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Abstract Based on singularly perturbed bilinear quadratic problems, this paper proposes to decom-

pose the full-order system into two subsystems of a slow-time and fast-time scale. Utilizing the fixed

point iterative algorithm to solve cross-coupled algebraic Riccati equations, equilibrium strategies of

the two subsystems can be obtained, and further the composite strategy of the original full-order sys-

tem. It was proved that such a composite strategy formed an o(ε) (near) Stackelberg equilibrium, and

a numerical result of the algorithm was presented in the end.

Keywords singularly perturbed; bilinear quadratic system; stackelberg equilibrium

1 Introduction

Dynamic game theory has been studied widely over the past decades, and the non-cooperative
game theory of linear quadratic systems has been studied intensively in many papers. For exam-
ple, Cruz. Jr et al. obtained the open-loop Stackelberg strategy in non-zero sum games[1]; in [2],
Basar summarized the non-cooperative game theory in linear quadratic systems; in [3], Medanic
developed necessary conditions for closed-loop Stackelberg strategies in linear quadratic prob-
lems and presented an algorithm for numerical solutions of two-level Stackelberg problems;
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Mizukami investigated the linear quadratic closed-loop Stackelberg game for the descriptor sys-
tem and constructed the incentive strategies in [4]. For singularly perturbed systems, in [5],
Khalil and Kokotovic discussed the well-posedness of singularly perturbed Nash games and
illustrated the impact of the feedback information available to players on the well-posedness
of the game; Xu and Mizukami presented a unified approach to achieve the composite approx-
imation of the full-order linear feedback saddle-point solution[6]; Mukaidani proposed a new
algorithm for solving cross-coupled algebraic Riccati equations of singularly perturbed Nash
games in [7], further applied the algorithm in obtaining the linear quadratic infinite horizon
Nash game for general multiparameter singularly pertubed systems[8], studied the computa-
tion of the linear closed-loop Stackelberg strategies with small singular perturbation parameter
in [9], and investigated the linear closed-loop Stackelberg strategy of the singularly perturbed
stochastic systems with state dependent noise[10].

However, game theories of singularly perturbed bilinear systems are seldom discussed, while
singularly perturbed bilinear systems are a quite proper and essential description tool in describ-
ing many practical systems such as neutron level control problem in a fission reactor, DC-motor,
induction motor drives[11], and in financial engineering problems, Black-Scholes Option Pric-
ing Model, Aoki’s two sector macroeconomic growth model, Chander and Tokao’s non-linear
input-output model can all be extended to singularly perturbed bilinear models in [12–15].

The structure of this paper is organized as follows. In Section 2, the problem of the differen-
tial Stackelberg equilibrium strategy for a singularly perturbed bilinear time-invariant system
is presented. Sections 3 and 4 are concerned with the decomposition of the full-order system
into two subsystems, and the composition strategy of the original full-order system. A simple
numerical example is solved in Section 5. Section 6 contains the conclusion.

2 Problem Statement

Consider a time-invariant singularly perturbed bilinear system:
⎡
⎣ ẋ1(t)

εẋ2(t)

⎤
⎦ =

⎡
⎣ A11 A12

A21 A22

⎤
⎦

⎡
⎣ x1(t)

x2(t)

⎤
⎦ +

⎡
⎣ B11

B21

⎤
⎦u(t) +

⎡
⎣ B12

B22

⎤
⎦ v(t)

+

⎧⎨
⎩

⎡
⎣ x1(t)

x2(t)

⎤
⎦

⎡
⎣ Ms

Mf

⎤
⎦
⎫⎬
⎭ u(t) +

⎧⎨
⎩

⎡
⎣ x1(t)

x2(t)

⎤
⎦

⎡
⎣ Ns

Nf

⎤
⎦

⎫⎬
⎭ v(t)

(1)

with initial condition ⎡
⎣ x1(0)

x2(0)

⎤
⎦ =

⎡
⎣ x10

x20

⎤
⎦

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 are respectively slow and fast state variable, x(t) = [x1(t), x2(t)]
T

