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Abstract Based on singularly perturbed bilinear quadratic problems, this paper proposes to decom-
pose the full-order system into two subsystems of a slow-time and fast-time scale. Utilizing the fixed
point iterative algorithm to solve cross-coupled algebraic Riccati equations, equilibrium strategies of
the two subsystems can be obtained, and further the composite strategy of the original full-order sys-
tem. It was proved that such a composite strategy formed an o(e) (near) Stackelberg equilibrium, and

a numerical result of the algorithm was presented in the end.
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1 Introduction

Dynamic game theory has been studied widely over the past decades, and the non-cooperative
game theory of linear quadratic systems has been studied intensively in many papers. For exam-
ple, Cruz. Jr et al. obtained the open-loop Stackelberg strategy in non-zero sum games!; in 2],
Basar summarized the non-cooperative game theory in linear quadratic systems; in [3], Medanic
developed necessary conditions for closed-loop Stackelberg strategies in linear quadratic prob-
lems and presented an algorithm for numerical solutions of two-level Stackelberg problems;
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Mizukami investigated the linear quadratic closed-loop Stackelberg game for the descriptor sys-
tem and constructed the incentive strategies in [4]. For singularly perturbed systems, in [5],
Khalil and Kokotovic discussed the well-posedness of singularly perturbed Nash games and
illustrated the impact of the feedback information available to players on the well-posedness
of the game; Xu and Mizukami presented a unified approach to achieve the composite approx-
imation of the full-order linear feedback saddle-point solution®; Mukaidani proposed a new
algorithm for solving cross-coupled algebraic Riccati equations of singularly perturbed Nash
games in [7], further applied the algorithm in obtaining the linear quadratic infinite horizon
Nash game for general multiparameter singularly pertubed systems!®!, studied the computa-
tion of the linear closed-loop Stackelberg strategies with small singular perturbation parameter
in [9], and investigated the linear closed-loop Stackelberg strategy of the singularly perturbed

stochastic systems with state dependent noise!'%!.

However, game theories of singularly perturbed bilinear systems are seldom discussed, while
singularly perturbed bilinear systems are a quite proper and essential description tool in describ-
ing many practical systems such as neutron level control problem in a fission reactor, DC-motor,

(1] and in financial engineering problems, Black-Scholes Option Pric-

induction motor drives
ing Model, Aoki’s two sector macroeconomic growth model, Chander and Tokao’s non-linear

input-output model can all be extended to singularly perturbed bilinear models in [12-15].
The structure of this paper is organized as follows. In Section 2, the problem of the differen-
tial Stackelberg equilibrium strategy for a singularly perturbed bilinear time-invariant system
is presented. Sections 3 and 4 are concerned with the decomposition of the full-order system
into two subsystems, and the composition strategy of the original full-order system. A simple

numerical example is solved in Section 5. Section 6 contains the conclusion.

2 Problem Statement

Consider a time-invariant singularly perturbed bilinear system:

@1 () _ Ay A 1 (1) N B u(t) + By o(t)
edo(t) Agr A x2(t) By Bas | "
e R RO R S R B A R
w2 (1) My z2(t) Ny |

with initial condition

where z1 (t) € R™, z5(t) € R™ are respectively slow and fast state variable, z(t) = [x1(t), z2(t)]"
€ R™ are state vector with n; +ny = n, u(t) € R™ and v(t) € R! are respectively the control
inputs of Player 1 and Player 2, the small singular perturbation parameter ¢ > 0 represents

small time constants, inertias, masses, etc., and A1, A2, Aoy, Ao, Bi1, B2, B2y, Bos, M,



156 BIN N, ZHANG C K, ZHU H N, et al.

My, Ny, Ny are constant matrices of appropriate dimensions, with

a1 (t M, a My | "L M,
" L] Bl D P
o (t) My = [ My | S My;
z1(t N, o Ny, e Ny
. DL Nl D IR
(EQ(t) Nf j=1 _ij_ j=ni1+1 Nf]

