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Abstract In this paper, a new approach to rolling bearing diagnosis is proposed, which applied or-

thogonal matching pursuit with pulse atoms. Solving orthogonal matching pursuit with pulse atoms

(OMP PA) is an NP-hard problem. With the help of multi-population genetic algorithm, better so-

lution is obtained, and the shortcoming of sensitiveness to parameters setting in genetic algorithm is

improved. According to the comparisons with other algorithms, OMP PA could precisely extract the

pulse components, and the interferential components are almost filtered. The experiments show that,

OMP PA could determine the fault location of bearings, and clearly displayed the vibration model. In

conclusion, it provides a new way to the diagnosis for bearings.

Keywords orthogonal matching pursuit; fault diagnosis; pulse atom; multi-population genetic algo-

rithm; atomic decomposition

1 Introduction

Rolling bearing, as an important mechanism, is widely used in rotating machinery, but is also
easily damaged[1]. The most effective way to improve its reliability is the real time monitoring
of bearing vibration signals, whose cores are signal processing and fault feature extraction. The
vibration signal of rolling bearing with localized defect in early stage is extremely complex and
non-station, and the fault features are very weak. Atomic decomposition with time-frequency
atoms proposed by Mallat and Zhang[2] and Chen et al.[3] in recent years has provided a new
approach to this problem. Liu et al.[4] applied matching pursuit with Gabor atoms (MP GA)
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to the detection of localized defect of rolling bearing. Yang et al.[5] chose the Symlet-8 wavelet
dictionary, and employed basis pursuit (BP) to analyze the vibration signal of bearing.

When using atomic decomposition for diagnosis, the vital issue is selecting proper atom and
excellent pursuit method. In recent years, the pulse atom based on bearing vibration model was
introduced and successfully applied in diagnosis[6−7]. Because the pulse atom is induced from
the vibration model of faulty bearings, it is suitable for the pulse components in the vibration
signal. However, there still exist some shortcomings. The number of atoms in dictionary
is very big for high resolution, so selecting the best matching atom is quite computationally
demanding in one iteration. Thus, artificial intelligent algorithms[7−8] such as genetic algorithm
(GA), particle swarm algorithm, have been applied to improve computational speed. However,
the search of the best suitable pulse atom is an NP-hard problem, and conventional optimization
algorithm is hard to find the exact solutions. In order to enhance the efficiency, an improved
multi-population GA was employed to find the best matching atom. Although matching pursuit
(MP) is a good approach of atomic decomposition, the orthogonal matching pursuit (OMP)[9]

which evolves from MP and makes all the bases be orthogonal to each other frequently has better
resolution than MP. Therefore, OMP was used in this paper to decompose vibration signals.
The experiments verified that the proposed scheme performed better than MP GA and BP
with Symlet-8 wavelet packets (BP S8), and it could accurately extract the pulse components
and correctly determine the fault location.

2 The Principle of OMP with Pulse Atoms (OMP PA) Optimized by

Multi-Population GA

2.1 Introduction of Atomic Decomposition

The conventional atomic decomposition methods include MP, BP, method of frames (MOF)[10],
best orthogonal basis[11], etc. Among all of them, OMP is the most popular atomic decom-
position method which is used in face recognition, image processing, and so on. The common
used dictionaries are Gabor dictionary, wavelet or wavelet packet dictionary, adaptive learning
dictionary[12], Fourier dictionary, Dirac dictionary, compound dictionary, and so on.

2.2 Introduction of OMP

OMP, which improved from MP, is also an iterative greedy algorithm. First, the atom which
matches the signal most is chosen. After choosing the best suitable atom in one iteration, OMP
would make all the bases be orthogonal to each other and project them on the original signal
again, then the matching component is extracted from the signal. The residual signal is further
decomposed in the same way until a desired approximation precision or a prespecified number
of iterations is reached. Owing to its simple steps and adaptability to the local structure of
signal, OMP is the most popular one among atomic decomposition approaches. Therefore,
OMP is chosen to decompose signals in this paper.

Suppose D = {gγ}γ∈Γ is the overcomplete dictionary, gγ is the atom defined by the param-
eter group γ, and it is normalized as ‖gγ‖ = 1, Γ is a parameter collection of atoms, signal s is
to be analyzed. The procedure of OMP is as follows[9]:

Step 1: Initialize the residualR1 = s, the index set ψ0 = ∅, and the iteration counter n = 1.
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Step 2: Find the index of the basis that satisfies:
∣∣〈Rn, gn

γ

〉∣∣ = sup
γ∈Γ

∣∣〈Rn, gn
γ

〉∣∣ (1)

The artificial intelligent methods can be applied in this step for fast calculation.
Step 3: Augment the matrix of the chosen basis: ψn = ψn−1 ∪

{
gn

γ

}
.