∈ Rn are state vector with n1 + n2 = n, u(t) ∈ Rm and v(t) ∈ Rl are respectively the control
inputs of Player 1 and Player 2, the small singular perturbation parameter ε > 0 represents
small time constants, inertias, masses, etc., and A11, A12, A21, A22, B11, B12, B21, B22, Ms,
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Mf , Ns, Nf are constant matrices of appropriate dimensions, with⎧⎨
⎩

⎡
⎣ x1(t)

x2(t)

⎤
⎦

⎡
⎣ Ms

Mf

⎤
⎦
⎫⎬
⎭ =

n1∑
j=1

x1j

⎡
⎣ Msj

Mfj

⎤
⎦ +

n1+n2∑
j=n1+1

x2j

⎡
⎣ Msj

Mfj

⎤
⎦

⎧⎨
⎩

⎡
⎣ x1(t)

x2(t)

⎤
⎦

⎡
⎣ Ns

Nf

⎤
⎦
⎫⎬
⎭ =

n1∑
j=1

x1j

⎡
⎣ Nsj

Nfj

⎤
⎦ +

n1+n2∑
j=n1+1

x2j

⎡
⎣ Nsj

Nfj

⎤
⎦

The cost function for each player is defined by

Ji(u, v) =
1
2

∫ ∞

0

[
xT(t)Qix(t) + uT(t)Riiu(t) + vT(t)Rijv(t)

]
dt (2)

where

Rii > 0, Rij > 0, i, j = 1, 2, i �= j, Qi =

⎡
⎣ Qi11 Qi12

QT
i12

Qi22

⎤
⎦

It is assumed that the decision-maker denoted by Player 1 is the leader, and Player 2 is the
follower. Under the assumption that both players employ strategies u := u(x, t), v := v(x, t),
a strategy set (u∗, v∗) is called a Stackelberg strategy if for any admissible strategy set (u, v),
the following conditions hold[10].

J1(u∗, v∗) ≤ J1(u, v0(u)), ∀u ∈ Rm (3)

where
J2(u, v0(u)) = min

v
J2(u, v)

and
v∗ = v0(u∗)

3 Decomposition of Slow and Fast Systems

Let⎡
⎣ B̃11(x)

B̃21(x)

⎤
⎦ =

⎡
⎣ B11

B21

⎤
⎦ +

⎧⎨
⎩

⎡
⎣ x1

x2

⎤
⎦

⎡
⎣ Ms

Mf

⎤
⎦

⎫⎬
⎭ ,

⎡
⎣ B̃12(x)

B̃22(x)

⎤
⎦ =

⎡
⎣ B12

B22

⎤
⎦ +

⎧⎨
⎩

⎡
⎣ x1

x2

⎤
⎦

⎡
⎣ Ns

Nf

⎤
⎦
⎫⎬
⎭ (4)

B̃11 = B̃11(x), B̃21 = B̃21(x), B̃12 = B̃12(x), B̃22 = B̃22(x)

then (1) can be written as:⎧⎨
⎩

ẋ1 = A11x1 + A12x2 + B̃11u + B̃12v (5a)

εẋ2 = A21x1 + A22x2 + B̃21u + B̃22v (5b)

Neglecting the fast modes is equivalent to assuming that they are infinitely fast, that is
letting ε = 0. Without the fast modes the system (5) reduces to

ẋ1 = A11x1 + A12x2 + B̃11u + B̃12v (6a)

0 = A21x1 + A22x2 + B̃21u + B̃22v (6b)

Assuming that A22 is nonsingular, we have

ẋ1s = A0x1s + B̃01us + B̃02vs, x1s = x10 (7a)
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x2s = −A−1
22 (A21x1s + B̃21us + B̃22vs) (7b)

where A0 = A11 − A12A
−1
22 A21, B̃01 = B̃11 − A12A

−1
22 B̃21, B̃02 = B̃12 − A12A

−1
22 B̃22.

Then we can obtain the quadratic cost function for the slow subsystem

Jis =
1
2

∫ ∞

0

(xT
1sQi0x1s + 2xT

1sDi1us + 2xT
1sDi2vs + 2uT

s Di3vs

+ uT
s Ri1sus + vT

s Ri2svs)dt (8)

where Qi0 = Qi11 + AT
21A

−T
22 Qi22A

−1
22 A21, Di1 = AT

21A
−T
22 Qi22A

−1
22 B̃21, Di2 = AT

21A
−T
22 Qi22A

−1
22

B̃22, Di3 = B̃T
21A

−T
22 Qi22A

−1
22 B̃22, Ri1s = Ri1 + B̃T

21A
−T
22 Qi22A

−1
22 B̃21, Ri2s = Ri2 + B̃T

22A
−T
22 Qi22

A−1
22 B̃22.