The cost function for each player is defined by

Ji(u,v) = %/C’O [T (1) Qi (t) + u" (t) Rigu(t) + v™ () Rijo(t)] dt )
0
where
Ry > O,Rij >0,i,7=1,2,1 #j, Qi _ Qin QilQ
QF, Qiz

It is assumed that the decision-maker denoted by Player 1 is the leader, and Player 2 is the
follower. Under the assumption that both players employ strategies u := u(x,t), v := v(z,t),
a strategy set (u*,v*) is called a Stackelberg strategy if for any admissible strategy set (u,v),
the following conditions hold[*?!.

Ji(u*v*) < Ji(u,2°(w), Yue R™ (3)

where
JQ(ua ,UO(U)) = min JQ(ua ’U)

and

3 Decomposition of Slow and Fast Systems

Let
Biu(x) _ By N x1 M, 7 Biu(x) _ Bia N x1 N, )
Bgl (J,‘) Bgl X9 Mf B22 (J,‘) B22 X9 Nf
Bn = Bn(a?), Bm = 321(3?)7 312 = 312(37), 322 = 322(37)
then (1) can be written as:
i1 = Az + Ay + Briu+ Biov (ba)
ETy = A21{E1 =+ AQQiL‘Q -+ Bglu -+ BQQU (5b)

Neglecting the fast modes is equivalent to assuming that they are infinitely fast, that is
letting € = 0. Without the fast modes the system (5) reduces to

i1 = Anxy + Ajaxg + Briu + Bgv (6a)
0= Ay z1 + Aszzo + Bglu + BQQU (Gb)
Assuming that Ass is nonsingular, we have

15 = Aox1s + Borus + Bogvs, 15 = 710 (7a)
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—1 — —
Tos = —Asy (A21215 + Barus + Baovy) (7b)
—1 5 5 15 B = 15
where Ag = Ay — A12A55 Ao1, Bor = Bi1 — A12A55 Bai, Boa = Bia — A12A5; Bas.

Then we can obtain the quadratic cost function for the slow subsystem

00
Jis :5 / (a:lTSQioxls + 23:1T5Di1us =+ Zl‘rlrsDiQUs =+ ZUSTDigvs
0

=+ USTR“SUS -+ USTRZ‘QSUS)dt (8)
where Qio = Qi1 + AT A3 Qiza A3y As1, Din = AT A3 Qin2 Ay Bat, Din = AT A3 Qiss Ay
Bag, Diz = By Asy' Qioa Ay Bao, Rins = Riy + BY, Ayy' Qina Asy' Bay, Rias = Rin + By Asy' Qoo
Ay Bos.

Theorem 1 Suppose that the following cross-coupled algebraic Riccati equations has so-
lutions p1s and pas

pls(A — S1sp1s — SQSpQS) + (A — Sisp1s — SQSPQS)Tpls + P1:S1sP1s + @1 =0 (Qa)

pas(A — S15p1s — Saspas) + (A — Sisp1s — Saspas)  Pas + P2sSaspas + Q2 =0 (9b)

where

. . 1 /- . 1 /- .
A=Ay + BoiTi1 + BoaT21, Sis = 3 (302T22 - 301T12) , Sos = 3 (301T13 - BOQTQB)
Q1 = Q10+ D11T11 + D12To1, Q2 = Q20+ Da1T11 + D2l

Then, the Stackelberg equilibrium solution (uk,v¥) of the slow subsystem can be given by

ug = (T + Thaprs — Tispas) 21s (10a)
vy = (T21 — Taz2prs + Taspas) T1s (10b)

Proof The Hamiltonian H,s corresponding to the system (7) and performance index (8)

is
H;, = %(a?lTsQioﬂhs + 227, Dipus + 207, Digvs + 2ul Disvs + ul Ritsus 4+ vy Rigsvs) (11)
+ AT (Agw1s + Borus + Bogvs)
where \; € R > is the Langrangian multiplier. O

