following aspects: [6] and [8] only

consider how the competition between retailer and users affects real-time pricing, while we

study the optimization problem taking into account the impact of the competition between

multiple retailers on the real-time pricing; compared with [14], we use a new demand function

of electricity retailers and a different game model to characterize how the competition between

different electricity retailers affect the real-time pricing. To our best knowledge, no research uses

the bi-level game model to study the real-time pricing from the perspective of the electricity

fellow retailers in the electricity supply market.

The remainder of this paper is organized as follows: Section 2 describes the system model

and its symbol; Section 3 proposes a one leader with multi-followers game model to describe
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the competition between different retailers in the electricity market; Section 4 solves the game

model; Section 5 focuses on the model simulation and numerical analysis, and the final conclu-

sions of this paper are given in Section 6.

2 System Model

Generally speaking, in the deregulated electricity market, sometimes there exist multiple

electricity retailers. Retailers maximize their income through adjusting real-time price, based

on user demand response according to the user’s consumption patterns and preferences.

2.1 Real-Time Electricity Demand Model

1) Utility function of risk users

Different types of users have different power consumption demands in the electricity mar-

ket. The price provided to the traditional electricity users is stable, while the short-term risk

users always consume more electricity at lower price, which can be described using utility

function[12,13]. The utility function of risk users is same with the function used in most cases

(see [14]) as follows

U(p, d) = Xd −
α

2
d2 − ξpd (1)

where X is a parameter which varies with different users and time, d denotes electricity demand

of the risk users, ξ is the price elasticity of electricity demand, p denotes the price electricity

retailer offersand α is a given parameter in advance. Real-time pricing DSM is used as an

effective tool to affect electricity demand of users. The electricity demand function D(p) of

each risk user can be obtained by maximizing the utility function

D(p) =
X − ξp

α
(2)

2) Electricity demand function of retailers

Let N denote electricity retailers coexisting in the deregulated electricity market. Different

retailers offer different prices for different risk power users, and power users can shift to purchase

electricity from other electricity retailers who offer lower price. [11–14] described the electricity

demand function of electricity retailer i as

Di(p) = Di − ξipi +
N

∑

n=1,n6=i

vi,npn (3)

where p = (p1, p2, · · · , pN ) is the price vector of all electricity retailers, Di is a parameter which

varies with different users and time, reflecting the market size, scale and investment services.

ξi(0 < ξi < 1) is the price elasticity of electricity demand of retailer, and pi denotes the price

retailer i offers. vi,n(0 ≤ vi,n ≤ 1) means the proportion of electricity demand flows from

retailer n to retailer i once the price offered by retailer n is given. The demand function mainly

reflects the electricity price’s influence on electricity demand through vi,n, but this approach

fails to reflect the retailers’ price competition. Inspired by [15, 16], we adjust the electricity

demand function as follows

Di(p) = Di − ξipi + θ

N
∑

j=1,j 6=i

(pj − pi) = Di − ξipi + (N − 1)θ

(

∑N
j=1,j 6=i pj

N − 1
− pi

)

(4)
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where the mean of Di, ξi same to those in (3), parameter θ ≥ 0 represents the sensitivity of price

competition among electricity retailers, in other words, the market size one retailer obtains by

offering a unit price lower than other retailers.

2.2 Revenue of Electricity Retailers

Each power retailer in the electricity market has two different types of income. Let the price

offered to traditional users and the number of traditional users served by retailer i be constant

Pi and Mi respectively. Retailer i can offer optimal response price to risk users based on user’s

demand response and other retailers’ price, Ci denotes the procurement unit electricity cost.

The profit function of retailer is denoted as follows:

Ri(p) = Di(p)pi + MiPi − [Di(p) + Mi]Ci

=

[

Di − ξipi + (N − 1)θ

(

∑N

j=1,j 6=i pj

N − 1
− pi

)]

(pi − Ci) + Mi(Pi − Ci) (5)

where pi ≥ Ci, Pi ≥ Ci.