Theorem 1 Suppose that the following cross-coupled algebraic Riccati equations has so-
lutions p1s and p2s

p1s(A − S1sp1s − S2sp2s) + (A − S1sp1s − S2sp2s)Tp1s + p1sS1sp1s + Q1 = 0 (9a)

p2s(A − S1sp1s − S2sp2s) + (A − S1sp1s − S2sp2s)Tp2s + p2sS2sp2s + Q2 = 0 (9b)

where

A = A0 + B̃01T11 + B̃02T21, S1s =
1
2

(
B̃02T22 − B̃01T12

)
, S2s =

1
2

(
B̃01T13 − B̃02T23

)

Q1 = Q10 + D11T11 + D12T21, Q2 = Q20 + D21T11 + D22T21

Then, the Stackelberg equilibrium solution (u∗
s, v

∗
s) of the slow subsystem can be given by

u∗
s = (T11 + T12p1s − T13p2s)x1s (10a)

v∗s = (T21 − T22p1s + T23p2s)x1s (10b)

Proof The Hamiltonian His corresponding to the system (7) and performance index (8)
is

His =
1
2
(xT

1sQi0x1s + 2xT
1sDi1us + 2xT

1sDi2vs + 2uT
s Di3vs + uT

s Ri1sus + vT
s Ri2svs)

+ λT
i (A0x1s + B̃01us + B̃02vs)

(11)

where λi ∈ Rn1×1 is the Langrangian multiplier. �
Given arbitrary us, the corresponding vs is obtained by minimizing J2s with respect to vs.

Then, the optimal control is given by

vs = −R−1
22s(D

T
22x1s + DT

23us + B̃T
02λ2)

Then the cost J1s can be obtained, and we can further obtain

us =(−R11s + 2D13R
−1
22sD

T
23 − D23R

−T
22sR12sR

−1
22sD

T
23)

−1

⎡
⎣ (DT

11 − D23R
−T
22sD

T
12 − D13R

−1
22sD

T
22 + D23R

−T
22sR12sR

−1
22sD

T
22)x1s

+(B̃T
01 − D23R

−T
22sB̃

T
02)λ1 + (D23R

−T
22sR12s − D13)R−1

22sB̃
T
02λ2

⎤
⎦

=T11x1s + T12λ1 − T13λ2

(12a)



158 BIN N, ZHANG C K, ZHU H N, et al.

then

vs = −R−1
22s(D

T
22x1s + DT

23us + B̃T
02λ2)

= −R−1
22sD

T
22x1s − R−1

22sD
T
23us − R−1

22sB̃
T
02λ2

= −R−1
22sD

T
22x1s − R−1

22sD
T
23(T11x1s + T12λ1 − T13λ2) − R−1

22sB̃
T
02λ2

= (−R−1
22sD

T
22 − R−1

22sD
T
23T11)x1s − R−1

22sD
T
23T12λ1 + (R−1

22sD
T
23T13 − R−1

22sB̃
T
02)λ2

= T21x1s − T22λ1 + T23λ2

(12b)

where

T11 = (−R11s + 2D13R
−1
22sD

T
23 − D23R

−T
22sR12sR

−1
22sD

T
23)

−1

(DT
11 − D23R

−T
22sD

T
12 − D13R

−1
22sD

T
22 + D23R

−T
22sR12sR

−1
22sD

T
22)

T12 = (−R11s + 2D13R
−1
22sD

T
23 − D23R

−T
22sR12sR

−1
22sD

T
23)

−1(B̃T
01 − D23R

−T
22sB̃

T
02)

T13 = (−R11s + 2D13R
−1
22sD

T
23 − D23R

−T
22sR12sR

−1
22sD

T
23)

