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Abstract Several observations in real economic systems have shown the evidence of non-Gaussianity

behavior, and one of mathematical models to describe these behaviors is Poisson noise. In this paper,

stationary probability density of a nonlinear business cycle model under Poisson white noise excitation

has been studied analytically. By using the stochastic averaged method, the approximate stationary

probability density of the averaged generalized FPK equations are obtained analytically. The results

show that the economic system occurs jump and bifurcation when there is a Poisson impulse existing

in the periodic economic system. Furthermore, the numerical solutions are presented to show the

effectiveness of the obtained analytical solutions.
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1 Introduction

Business cycle modeling is one of the most active subjects in the study of complex economic
systems. Recently, a nonlinear business cycle model based on the Samuelson-Hick’s consump-
tion function and Puu’s investment function has been investigated by researchers[1−3]. Puu et
al.[1] studied a number of bifurcation sequences leading to attractors and their basins in this
model. Li et al.[2] introduced Gaussian white noise excitation into the model and investigated
bifurcations under noise excitation. Han et al.[3] considered the reliability of the model with
Gaussian white noise excitation by using stochastic averaged method. The above researches
show that the nonlinear business cycle model based on the Samuelson-Hick’s consumption
function and Puu’s investment function has complex dynamical phenomena and can be a useful
tool to study the real economic behaviors. Researchers in economic modeling have realized that
there are many uncertainty factors in a complex economic system and adopted Gaussian white
noise as a useful stochastic process to describe several types of economic phenomena[2−7]. How-
ever, several observations in real economic systems have shown the evidence of non-Gaussianity
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behavior, manifested as in heavy-tail distributions or in impulse of samples[8]. Moreover, un-
certainty factors in economic systems tend to be discrete events, such as the introduction of
new economic and money policies, unexpected political and nature events, all of which cannot
be appropriately modeled by Gaussian white noise. In light of these new observations, it is
necessary to introduce a new mathematical model to describe these economic systems, and an
effective model is the Poisson noise. In this paper, a nonlinear dynamical business cycle model
with Poisson white noise excitation is introduced and studied for the first time. The Itó stochas-
tic differential equations and generalized FPK equations from the new model are derived based
on the method proposed by Di Paola and Falsone[9]. The averaged generalized FPK equation is
also derived with correction terms. Finally, the approximate stationary solution of the system
is obtained analytically by using stochastic averaged method of single-degree-of-freedom quasi-
linear systems driven by Poisson white noise[10]. The analytical solutions of the new model show
the bifurcation and stochastic jumps in business cycles, and numerical results are presented to
verify the effectiveness of the analytical solutions.

2 The Nonlinear Model with Poisson White Noise

A simple multiplier-accelerator nonlinear dynamical model of business cycle was first in-
duced in [3], which was based on the Hick’s consumption function and Puu’s investment function
together with a cubic nonlinear term under Gaussian white noise,

q̈ + (1 − a)q̇ + (1 + a)q̇3 + bq = βW (t) (1)

where q is the output. The parameter a = v − s, a > 0 where v is the ‘accelerator’, v > 1; s

is the marginal propensity to save, and 0 ≤ s ≤ 1. The parameter b is the rate of long-term
saving, and 0 ≤ b ≤ 1. W (t) is Gaussian white noise. ε is a small parameter.