Given arbitrary ug, the corresponding v, is obtained by minimizing Jss with respect to vs.
Then, the optimal control is given by
vs = —Rapy (D31 + Dizus + Biy)a)
Then the cost J1s can be obtained, and we can further obtain
us =(—=Ri1s + 2D13Roy, Dy — Do Royg Rizs Ros Dy3) ™
(DT = D23Ryy DYy — D13Ryy, D3y + Das Rogg Ruas Ry  Dgy) 1
~ T T - (12a)
+(Bgy — D23Ro, Biy)M + (Da3Rop, Rizs — Di3) Rap By A2

=T11715 + Ti2A1 — T13)A2
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then
vs = —Rons (D3ya1s + D3gus + Biyhe)
_Rz_zlsD;Fﬂls - R2_215D2T3Us - Rz_zl'ségz)@
— Ry, Dayw1s — Rogy Da(Tiiwis + Tiah — Tisha) — Ropy Bio Ao (12b)
= (=Ry5, D35 — Ry, D33 T11) w15 — Ryp, D33 Tiohi + (Ragy Doy Tis — Rol Boy) Ao
= To1w1s — To2A1 + T3 A2

where

T = (= Ruis + 2D13R55,Dyy — DagRoy Rias Ry, Do) ™!

(DYy — Dag Ry, Dy — Di3Ryy, Dy + DasRig Rizs Rap D)

Tio = (=Rus + 2D13Roy, D33 — Daa Ry Rizs Ryy Da3) ™' (Bgy — D23 Ry Bi)

Tig = (= Ruts + 2D13Rog, D3 — Doy Royg Rizg Ry D33) ™' (D1s — Dag Ropy Ruas) Ry By

Ty = —Ray,Day — Ryp Dz T

Tz = Rop,Dy3Tho

Ty3 = RypyDy3Tis — Ry Boy
For =\ = Qo715 + Dijus + Digv, + AN, —Xy = Qo015 + Doyug + Dogvg + AF A2, letting
A1 = p1s®1s and A = pasz1s, (9a) and (9b) can be derived respectively. This is the desired
result. 0

In [8], Mukaidani proposed a fixed-point iterative algorithm for solving cross-coupled alge-

braic Riccati equations (9).
Assumption 1  The triplet (AO,BM, V@Q1) and (Ao, Boz, /Q2) are stabilizable and de-

tectable.
Under Assumption 1, the positive semidefinite solutions of cross-coupled algebraic Riccati

equations (9) exist. It is obtained by performing the fixed-point algorithm:

P (A = St = Soapl™) + (A = S1apl) — SopS TP 4 @y + p{M TSy p( = 0

(13a)
P (A — 81p™ = Spp™) 4 (A — S1ap™ — Sopt) TP+ & Qg 4 piIT S pl = 0
(13b)
n=01,2,-
where pﬁ), pg;) are the solutions of the following algebraic Riccati equations:
YA+ AP + Q1 = plY  S1pl) =0 (14a)
Po (A = S1.p1) + (A = S1.01)) D) + Q2 = 95" o) = 0 (14D)

The proof can be seen in [8].
In the fast subsystem, we assume that the slow variables are constant in the boundary layer.
Redefining the fast variables zoy = z2 — @25, and the fast controls uy = u — us, vy = v — vs,

the fast subsystem is formulated as:

. 1 1~ 1~
Tof = EAQQJ)QJC + gBQl’LLf + gBQQ'Uf, fo(O) =20 — .1323(0) (15)
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Then we can obtain the quadratic cost function for the fast subsystem

1 oo
Jif = 5/0 (wng122$2f + U?Riluf + U}FRigvf)dt (16)

Assumption 2  The triplet (Aaz, By, VQ122) and (Asgg, Bas, VQ222) are stabilizable
and detectable.