−1(D13 − D23R
−T
22sR12s)R−1

22sB̃
T
02

T21 = −R−1
22sD

T
22 − R−1

22sD
T
23T11

T22 = R−1
22sD

T
23T12

T23 = R−1
22sD

T
23T13 − R−1

22sB̃
T
02

For −λ̇1 = Q10x1s + D11us + D12vs + AT
0 λ1, −λ̇2 = Q20x1s + D21us + D22vs + AT

0 λ2, letting
λ1 = p1sx1s and λ2 = p2sx1s, (9a) and (9b) can be derived respectively. This is the desired
result. �

In [8], Mukaidani proposed a fixed-point iterative algorithm for solving cross-coupled alge-
braic Riccati equations (9).

Assumption 1 The triplet (A0, B̃01,
√

Q1) and (A0, B̃02,
√

Q2) are stabilizable and de-

tectable.
Under Assumption 1, the positive semidefinite solutions of cross-coupled algebraic Riccati

equations (9) exist. It is obtained by performing the fixed-point algorithm:

p
(n+1)
1s (A − S1sp

(n)
1s − S2sp

(n)
2s ) + (A − S1sp

(n)
1s − S2sp

(n)
2s )Tp

(n+1)
1s + Q1 + p

(n)T
1s S1sp

(n)
1s = 0

(13a)

p
(n+1)
2s (A − S1sp

(n)
1s − S2sp

(n)
2s ) + (A − S1sp

(n)
1s − S2p

(n)
2s )Tp

(n+1)
2s + Q2 + p

(n)T
2s S2sp

(n)
2s = 0

(13b)

n = 0, 1, 2, · · ·
where p

(0)
1s , p

(0)
2s are the solutions of the following algebraic Riccati equations:

p
(0)
1s A + ATp

(0)
1s + Q1 − p

(0)T
1s S1sp

(0)
1s = 0 (14a)

p
(0)
2s (A − S1sp

(0)
1s ) + (A − S1sp

(0)
1s )Tp

(0)
2s + Q2 − p

(0)T
2s S2sp

(0)
2s = 0 (14b)

The proof can be seen in [8].
In the fast subsystem, we assume that the slow variables are constant in the boundary layer.

Redefining the fast variables x2f = x2 − x2s, and the fast controls uf = u − us, vf = v − vs,
the fast subsystem is formulated as:

ẋ2f =
1
ε
A22x2f +

1
ε
B̃21uf +

1
ε
B̃22vf , x2f (0) = x20 − x2s(0) (15)
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Then we can obtain the quadratic cost function for the fast subsystem

Jif =
1
2

∫ ∞

0

(xT
2fQi22x2f + uT

f Ri1uf + vT
f Ri2vf )dt (16)

Assumption 2 The triplet (A22, B̃21,
√

Q122) and (A22, B̃22,
√

Q222) are stabilizable

and detectable.

Theorem 2 Under Assumption 2, suppose that the following cross-coupled algebraic Ric-
cati equations has solutions p1f and p2f

p1f (A22 − S1fp1f − S2fp2f) + (A22 − S1fp1f − S2fp2f )Tp1f + p1fS1fp1f + Q122 = 0 (17a)

p2f (A22 − S1fp1f − S2fp2f) + (A22 − S1fp1f − S2fp2f )Tp2f + p2fS2fp2f + Q222 = 0 (17b)

where S1f = 1
2 B̃21R

−1
11 B̃T

21, S2f = 1
2 B̃22R

−1
22 B̃T

22.
Then, the Stackelberg equilibrium solution (u∗

f , v∗f ) of the fast subsystem can be given by

u∗
f = −R−1

11 B̃T
21p1fx2f (18a)

v∗f = −R−1
22 B̃T

22p2fx2f (18b)

Proof we can get the Stackelberg equilibrium solution (u∗
f , v∗f ) of the fast subsystem

v∗f = −R−1
22 B̃T

22p2fx2f

then

H1f =
1
2
(xT

2fQ122x2f + uT
f R11uf + vT

f R12vf ) + λT
1f (A22x2f + B̃21uf + B̃22vf )

=
1
2
(xT

2fQ122x2f + uT
f R11uf) + λT

1f (A22x2f + B̃21uf)