Now we introduce three new parameters:

q̇ = p, a′
1 = a + 1, a′

2 = a − 1 (2)

and the Poisson noise[10]

C(t) =
N(t)∑
i=1

Yiδ(t − ti)

where δ is a Dirac delta function, N(t) is the Poisson counting process with average impulse λ,
Yi is the impulse intensity, E(Yi) = 0 and E[(dC(t))k] = λE[Y k]dt. By substituting (2) into
(1), we obtain the following equations

dq = pdt

dp = −(a′
1p

3 − a′
2p)dt − bqdt + εdC(t) (3)

For simplicity, we let
a′
1 = ε2a1, a′

2 = ε2a2 (4)

and obtain from (3)

dq = pdt

dp = −ε2(a1p
3 − a2p)dt − bqdt + εdC(t) (5)
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where ε is a small parameter. When ε = 0, the system is conservative in the absence of the
noise term, with Hamiltonian, H of

H =
1
2
p2 +

1
2
bq2 (6)

3 Averaged Generalized FPK Equations

To solve the equation, we rewrite (5) in the form of Stratonovich stochastic differential
equations:

dq =
∂H

∂p
dt

dH = −ε2

(
a1

(
∂H

∂p

)3

− a2
∂H

∂p

)
∂H

∂p
dt + ε

∂H

∂p
◦ dC(t) (7)

According to Itô rule, we introduce the Wong-Zakai correction terms[11,12] and obtain the
following Itô stochastic differential equations,

dq =
∂H

∂p
dt

dH = −ε2

(
a1

(
∂H

∂p

)3

− a2
∂H

∂p

)
∂H

∂p
dt + ε

∂H

∂p
dC(t)

+
ε2

2!
∂H

∂p

∂

∂H

(
∂H

∂p

)
[dC(t)]2

+
ε3

3!
∂H

∂p

∂

∂H

(
∂H

∂p

∂

∂H

(
∂H

∂p

))
[dC(t)]3

+
ε4

4!
∂H

∂p

∂

∂H

(
∂H

∂p

∂

∂H

(
∂H

∂p

∂

∂H

(
∂H

∂p

)))
[dC(t)]4 + · · · (8)

Using the relation,

∂H

∂p

∂

∂H

(
∂H

∂p

)
=

1
2

∂

∂H

[(
∂H

∂p

)2]
=

1
2

∂

∂H
[2H − bq2] = 1 (9)

Equation (8) can be simplified to

dq =
∂H

∂p
dt

dH = −ε2

(
a1

(
∂H

∂p

)3

− a2
∂H

∂p

)
∂H

∂p
dt + ε

∂H

∂p
dC(t) +

ε2

2
[dC(t)]2 (10)

Let

g

(
q,

∂H

∂p

)
= a1

(
∂H

∂p

)3

− a2

(
∂H

∂p

)
(11)

and by using E[(dC(t))k] = λE[Y k]dt, the simplified evolution equation of probability density
p(q, h, t) associated with Itô SDEs (10) is[10]

∂p

∂t
= − ∂

∂q

(
∂h

∂p
p

)
− ∂

∂h

[(
− ε2g

(
q,

∂h

∂p

)
∂h

∂p
+

ε2

2
λE[Y 2]

)
p

]

+
1
2!

∂2

∂h2

[
ε2

(
∂h

∂p

)2

λE[Y 2] + ε3 ∂h

∂p
λE[Y 3] +

ε4

4!
λE[Y 4]p

]
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− 1
3!

∂3

∂h3

[
ε3

(
∂h

∂p

)3

λE[Y 3] +
3
2
ε4

(
∂h

∂p

)2

λE[Y 4]p
]

+ O(ε4) (12)

According to [13], the conditional probability density p(q|h, t) is

p(q|h, t) =

⎧⎪⎨
⎪⎩

√
b

2π
√

2h − bq2
, bq2 < 2h

0, bq2 ≥ 2h

(13)

By substituting p(q, h, t) = p(h, t)p(q|h, t) into Equation (13) and integrating Equation (13)
with respect to q, the averaged FPK equation for p(h, t) is

∂p

∂t
= − ∂

∂h

[(
− ε2G(h) − ε2

2
λE[Y 2]

)
p

]

+
1
2!

∂2

∂h2

[
ε2λE[Y 2]h +

ε4

4!
λE[Y 4]p

]

− 1
3!