3 One Leader with Multi-Followers Real-Time Pricing Game

A plurality of electricity retailers coexist in a deregulated electricity market. All retailers

hope to maximize their income by price adjustment as a response to user demand. When each

retailer has the complete information of other retailers’ price strategy, the optimal reaction

function and equilibrium price can be used to describe the real-time pricing problem. The

optimal reaction of each retailer is offering his optimal bidding to achieve maximum profit by

referring to other retailers’ bidding. Since positions and scale of retailers are different, their

status decisions in the electricity market are not the same. The strong retailers are often in a

leadership position, enjoying the priority to make price decisions, while the other small retailers

follow the strong retailers to make price decision. Since all retailers affect each other, the

analysis of real time pricing is just a game problem.

The leader-follower game, also called the Stackelberg game, is proposed by Stackelberg in

[17]. From the earliest one leader with one follower game to one leader with multi-followers

game, multi-leaders with multi-followers game, leader-follower differential game and nonsmooth

leader-follower game[18], the leader-follower game obtains considerable development. Various

algorithms for the Stackelberg game models are well studied[19], which are also widely used

in the engineering and economy in the real world. We will propose a one leader with multi-

followers game model for the coexisting retailers in electricity market. According to the game

model, the first retailer is the leader, the others are followers interacting with each other, and

retailers are perfectly rational. The classic one leader with multi-followers game model is as

follows:

min
x

F (x, y1, y2, · · · , yn)

s.t. G(x, y1, y2, · · · , yn) ≤ 0

H(x, y1, y2, · · · , yn) = 0 (6)
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where yi is the solution to the following optimization problem

min
yi

fi(x, y1, y2, · · · , yn)

s.t. gi(x, y1, y2, · · · , yn) ≤ 0

hi(x, y1, y2, · · · , yn) = 0 (7)

Definition 1 For every decision x in the upper level problem, (y1∗, y2∗, · · · , yn∗) is called

Nash equalization solution in lower level if there exists (y1∗, y2∗, · · · , yn∗) satisfying

fi(y1∗, y2∗, · · · , yi−1∗, yi∗, yi+1∗, · · · , yn∗) ≤ fi(y1∗, y2∗, · · · , yi−1∗, yi, yi+1∗, · · · , yn∗)

for ∀(y1∗, y2∗, · · · , yi−1∗, yi, yi+1∗, · · · yn∗), i = 1, 2, · · · , n.

Definition 2 Let x∗ be a feasible decision vector in the upper level problem and let

(y1∗, · · · , yn∗) be a corresponding Nash equilibrium solution for the vector. If the inequality

F (x∗, y1∗, · · · , yn∗) ≤ F (x, y1∗, · · · , yn∗)

holds for any x ∈ UL and the corresponding Nash equilibrium solution, (x∗, y1∗, · · · , yn∗) is

called the Stackelberg-Nash equilibrium solution to the one leader with multi-followers game.

Next, we model the strategic interaction between a big retailer and the other N − 1 small

retailers as a one leader-follower game model with one leader and N − 1 followers. The

uL(price pL) denotes leader’s strategy(electricity), UL denotes the leader’s strategy space,

uFi
(i = 1, 2, · · · , N − 1) denotes strategy of the rest followers Fi(i = 1, 2, · · · , N − 1)(price

pi), and UFi
denotes the strategy space of follower i(i = 1, 2, · · · , N − 1)’s. Leader’s payoff

function is denoted by JL(uL, uF1
, · · · , uFN−1

), and the payoff function of follower Fi is denoted

by JFi
(uL, uF1

, · · · , uFN−1
). By (5) the profit function of the leader in the market is

RL(p) =

[

DL − ξLpL + (N − 1)θ

(

∑N

j=1,j 6=i pj

N − 1
− pL

)]

(pL − CL) + ML(PL − CL) (8)

the profit function of each follower is

Ri(p) =

[

Di − ξipi + (N − 1)θ

(

∑N−1
j=1,j 6=i pj

N − 1
− pi

)]

(pi − Ci) + Mi(Pi − Ci) (9)

We thus have

JL(uL, uF1
, · · · , uFN−1

) = RL(p)

JFi
(uL, uF1

, · · · , uFN−1
) = Ri(p) (10)

The steps of solving the one Leader with multi-followers game are as follows:

Step 1 For each given strategy uL of the leader, each follower tries to obtain the optimal

reaction strategy RFi
(uL, uF1

, · · · , uFN−1
) based on maximizing his own objective function by

considering the bidding strategies of other followers as maxuFi
∈UFi

JFi
(uL, uF1

, · · · , uFN−1
).