Step 4: According to the least square problem the coefficients are estimated: an =
(
ψT

nψn

)−1·
ψT

n s, and the residual is Rn = s− anψn.
Step 5: Augment n = n + 1, and return to Step 2 if n is smaller than the maximum

iterations. Otherwise, output the estimated reconstructed signal sk = anψn and its residual
Rn.

Equation (1) shows that selecting the best matching atom using inner products results in
large calculation, hence how to reduce the large calculation is a challenge.

2.3 The Vibration Model of Faulty Bearing — Pulse Sequence Model

For rolling bearing, the outer race is generally fixed or is relatively fixed; the inner race and
the shaft rotate together. The vibration signal of normal bearing is dominated by low frequency
components caused by shaft rotation, stiffness variation, load fluctuation, etc. When a localized
defect is induced, repeated pulses will be generated due to the passing of the rolling elements
over the defect. Because the pulse is a broadband energy, which often sets off several modes
of high-frequency resonances of the bearing elements, the neighboring structure, sensor, and so
on. When the shaft speed is a constant, the time interval of the pulses is also a constant, and
the corresponding frequency is termed as “fault passing frequency”. When the defect occurs on
the outer ring, inner ring or ball, the corresponding fault passing frequency varies, which can
be used to determine the location of the fault.

In fact, there must always be some slip because the contact angle of rolling element varies,
which results in 1%∼2% errors[1] of fault passing frequency. Therefore, the pulse sequence is
quasi-periodic, which is T and the period T can be expressed as follows:

x(t) =
+∞∑
k=0

Akh[t − iT + λ] + n(t) (2)

where Ak is the amplitude of the ith pulse, t is time, h(t) is a pulse oscillation caused by the
crash of localized defect, λ is the error caused by slip, and n(t) is a random noise.

The pulse resonance can be simplified as follows:

h(t) = e−P0t sin(2πfnt + φ) (3)

where fn is the resonance frequency, P0 indicates the damping speed of the pulse.
Cui et al.[13] reported an improved model showing that two pulse resonances will be gener-

ated when the rolling elements passing over the single defect, as depicted in Figure 1(a). Cui et
al. thought the two pulse resonances had the same features but only differed in beginning time.
However, the real fault shape is often irregular, as showed in Figure 1(b), and the vibration
modes are not the same, so that the two pulse resonances are frequently not the same either.
Especially when the inner race or the ball is defect, due to the change of load, the amplitude of
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pulses varies, in some cases just the big pulse resonance is distinct. Therefore, the pulses were
searched one by one in this paper, unlike combining two pulses as an atom in Cui’s scheme.

ba

Figure 1 Physical model: (a) ideal model; (b) real model

2.4 Pulse Dictionary

2.4.1 The Function of Pulse Atom

From discussed above, one pulse resonance could be expressed as a pulse atom, which is
shown as below:

gγ =

⎧⎨
⎩

ce−p(t−τ) sin[2πf(t − τ) + φ],

0,

Ts > t ≥ τ

0 ≤ t < τ
(4)

where gγ is a normalized pulse atom indexed by the parameter group γ, Ts is the duration
of the signal s; p is the damping coefficient, the larger p is, the faster the pulse decays; τ is
time delay, namely the starting time of the pulse; f is frequency. It represents the resonance
frequency, and is often of high frequency for faulty bearings; c is a normalization coefficient.
The inner product 〈s, gγ0〉 denotes the pulse amplitude. In general, the more severity the fault
is, the greater the amplitude is, and the pulse amplitude of the faulty bearing is usually larger
than that of the normal one.

2.4.2 The Discrete of the Pulse Parameters

To improve the resolution of the decomposition, the density of the atoms in the dictionary
is high, namely the discrete steps are small. The steps of the parameters of pulse atom are as
follows:

1) The step of p is 1.
2) The step of τ is chosen as the resolution of the signal which is 1/fs.
3) The step of f is 1.
4) The step of φ is π/64.
According to the bearing geometry and signal character, the ranges of these atomic param-

eters are selected as follows:
1) Because the pulse decays fast, the parameter p should be a large one. In this paper, it is

chosen: 300 ≤ p ≤ 4000.
2) τ must be smaller than the time duration of the vibration signal and above zero: 0 <

τ < Ts, where Ts is the time duration of the signal.
3) According to the Sampling Theorem, f must satisfy the following conditions: f < fs/2,

where fs is the sampling frequency of the signal. For the signal investigated in this paper, the
majority energy of signals distributes below the frequency of 4000Hz, therefore, it is chosen:
0 < f < 4000Hz.