∂3

∂h3

[
3
2
hε4λE[Y 4]p

]
+ O(ε4) (14)

where

G(h) =
∮ √

b

2π
g

(
q,

∂h

∂p

)
dq (15)

Substitute Equation (11) into (15), and let

q =
√

2h/b sin θ, p =
√

2h cos θ (16)

One can get

G(h) =
∮ √

b

2π
g

(
q,

∂h

∂p

)
dq = h

(
3
2
a1h − a2

)
(17)

4 Approximate Stationary Solution of the Averaged Generalized FPK

Equations

In order to derive the approximate stationary solutions of Equation (14), we rewrite Equa-
tion (14) in the following form

d
dh

[
αG(h)ρ(h) + βh

dρ(h)
dh

+
1
4
γh

d2ρ(h)
dh2

+
1
8
γh2 d3ρ(h)

dh3
+ O(ε5)

]
= 0 (18)

where α = ε2, β = 1
2ε2λE[Y 2], γ = 1

2ε4λE[Y 4].
From Equation (18), it is easy to know that it can be rewritten as

αG(h)ρ(h) + βh
dρ(h)
dh

+
1
4
γh

d2ρ(h)
dh2

+
1
8
γh2 d3ρ(h)

dh3
+ O(ε5) = 0 (19)

Equation (19) can be solved by using perturbation technique[14]. We obtain the following
form of the perturbation solution of Equation (19)

ρ(h) = ρ0(h) + ε2ρ1(h) + ε4ρ2(h) + · · · (20)

Substituting Equation (20) into (19), we get the following equations

αG(h)ρ0(h) + βh
dρ0(h)

dh
= 0
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αG(h)ρ1(h) + βh
dρ1(h)

dh
= − 1

4ε2

(
γh

d2ρ0(h)
dh2

+
1
2
γh2 d3ρ0(h)

dh3

)

· · · (21)

To solve Equation (21) subject to the non-negative condition and normalization condition,
one can get

ρ0(h) = c1 exp
(
− αh(3a1h − 4a2)

4β

)
(22)

ρ1(h) = c1 exp
(
− αh(3a1h − 4a2)

4β

)
αγ

64β4ε2
m(h) (23)

where

m(h) =
27
5

α2a3
1h

5 − 27
2

α2a2
1a2h

4 + (12α2a1a
2
2 − 30αβa2

1)h
3

+ (42αβa1a2 − 4α2a3
2)h

2 + (24a1β
2 − 16αβa2

2)h (24)

Substituting (22) and (23) into (20), we get the approximate stationary solution up to order
of ε4 as following

ρ(h) = ρ0(h) + ε2ρ1(h) = D exp
(
− αh(3a1h − 4a2)

4β

)(
1 +

αγ

64β4
m(h)

)
(25)

where

D =
[ ∫ ∞

0

exp
(
− αh(3a1h − 4a2)

4β

)(
1 +

αγ

64β4
m(h)

)
dh

]−1

(26)

Now we assume that the intensity of random pulse, Y conform Gaussian distribution with
zero mean for illustrative purpose. So E[Y 4] = 3(E[Y 2])2[10]. Meanwhile, the stationary
probability density for system state q and p can be calculated as follows

ρ(p, q) = ρ(q, h)
∣∣∣∣∂(q, h)
∂(p, q)

∣∣∣∣ = ρ(h)ρ(q|h)p =

√
b

2π
ρ(h)

∣∣∣∣∣
h= 1

2p2+ 1
2 bq2

(27)

5 Dynamics of the Model

In order to get the approximate stationary probability density and the numerical solution
of energy H for the business cycle model, we fix the parameters as ε = 0.5, λ = 2, b = 0.5. By
using Monte Carlo method, we get Figures 1–6 as follows.

Figures 1 and 2 with a1 = 0.2, a2 = 1.0, and Figures 3 and 4 with a1 = 1.0, a2 = 1.0. All
the figures show that the analytical solutions correspond to the numerical solutions very well.