Step 2 As for the leader, he tries to maximize his own objective function by taking into

account all followers’ bidding strategies as follows maxuL∈UL
JL(uL, RF1

, · · · , RFN−1
).

Step 3 Assuming uL∗ is the optimal solution of leader, uFi
∗ = RFi

(uL∗, uF1
∗, · · · , uFi−1

∗,

uFi+1
∗, · · · , uFN−1

∗), then (uL∗, uF1
∗, · · · , uFi

∗, · · · , uFN−1
∗) is the optimal Stackelberg strat-

egy.
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4 The Solution of Model

According to the method in the last section, we have to find the followers’ optimal reaction

functions given leader’s strategy pL, and also find the optimal strategy of the leader on the

basis of the determined followers’ reaction function. In fact, the optimal strategy of the game

is available if solutions of the leader and the followers exist.

To decide effectively the above process amounts to solve the bilevel programming. The

upper problem is

maxJL(uL, uF1
, · · · , uFN−1

) = max JL(pL, p1, · · · , pN−1)

=

[

DL − ξLpL + (N − 1)θ

(

∑N−1
j=1,j 6=i pj

N − 1
− pL

)]

(pL − CL)

+ ML(PL − CL) (11)

For each retailer i(i = 1, 2, · · · , N − 1) in lower level programming, the solution pi is the

optimal solution to the following planning problem

maxJFi
(uL, uF1

, · · · , uFN−1
) = maxRi(p)

= max

[

Di − ξipi + (N − 1)θ

(

∑N−1
j=1,j 6=i pj

N − 1
− pi

)]

(pi − Ci)

+ Mi(Pi − Ci) (12)

For the i-th planning problem in lower level programming, the function Ri(p) is concave

with respect to pi, then the maximum value of Ri(p) can be achieved when ∂Ri(p)
∂pi

= 0, in other

words

∂Ri(p)

∂pi

= Di − 2[ξi + (N − 1)θ]pi + θ

( N−1
∑

j=1,j 6=i

pj + pL

)

+ [ξi + (N − 1)θ]Ci = 0 (13)

Similarly, for arbitrary s 6= i(s = 1, 2, · · · , N − 1) in the lower level programming, we have

∂Rs(p)

∂ps

= Ds − 2[ξs + (N − 1)θ]ps + θ

( N−1
∑

j=1,j 6=i

pj + pL

)

+ [ξs + (N − 1)θ]Cs = 0 (14)

To reduce the complexity of derivation, we set ξi = ξs, Ci = Cs. Then, (13) and (14) are

equivalent to

∂Ri(p)

∂pi

= Di − 2[ξ + (N − 1)θ]pi + θ

( N−1
∑

j=1,j 6=i

pj + pL

)

+ [ξ + (N − 1)θ]C = 0 (15)

∂Rs(p)

∂ps

= Ds − 2[ξ + (N − 1)θ]ps + θ

( N−1
∑

j=1,j 6=i

pj + pL

)

+ [ξ + (N − 1)θ]C = 0 (16)

Letting (15) subtract (16), we get equilibrium solution to the lower level programming which

satisfies the following equation

pi − ps =
Di − Ds

2ξ + (2N − 1)θ
(17)
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Taking s = 1, 2, · · · , i − 1, i + 1, · · · , N − 1 in (17), we obtain

N−1
∑

j=1,j 6=i

pj = (N − 2)pi −
(N − 2)Di −

∑N−1
j=1,j 6=i Dj

2ξ + (2N − 1)θ
(18)

Substituting Equation (18) to Equation (15), we have

pi∗ =
Di + θpL + [ξ + (N − 1)θ]C −

θ
∑N−1

j=1,j 6=i
(Di−Dj)

2ξ+(2N−1)θ

2ξ + Nθ
(19)

Let i = 1, 2, · · · , N − 1 in (19) and then the sum is available

N−1
∑

i=1

pi∗ =

∑N−1
i=1 Di + (N − 1)θpL

2ξ + Nθ

+
(N − 1)[ξ + (N − 1)θ]C −

θ
∑N−1

i=1

∑N−1

j=1,j 6=i
(Di−Dj )

2ξ+(2N−1)θ

2ξ + Nθ
(20)

Substituting (20) into the upper programming leads to

RL(p) =

[

DL − ξpL + (N − 1)θ

(

∑N
j=1,j 6=i pj

N − 1
− pL

)]