4) It is known that phase should satisfy: 0 ≤ φ ≤ 2π.
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2.5 Multi-Population GA

Many kinds of optimized methods have been already applied to atomic decomposition for
reducing the amount of calculation, such as GA, particle swarm algorithm, etc. GA has strong
robustness and global search capability[14], which is one of the most popular evolution algo-
rithms of artificial intelligent methods. At the same time, GA has some urgent problems,
for instance, premature convergence, sensitive to the parameters of crossover probability pc

and mutation probability pm. In view of the imperfections of GA, improved multi-population
GA[14−17] is employed, which introduces the following strategies to GA:

1) Selecting different control parameters. The values of pc and pm determine the equalization
of global and local search, pc decides the global search capability, while pm the local search
capability. Many researchers suggest a bigger pm (0.7∼0.9) and a smaller pc (0.001∼0.05).
However, there still exist many different selections of pc and pm, and for different selections,
the outcomes vary greatly. Multi-population GA sets different values of pc and pm for each
population, makes them co-evolve, and hence better balances the global and local search.

2) Subpopulations are independent, they communicate through migration operators. Mi-
gration operators introduce each subpopulation’s best individuals regularly (a certain evolution
generations) to replace the worst ones of the next subpopulations. In this way, the subpopula-
tions exchange information and co-evolve.

3) In the evolution process, through manual selection operator, the best individuals of all of
the subpopulations in each generation will be saved in the elite subpopulation. Elite subpopu-
lation is just as a criterion to end iteration, i.e. when the elite subpopulation remains constant
for a certain generations, the algorithm stops. This criterion fully exploits the accumulation
of knowledge in the evolution process, and is more reasonable compared to GA, which takes a
maximum number of iterations as the ending criterion. Also it overcomes the defect that the
maximum number of iterations is difficult to be chosen correctly.

After these improvements, multi-population GA realizes a cooperative search between sub-
populations, and enhances the equalization of global and local search. As a result, it tremen-
dously reduces the bad influence of improper control parameters, and has a very impressive
effect on the premature convergence problem.

3 Experiments and Discussion

3.1 Comparison and Discussion Based on Simulated Experiments

In order to test the performance of MP PA, one vibration signal generated by imitated
single point defect was simulated. The sampling frequency is 12000 Hz, with the length as 2048
points. The simulated signal y(t) is of five pulses added with Gaussian noise with signal to
noise ratio (SNR) of 3 dB.

y′(t) = 2 · g1(1200, 200, 3400, π/2)+ 2 · g2(1200, 600, 3400, π/2)+ 2 · g3(1200, 1000, 3400, π/2)

+2 · g4(1200, 1400, 3400, π/2)+ 2 · g5(1200, 1800, 3400, π/2) (5)

y(t) = y′(t) + white noise(SNR = 3) (6)

where g(p, τ, f, φ) represents a pulse atom. It should be noted that for a convenient represen-
tation here τ denotes the number of signal sample. For example, when τ = 1000, it means
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that the pulse occurs at the moment of 1000/fs = 0.0833 second. The simulated signals are
displayed in Figure 2.

Figure 2 Simulated signal: (a) signal y′(t); (b) signal y(t)

3.1.1 The Comparison and Discussion of Multi-Population GA and GA

Set pc = 0.7, pm = 0.05 in GA, whereas pc of any subpopulation in multi-population GA
was a random decimal between 0.7∼0.9, and pm was a random decimal between 0.001∼0.05.
The number of chromosomes in GA was the same as that of all the subpopulations in multi-
population GA, and other parameters were selected the same. All the Matlab program were
run in a computer with a dual-core 2.2 GHz CPU and DDR 667 4G memory.

In the simulated experiment, multi-population GA and GA were both used to optimize
OMP to decompose the signal y(t), and then the SNR and mean square error (MSE) between
the reconstructed signal and y′(t) was calculated. The results are showed in Figure 3 and
Table 1. It should be noted that, when the amplitude of the reconstruction and that of original
signal are inverse, at the same time the sum of their phases is about 2π, and obviously the φ is
still right.