In Figure 1, it’s seen that the system is stable as the probability density ρ(h) reaches the
max value when the total energy of the economic system reaches a certain value. Moreover, from
Figure 2, we know that the ‘double peaks’ of the marginal probability density of displacement
q would take place in the situation when there exist impulse in the periodic economic system,
in which the intensities of the impulse are (a) < Y 2 >= 0.1; (b) < Y 2 >= 1.0, respectively.
With the intensity of the impulse decreasing from < Y 2 >= 7.0 to < Y 2 >= 0.1, the marginal
probability density of displacement q evolutes from ‘single peak’ to ‘double peaks’. Namely,
a bifurcation occurs under this circumstance. In other words, the economic system becomes
unstable by jumping between different stable situations, which will result in economic crisis in
this periodic economic system.
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Figure 1 The stationary probability density

of energy H for the business cycle

model with a1 = 0.2, a2 = 1.0; (a)

< Y 2 >= 0.1, (b) < Y 2 >= 1.0,

(c) < Y 2 >= 7.0. − the approxi-

mate stationary solution; • � � the

simulation results

Figure 2 The stationary marginal probabil-

ity density of displacement q for

the business cycle model with a1 =

0.2, a2 = 1.0; (a) < Y 2 >= 0.1, (b)

< Y 2 >= 1.0, (c) < Y 2 >= 7.0.

− the approximate stationary solu-

tion; • � � the simulation results
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Figure 3 The stationary probability density

of energy H for the business cycle

model with a1 = 1.0, a2 = 1.0; (a)

< Y 2 >= 0.1, (b) < Y 2 >= 1.0.

− the approximate stationary solu-

tion; • � � the simulation results

Figure 4 The stationary marginal probabil-

ity density of displacement q for

the business cycle model with a1 =

1.0, a2 = 1.0; (a) < Y 2 >= 0.1, (b)

< Y 2 >= 1.0. − the approximate

stationary solution; • � � the sim-

ulation results
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From Figures 3 and 4, with the values of the parameters a1, a2 changing, namely the ‘ac-
celerator’ and the marginal propensity, the system responses are similar to Figures 1 and 2.
This phenomenon further verifies that the marginal probability density of displacement q of the
system response evolves from ‘single peak’ to ‘double peaks’, a nd bifurcation takes place in the
process.

In Figures 5 and 6, when a1 = 1.5 and < Y 2 >= 1, by adjusting the value of a2, the equilib-
rium point of the system will change, but not the topologic shape of the marginal probability
density of the response.
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Figure 5 The stationary probability density

of energy H for the business cycle

model with a1 = 1.5, < Y 2 >= 1;

(a) a2 = −0.5, (b) a2 = 0.5. − the

approximate stationary solution; •
� � the simulation results

Figure 6 The stationary marginal probabil-

ity density of displacement q for

the business cycle model with a1 =

1.5, < Y 2 >= 1; (a) a2 = −0.5, (b)

a2 = 0.5. − the approximate sta-

tionary solution; • � � the simula-

tion results

Comparing the present results with Shen’s[2], we find that the business cycle system doesn’t
bring about Hopf bifurcations in H = 0 when Poisson white noise is introduced to the equation.
In reality, the total energy will never reach zero, and the system will be stable just in non-trivial
total energy. In brief, Poisson white noise is better than Gaussian white noise to describe the
uncertainty in economical system.

6 Conclusions

In this paper, we investigated the stationary probability density of a nonlinear model under
Poisson white noise excitation. Based on the averaged Itô stochastic differential equations and
generalized FPK equations of the stochastic model, the approximate stationary probability
density of the averaged generalized FPK equations were obtained by using the perturbation
method. For some given parameters, the numerical solutions went well with the analytical
solutions. From the results we found that the economic system would have incurred jumps and
bifurcations when there exists a Poisson impulse in the system itself.
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