(pL − C) + ML(PL − C)

= (DL − ξpL)(pL − C) + θ

∑N−1
i=1 Di + (N − 1)θpL + (N − 1)[ξ + (N − 1)θ]C

2ξ + Nθ
(pL − C)

− θ

θ
∑N−1

i=1

∑N−1

j=1,j 6=i
(Di−Dj)

2ξ+(2N−1)θ

2ξ + Nθ
(pL − C) − (N − 1)θpL(pL − C) + ML(PL − C) (21)

Similarly, by ∂RL(p)
∂pL

= 0 we have

pL∗ =
(2ξ + Nθ)[DL + ML + ξC + (N − 1)θC] − θ2(N − 1)C

2θ2(N − 1)2 + 2ξ(2ξ + 3Nθ − 2θ)

+
θ[

∑N−1
i=1 Di + (N − 1)ξC + (N − 1)2θC]

2θ2(N − 1)2 + 2ξ(2ξ + 3Nθ − 2θ)

−

θ2
∑N−1

i=1

∑N−1

j=1,j 6=i
(Di−Dj)

2ξ+(2N−1)θ

2θ2(N − 1)2 + 2ξ(2ξ + 3Nθ − 2θ)
(22)

The solution of model thus is properly obtained

pL∗ =
(2ξ + Nθ)[DL + ML + ξC + (N − 1)θC] − θ2(N − 1)C

2θ2(N − 1)2 + 2ξ(2ξ + 3Nθ − 2θ)

+
θ[

∑N−1
i=1 Di + (N − 1)ξC + (N − 1)2θC]

2θ2(N − 1)2 + 2ξ(2ξ + 3Nθ − 2θ)

−

θ2
∑N−1

i=1

∑N−1

j=1,j 6=i
(Di−Dj)

2ξ+(2N−1)θ

2θ2(N − 1)2 + 2ξ(2ξ + 3Nθ − 2θ)

pi∗ =
Di + θpL + [ξ + (N − 1)θ]C −

θ
∑N−1

j=1,j 6=i
(Di−Dj)

2ξ+(2N−1)θ

2ξ + Nθ
(23)
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5 Analysis and Simulation of Model

In this section, we analyze equilibrium solution of the game model obtained in the last

section. By (23), we know that

1) The real-time pricing of all electricity retailers is related to the purchasing power costs

in market. The higher the purchase cost, the higher the equilibrium price.

2) The larger retailer market size, the higher the price, and the greater the profit. Especially

the leader retailer living in a monopoly market is ensured to be affected less by the risk users

because he serves more long-term customers. The price of the retailers increases in a timely

manner when the number of long-term users increases and the other small electricity retailers

also raise the price.

3) In what follows, we discuss the impact of sensitivity θ on the equilibrium price through

numerical examples, and give the simulation results to verify the validity of the proposed dy-

namic real-time pricing decisions. Suppose the market consists of three electricity retailers,

large retailer 1 and small retailer 2 and 3, let ξ = 0.5, D1 = D2 = 1, DL = 5, C = 0.3, ML = 50,

considering the trend chart of the equilibrium price change when sensitivity θ varies between 0

and 1, as is shown below.
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Figure 1 Equilibrium price change trend chart affected by θ

As can be seen from the chart the equilibrium prices of all retailers increase with the rise

of sensitivity θ at the beginning time, and comparatively speaking, the equilibrium price of

big retailer is lower, since the big retailer has his first-mover advantage with the increasing of

electricity demand, and then reduces the price in order to win more risk users.

6 Conclusions

In this paper, we carry out some exploration in the marketization of electricity market

and propose a one leader with multi-followers game decision for multiple electricity retailers

competition in the market based on smart grid DSM’s real-time pricing. This paves a way

for making reasonable DSM rules under the near future smart grid platform. We also analyze

the impact of strategic interactions between retailers of different status and types, and obtain
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the equilibrium price solution. Compared with the previous works about real-time pricing for

more retailers based on static or completely cooperative game theory, our model uses a different

game model and also introduces sensitivity coefficient to examine its impact on the description

of inter-retailer. Simulation results demonstrate the special impact of sensitivity coefficient on

the equilibrium price. A more sophiticated model may be proposed to explore the effect of

real-time pricing DSM strategy to bring more profit to the users and retailers in smart grid in

the near future.
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