As showed in Figure 3 and Table 1, for multi-population GA, the accuracy ratios of τ , f

and amplitude are all very high, only that of p is slightly low. In contrast, the results of GA
are inferior. The SNR and MSE of multi-population GA are one order of magnitude higher
than those of GA. The residue by multi-population GA is little by contrary, there still exist
pulse components in the residue for GA. The running time of them are almost the same. These
results show that multi-population GA performs much better than GA for optimizing OMP
with regard to the vibration signal of faulty bearing.

Figure 3 Reconstructions and residues of signal y(t) optimized by GA and multi-population GA

(the numbers of atoms are both 5)
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Table 1 The decompositions optimized by GA and multi-population GA

Algorithm Amplitude p τ f φ SNR MSE Time

GA

1.8983 1074 200 3335 1.252

8.09 0.039
35s

1.6575 2953 601 3557 6.234

–1.9419 2537 1001 3377 2.648

1.7693 2382 1401 3307 6.075

–1.9566 1892 1800 3527 4.850

Max error ratio 17.1% 146.1% 0.2% 4.6% 60%

Multi-population GA

–1.9948 1180 200 3403 4.781

22.30 0.008
31s

–2.0484 1064 600 3404 4.710

1.9604 1224 999 3440 1.634

–2.0146 1251 1400 3398 4.713

2.0707 1310 1800 3394 1.529

Max error ratio 3.6% 9.2% 0.1% 1.2% 0

3.1.2 The Comparison and Discussion of OMP PA, MP GA and BP S8

When using atomic decomposition to analyze vibration signals, the vital issues are choosing
proper pursuit method and atom. In order to verify the performance of OMP PA, different
atomic decomposition algorithms and different dictionaries should be chosen for comparison,
MP GA and BP S8 have been successfully used in bearing diagnosis[4−5,8,18], which were chosen
in this paper for a comparison. And the MP GA was also optimized by GA.

The TFD by OMP PA was calculated based on the parameters of the pulse atom. For a
pulse atom g(p, τ, f, φ), its frequency was f , and its amplitude decreased from the moment τ

to the end of the signal. Therefore, let Gγ =
∣∣ce−p(t−τ)

∣∣ as amplitude, we plotted it in TFD at
the frequency of f from the beginning moment of τ to the end of the atom. At last, the TFD
of all the pulse atoms were summed up. Gabor atom and Symlet-8 atom were discrete of power
of 2 of scale as the same way as references[4−5,8,18].

The results are shown in Figure 4 and Table 2, and the result of OMP PA is shown in Figure
3(b), Table 1. Though MP GA and BP S8 could reconstruct the main pulse components of
the origin, compared with OMP PA, their sparsity is insufficient. And their reconstructions are
contaminated with interference. In Figure 5, for MP GA and BP S8, the amplitude, energy and
frequency of each pulse are different from others. And the distributions of the frequency are in
a wide area, this will result in energy leakage. What’s more, there are some noises. Although
OMP PA uses the least atoms, it could filter noises efficiently, and the pulses are correctly
recovered. MP GA used many atoms so that it wasted the most time. Whereas BP S8 used all
the atoms to find the sparse representation, thus it wasted the same time no matter how atoms
in reconstruction.

The reason why OMP PA performs so excellently is that pulse atom matches the pulses
well, and OMP PA has high resolution due to small step of parameters. By contrast, Gabor
atom and Symlet-8 atom cannot match the pulses so well and they have to compensate the
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error with more atoms.

Figure 4 Reconstructions and residuals of signal y(t) by different methods (the

numbers of atoms are both 150): (a) MP GA; (b) BP S8

Figure 5 The TFDs of the reconstructions by different methods (the numbers of

atoms are both 150): (a) MP GA; (b) BP S8; (c) OMP PA

Table 2 The results by MP GA, BP S8 and OMP PA

Method Number of atoms SNR MSE Time

MP GA
150 7.49 0.0515 70 s

300 11.01 0.0334 138 s

BP S8
150 10.52 0.0294 83 s

300 8.86 0.0357 83 s

OMP PA 5 22.30 0.0076 31 s

3.2 Validation by Experiments

The experiment data used in this paper were obtained from the Case Western Reserve
University (CWRU) website. The signals were collected from SKF 6205 bearings which were
seeded with faults using electro-discharge machining of outer race fault, inner race fault and
ball fault. The sampling frequency is 12000 Hz, the shaft rotation speed is about 1730 rotations
one minute, namely 28.83 Hz, and the bearing geometry is shown in Table 3.