Theorem 2 Under Assumption 2, suppose that the following cross-coupled algebraic Ric-
cati equations has solutions piy and pay
prf(Aza — S1ppry — Sappag) + (Aza — Sippiy — Sappas) ' pif + prpSispis + Qu22 =0 (17a)
pas(Aza — S1pprs — Sappag) + (Aza — Sippiy — Sappas) Doy + pagSaspay + Qa2 =0 (17h)
where Slf = %BglRﬁlBQTl, ng = %322R2_21BQTQ.
Then, the Stackelberg equilibrium solution (u}, v]*c) of the fast subsystem can be given by
—Ry Bz1plfx2f (18a)
—Ry, 322P2f952f (18b)

&»,* \se

Proof we can get the Stackelberg equilibrium solution (u;‘c, v;‘;) of the fast subsystem

v;’é —R2_21BQTQp2ffc2f

then

1 ~ ~

= §($;FfQ122$2f + U?Rlluf + U;{vaf) + /\?f(AQQJTQf + Bojuy + Bagvy)
1 .

= §($ng122$2f + U?Rlluf) + Ale(A22$2f + Baiuy)

+ %A;fmeR;meR;; Biyhas — My Bas Roy By sy
where \;; € R"2*! is the Langrangian multiplier. Then
= —Ry' Bji\ip = — Ry Byipigaay
where py ¢, poy satisfy the cross-coupled algebraic Riccati equations (17). g

Similarly, under Assumption 2, the positive semidefinite solutions of cross-coupled algebraic

Riccati equations (17) exist, and can be obtained by performing the fixed-point algorithm:

PY}H)(Azz - S1fp§?) - 52fpg})) + (Ao — S1fp(f})
_S (n)yT, (n+1) (")TS (n) _ 0 19
2fPaf ) Pip  + Qua2+pif Siypis (19a)
p(;}-i_l) (A22 - Slfpls) - Spr(QT})) + (A22 - Slfpls
- 52fp(n)) Pg? )+ Qazz + p(QTfL‘)TSQ Pg}) =0 (19b)
n=01,23...

where pg(}), pg}) are the solutions of the following algebraic Riccati equations:

plf A22 + A22p1f + Q122 — plf Slfplf =0 (20a)

ng ) (Azz — Slfplf) (A2 — S1fplo))Tpgf + Q222 — pr S2fp2f =0 (20b)
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4 Composite Strategy
The composite Stackelberg strategy pair of the full-order singularly perturbed system (1)

is constructed as follows['%:
ue = ug +uy = (T11 + Thap1s — Tizpas) T1s — Ryy Byipiseay (21a)
ve = v} +vF = (To1 — Toaprs + Tospas) w15 — Rog Blypayay (21b)
With z; replacing x1s, 2 replacing zaos + xay, for xos = —A;; (A1 15 + Bojus + ngvs),
we obtain
ue = Gz + Goxo (22a)
ve = G3x1 + Gaxo (22Db)
where

G1 = (T11 + Tizprs — Tizp2s) — Ry BaypiypAgs [Aar + Bor(Thn + Thoprs — Tizpas)
+ Boa(Tor — Taoprs + Taspas)]
Gy =—Ry\'Baipiy
Gs = (To1 — Taopis + Tozpas) — RgglézTQPQnggl [A21 + le(Tn + Thop1s — Thspas)
+ Boa(To1 — Taoprs + Taspas)]
G4 = —Rs;' By,poy
Theorem 3 The composite strategy pair constitutes an o(e) (near) Stackelberg equilibrium

of the full-order game, that is,

x1(t) = x15(t) + o(€) (23a)
xo(t) = —A2_21 (A21 + Go)z1s(t) + Tof (t) + o(e) (23b)
W (8) = ue(t) + ofe) (23¢)
v*(t) = ve(t) + o(e) (23d)
Proof The feedback system (5) can be written as
T _ A1 + B11G1 + B12G3 A1z + B11Ga + B12Gy 1 (24)
€T Ast + By Gy + B2oGs Asy + Bo1Ga + BaxGy T2
Introducing the Chang transformation and its inverse
L —eHL —eH I eH
=" e (25)
L I —L Iy —eHL
while the transformation equations are given by
eLA11 + Aoy — (eLA1g + Aso)L =10 (26)
A12 + €(A11 — AlgL)H — H(&LAlQ + AQQ) =0
we get
510
rsTt=|"" (27)