+
1
2
λT

2f B̃22R
−T
22 R12R

−1
22 B̃T

22λ2f − λT
1f B̃22R

−1
22 B̃T

22λ2f

where λif ∈ Rn2×1 is the Langrangian multiplier. Then

u∗
f = −R−1

11 B̃T
21λ1f = −R−1

11 B̃T
21p1fx2f

where p1f , p2f satisfy the cross-coupled algebraic Riccati equations (17). �
Similarly, under Assumption 2, the positive semidefinite solutions of cross-coupled algebraic

Riccati equations (17) exist, and can be obtained by performing the fixed-point algorithm:

p
(n+1)
1f (A22 − S1fp

(n)
1f − S2fp

(n)
2f ) + (A22 − S1fp

(n)
1f

− S2fp
(n)
2f )Tp

(n+1)
1f + Q122 + p

(n)T
1f S1fp

(n)
1f = 0 (19a)

p
(n+1)
2f (A22 − S1fp

(n)
1s − S2fp

(n)
2f ) + (A22 − S1fp

(n)
1s

− S2fp
(n)
2f )Tp

(n+1)
2f + Q222 + p

(n)T
2f S2fp

(n)
2f = 0 (19b)

n = 0, 1, 2, 3 . . .

where p
(0)
1f , p

(0)
2f are the solutions of the following algebraic Riccati equations:

p
(0)
1f A22 + AT

22p
(0)
1f + Q122 − p

(0)T
1f S1fp

(0)
1f = 0 (20a)

p
(0)
2f (A22 − S1fp

(0)
1f ) + (A22 − S1fp

(0)
1f )Tp

(0)
2f + Q222 − p

(0)T
2f S2fp

(0)
2f = 0 (20b)
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4 Composite Strategy

The composite Stackelberg strategy pair of the full-order singularly perturbed system (1)
is constructed as follows[16]:

uc = u∗
s + u∗

f = (T11 + T12p1s − T13p2s)x1s − R−1
11 B̃T

21p1fx2f (21a)

vc = v∗s + v∗f = (T21 − T22p1s + T23p2s)x1s − R−1
22 B̃T

22p2fx2f (21b)

With x1 replacing x1s, x2 replacing x2s + x2f , for x2s = −A−1
22 (A21x1s + B̃21us + B̃22vs),

we obtain

uc = G1x1 + G2x2 (22a)

vc = G3x1 + G4x2 (22b)

where

G1 = (T11 + T12p1s − T13p2s) − R−1
11 B̃T

21p1fA−1
22 [A21 + B̃21(T11 + T12p1s − T13p2s)

+ B̃22(T21 − T22p1s + T23p2s)]

G2 = −R−1
11 B̃T

21p1f

G3 = (T21 − T22p1s + T23p2s) − R−1
22 B̃T

22p2fA−1
22 [A21 + B̃21(T11 + T12p1s − T13p2s)

+ B̃22(T21 − T22p1s + T23p2s)]

G4 = −R−1
22 B̃T

22p2f

Theorem 3 The composite strategy pair constitutes an o(ε) (near) Stackelberg equilibrium
of the full-order game, that is,

x1(t) = x1s(t) + o(ε) (23a)

x2(t) = −A−1
22 (A21 + G0)x1s(t) + x2f (t) + o(ε) (23b)

u∗(t) = uc(t) + o(ε) (23c)

v∗(t) = vc(t) + o(ε) (23d)

Proof The feedback system (5) can be written as⎡
⎣ ẋ1

εẋ2

⎤
⎦ =

⎡
⎣ A11 + B̃11G1 + B̃12G3 A12 + B̃11G2 + B̃12G4

A21 + B̃21G1 + B̃22G3 A22 + B̃21G2 + B̃22G4

⎤
⎦

⎡
⎣ x1

x2

⎤
⎦ (24)

Introducing the Chang transformation and its inverse

T =

⎡
⎣ I1 − εHL −εH

L I2

⎤
⎦ , T−1 =

⎡
⎣ I1 εH

−L I2 − εHL

⎤
⎦ (25)

while the transformation equations are given by⎧⎨
⎩

εLA11 + A21 − (εLA12 + A22)L = 0

A12 + ε(A11 − A12L)H − H(εLA12 + A22) = 0
(26)

we get

TST−1 =

⎡
⎣ S1 0

0 S2

⎤
⎦ (27)
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where S is the system matrix of (24),