Table 3 Fault information

Failure type Fault passing frequency (Hz) Fault passing period (ms) Fault severity (mm)

Normal — — —

Outer race 103.5 9.7 0.178

Inner race 156.1 6.4 0.533
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3.2.1 The Diagnosis and Analysis of the Bearing with Outer Race Fault

The signal analyzed for outer race fault is measured under load of 3 hp (1hp=746W) at
6:00 direction. As Figure 6 shows, OMP PA has successfully extracted the pulse components
with little noise, only using 18 atoms.
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Figure 6 The original signal of the bearing with outer race fault and its reconstruction by OMP PA

Figure 7 is the TFD and its corresponding pulse sequence by OMP PA. It can be seen two
pulse resonance sequences in TFD at frequencies of 3400 Hz and 2840 Hz, and they have the
same period. The pulse resonance sequence at 3400 Hz is a little earlier than that at 2840
Hz, and it has higher energy. This demonstrates that the passing over the single defect point
generated two pulse resonances, the early one is at 3400 Hz, and the later one is at 2840 Hz.
The period of the pulse sequence is more clearly displayed in Figure 7(b), which is 9.7 ms,
corresponding to the outer fault passing frequency of 102.8 Hz. These demonstrate that not
only the fault location is determined, but also the vibration model could be obtained, which is
convenient to further analyze for fault diagnosis.

Figure 7 The TFD of the signal of the bearing with outer race fault and its pulse sequence
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3.2.2 The Diagnosis and Analysis of the Bearing with Inner Race Fault

As Figure 8 shows, the reconstruction by OMP PA reserves the main pulses. From the re-
construction, it presents that the pulses of inner race fault vary in amplitude, which corresponds
to the vibration model discussed above.

Figure 8 The original signal of the bearing with inner race fault and its reconstruction by OMP PA

According to Figure 9, there is a pulse resonance sequence at frequency of 2800 Hz, and
the amplitude varies. A little later the high pulses, some pulses occurs at about 3300 Hz,
corresponding to the two pulse model. But when the energy of pulse is small, the pulses in
company are buried in noise were not recovered, which is also accord to the mechanism of
bearing. From Figure 9(b), the period is approximate 6.4 ms, which corresponds to the inner
race passing fault frequency of 155.3 Hz. In addition, the resonance frequency distribution
of inner race fault differs from that of the outer race fault, which can be used as a basis to
distinguish the status of a bearing.

Figure 9 The TFD of the signal of the bearing with inner race fault and its pulse sequence

3.2.3 The Distinguishing and Analysis of Normal Bearing

In the rotation of normal bearing, owing to shaft rotation, stiffness variation, fluctuation,
and so on, the signal will be dominated by low frequency vibration and noises, as shown in
Figure 1(a). Its vibration waveform is often disorganized with small amplitude, and sometimes
it contains weak pulses with the frequency proportional to shaft speed.

As illustrated in Figure 10(b), the reconstruction by OMP PA has a distortion compared
to the origin, due to that the pulse atom is insensibility to normal vibration, but only matches
the pulse components. Whereas the bad reconstruction is also a particular basis of OMP PA
to confirm the bearing is normal. In the TFD by OMP PA as Figure 11, there is a weak pulse
resonance sequence whose period is about 34.8 ms (28.7 Hz) at around 2000 Hz, corresponding
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to the shaft rotation speed. In Figure 11(b) the dark pulses indicates the pulse resonances in
Figure 11(a) around 2000 Hz. There are also other phenomena to prove that the bearing is
normal. The majority of pulse amplitudes are below 0.05 which is much less than those of
faulty bearings. In addition, the frequencies of pulse atoms distribute in low frequency.

Figure 10 The original signal of the normal bearing and its reconstruction by OMP PA

Figure 11 The TFD of the signal of the normal bearing and its pulse sequence

4 Conclusion

This paper presented a new technology for bearing fault diagnosis utilizing OMP with pulse
atoms, which was based on the vibration model of faulty bearing. Because the proposed algo-
rithm was very computationally demanding, multi-population GA was used to optimize OMP
to improve efficiency verified by experiments, and multi-population GA got more accurate so-
lutions than GA. OMP PA was further investigated in simulations and experiments, and com-
pared with MP GA and BP S8. The results showed that, OMP PA represented the simulated
signal more sparsely and accurately. From the vibration signals of bearings under different con-
ditions, OMP PA determined the status of the bearing clearly, and demonstrated the vibration
model which was consistent with the model proposed in this paper for further investigation. In
conclusion, the proposed scheme provided a new approach for bearing diagnosis.
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