0 S
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where S is the system matrix of (24),
Sy =411 + BnGl + BlQGB) — (A + BHGQ + 312G4)L
—eH(As + leGl + 322G3) —eHL(An + BnGl + 312G3)
+ EHL(A12 + BllGQ + 312G4)L + €H(A22 + BQlGQ + B22G4)L

Sy = (A22 + B21Ga + B2sGy) + L(A1z + B11G3 + B12Gy)
+ L(A1 + BiGy + 312G3)€H + (A2 + Bo1Gy + 322G3)€H
— L(A12 + BuGs + 312G4)€HL — (A2 + By1Gs + 322G4)6HL
If (Aas + Bo1Gy + BQQG4) + L(A12 + B11Gy + 312G4) is stable, the solution of (24) is
approximated for all finite ¢ > 0 by
1(t) = exp[(A11 + B11G1 + B12G3 — A1oL — B11G2L — B1sG4L)t]z1,(0) + o(e)  (28a)
za(t) = — A3y (As1 + Go) exp[(A1y + B11G1 + B12Gs — Az L
— B11G>L — B12G4L)t)215(0) + exp[(Asz + Ba1Ga + BoaGa + LA (28b)
+ LB11Gy + LB12Ga)t/e]z25(0) + o(e)
where 215(0), 227(0) are given by (7a), (15). If in addition (A1 + B11Gy + BlgGg) — (A2 +

B11Gs + 312G4)L is also stable, (28) holds for all ¢ € [0,00). Then (23) follows directly from
(28), (7) and (15). O

5 A Numerical Example

In order to demonstrate the efficiency of the proposed decomposition method, we have run

a simple numerical example. All matrices are chosen randomly, which are given by

004 0 O 0 —0.524 —0.465 0.262

Ay = , A= , A= , Agy = ;
00 0.345 0 0 0 0 -1
0 0 0 0.2
B = , Bia= , Bo1= , Baa= ,
0 0 1 1
1 0 0 0
0 1 0 0
Ml:Nl: ) M2:N2: ) M3_N3: ) M4:N4:
0 0 1 0
0 0 0 1
and a quadratic cost function
1 o0
Ji(u,v) = 3 / (2T Qi + u? + 20%)dt
0
1 o0
Jo(u,v) = 3 / (2T Qox + 2u? +v?)dt
0

where

Ql :diag{1705170}5 QQ :diag{1507150}7 10 = T20 =
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The simulation result is presented in Figure 1.

Simulation curves of the composite Stackelberg strageties
0.2 T T T T T

uor v

12 i i i i i
0 500 1000 1500 2000 2500 3000

times

Figure 1 Simulation curves of the composite Stackelberg strategy (uc,v.)

Conclusions

Many real systems possess the structure of the singularly perturbed bilinear control systems

such as motor drives, robust control, multi-sector input-output analysis and option pricing. In

this paper, we have studied the Stackelberg games for singularly perturbed bilinear systems.

And we propose to decompose the full-order system into two subsystems of a slow-time and

fast-time scale. Utilizing the fixed point iterative algorithm to solve cross-coupled algebraic

Riccati equations, equilibrium strategies of the two subsystems can be obtained, and further the

composite strategy of the original full-order system. It has been proved that such a composite

strategy formed an o(e) (near) Stackelberg equilibrium, and a numerical example in the end has

demonstrated the efficiency of the algorithm. The conclusion obtained in this paper could be

applied to deal with many practical industry engineering and financial engineering problems.
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