S1 = (A11 + B̃11G1 + B̃12G3) − (A12 + B̃11G2 + B̃12G4)L

− εH(A21 + B̃21G1 + B̃22G3) − εHL(A11 + B̃11G1 + B̃12G3)

+ εHL(A12 + B̃11G2 + B̃12G4)L + εH(A22 + B̃21G2 + B̃22G4)L

S2 = (A22 + B̃21G2 + B̃22G4) + L(A12 + B̃11G2 + B̃12G4)

+ L(A11 + B̃11G1 + B̃12G3)εH + (A21 + B̃21G1 + B̃22G3)εH

− L(A12 + B̃11G2 + B̃12G4)εHL − (A22 + B̃21G2 + B̃22G4)εHL

If (A22 + B̃21G2 + B̃22G4) + L(A12 + B̃11G2 + B̃12G4) is stable, the solution of (24) is
approximated for all finite t ≥ 0 by

x1(t) = exp[(A11 + B̃11G1 + B̃12G3 − A12L − B̃11G2L − B̃12G4L)t]x1s(0) + o(ε) (28a)

x2(t) = −A−1
22 (A21 + G0) exp[(A11 + B̃11G1 + B̃12G3 − A12L

− B̃11G2L − B̃12G4L)t]x1s(0) + exp[(A22 + B̃21G2 + B̃22G4 + LA12 (28b)

+ LB̃11G2 + LB̃12G4)t/ε]x2f (0) + o(ε)

where x1s(0), x2f (0) are given by (7a), (15). If in addition (A11 + B̃11G1 + B̃12G3) − (A12 +
B̃11G2 + B̃12G4)L is also stable, (28) holds for all t ∈ [0,∞). Then (23) follows directly from
(28), (7) and (15). �

5 A Numerical Example

In order to demonstrate the efficiency of the proposed decomposition method, we have run
a simple numerical example. All matrices are chosen randomly, which are given by

A11 =

⎡
⎣ 0 0.4

0 0

⎤
⎦ , A12 =

⎡
⎣ 0 0

0.345 0

⎤
⎦ , A21 =

⎡
⎣ 0 −0.524

0 0

⎤
⎦ , A22 =

⎡
⎣−0.465 0.262

0 −1

⎤
⎦ ,

B11 =

⎡
⎣ 0

0

⎤
⎦ , B12 =

⎡
⎣ 0

0

⎤
⎦ , B21 =

⎡
⎣ 0

1

⎤
⎦ , B22 =

⎡
⎣ 0.2

1

⎤
⎦ ,

M1 = N1 =

⎡
⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

, M2 = N2 =

⎡
⎢⎢⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎦

, M3 = N3 =

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦

, M4 = N4 =

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎦

and a quadratic cost function

J1(u, v) =
1
2

∫ ∞

0

(xTQ1x + u2 + 2v2)dt

J2(u, v) =
1
2

∫ ∞

0

(xTQ2x + 2u2 + v2)dt

where

Q1 = diag{1, 0, 1, 0}, Q2 = diag{1, 0, 1, 0}, x10 = x20 =

⎡
⎣ 1

1

⎤
⎦ .
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The simulation result is presented in Figure 1.
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Figure 1 Simulation curves of the composite Stackelberg strategy (uc, vc)

6 Conclusions

Many real systems possess the structure of the singularly perturbed bilinear control systems
such as motor drives, robust control, multi-sector input-output analysis and option pricing. In
this paper, we have studied the Stackelberg games for singularly perturbed bilinear systems.
And we propose to decompose the full-order system into two subsystems of a slow-time and
fast-time scale. Utilizing the fixed point iterative algorithm to solve cross-coupled algebraic
Riccati equations, equilibrium strategies of the two subsystems can be obtained, and further the
composite strategy of the original full-order system. It has been proved that such a composite
strategy formed an o(ε) (near) Stackelberg equilibrium, and a numerical example in the end has
demonstrated the efficiency of the algorithm. The conclusion obtained in this paper could be
applied to deal with many practical industry engineering and financial engineering problems.
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