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Abstract A characterization of the equilibrium of information flow networks and the dynamics of

network formation are studied under the premise of local information flow. The main result of this paper

is that it gives the dynamic formation procedure in the local information flow network. The research

shows that core-periphery structure is the most representative equilibrium network in the case of the

local information flow without information decay whatever the cost of information is homogeneous or

heterogeneous. If the profits and link costs of local information flow networks with information decay

are homogeneous empty network and complete network are typical equilibrium networks, which are

related to the costs of linking.

Keywords local information flow; information decay; dynamic procedure; core-periphery architec-
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1 Introduction

The main actors of an information flow network are players. The difference between the
information flow network and a regular network is that the equilibrium of information flow
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network depends on its topological structure and players have the need and competence of
acquiring information personally. The dynamic formation procedure of information flow net-
work is one of the most worthy of concern questions[1]. In actual practice individuals decide
on information acquisition and links with others over time, and it is important to understand
these dynamics. Similar to “Two-way” flow network model in common sense[2], an important
assumption is that “unilateral formation connection and bilateral information exchange”, that
is to say, a link is formed once some player pays for it and it allows both players to access the
information personally acquired by the other player.

In this paper, we study the characterization of the equilibrium of local information flow
networks and the dynamics of network formation. We give the dynamic formation procedure of
the local information flow network. The research shows that core-periphery structure is the most
representative equilibrium network in the case of the local information flow without information
decay whatever the cost of information is homogeneous or heterogeneous. If the profits and
link costs of local information flow networks with information decay are homogeneous empty
network and complete network are typical equilibrium networks, which are related to the costs
of linking.

This work is related to a number of literatures. First, there is a theoretic literature on
social networks from a game perspective[3−14]. Second, there is an extensive literature from the
applying perspective[15−18].

2 Local Information Flow Networks Without Information Decay

2.1 Equilibrium Networks in the Static Case

Let N = {1, 2, · · · , n} with n ≥ 3 be the set of players and let i and j be typical members of
this set. Each player chooses a level of personal information acquisition xi ∈ X = [0, +∞) and
a set of links with others to access their information, which is represented as a (row) vector:

gi = (gi1, · · · , gii−1, gii, gii+1, · · · , gin)

where gii = 0, ∀i ∈ N and gij ∈ {0, 1}, for each j ∈ N\{i}. We say that player i has a link with
player j if gij = 1, and the cost of linking with one other person is k > 0. Otherwise we have
gij = 0. Our paper assumes that the cost of linking with one other person is homogeneous,
and the link between player i and j allow both players share information. The set of strategies
of player i is denoted by Si = X × Gi. Define S = S1 × S2 × · · · × Sn as the set of strategies
of all players. A strategy profile s = (x, g) ∈ S specifies the personal information acquired
by each player x = (x1, x2, · · · , xn), and the network of relations (connection Matrix) g =
(g1, g2, · · · , gn)T, where T specifies a transposition.

The network g is a directed graph, where the arrow from i to j specifies gij = 1. Let G

be the set of all possible directed graphs on n vertices. Define Ni(g) = {j ∈ N : gij = 1} as
the set of players with whom i has formed a link. Let ηi(g) = |Ni(g)|. The closure of g is
an undirected network denoted by ḡ = cl(g), where ḡij = max{gij , gji}. In words, the closure
of a directed network involves replacing every directed edge of by an undirected one. Define
Ni(ḡ) = {j ∈ N : ḡij = 1} as the set of players directly connected to i. The undirected link
between two players reflects bilateral information exchange between them.
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The payoff to player i under strategy profile s = (x, g) is

Π i(s) = f

(
xi +

∑
j∈Ni(ḡ)

xj

)
− cixi − ηi(g)k (1)

where ci > 0 is the cost of information. We assume the cost of information that personally
acquired is heterogeneous. We also assume that f(y) is twice continuously differentiable, in-
creasing, and strictly concave in y. To focus on interesting cases we assume

f(0) = 0, f ′(0) > c0 = max
1≤i≤n

{ci}

and
lim

y→+∞ f ′(y) = m < c0 = min
1≤i≤n

{ci}

Under these assumptions, there exists a number ŷi > 0 such that

ŷi = arg max
y∈X

[f(y) − ciy]

i.e., ŷi solves f ′(ŷi) = ci.
A Nash equilibrium is a strategy profile s∗ = (x∗, g∗) satisfying

Πi(s∗i , s
∗
−i) ≥ Πi(si, s

∗
−i), ∀si ∈ Si, ∀i ∈ N (2)

Example 1 Let N = {1, 2, 3, 4, 5, 6} be the set of players, the cost of linking with one
other person be homogeneous k = 1

5 , the cost of information that personally acquired be
heterogeneous and denoted by c1 = c2 = c3 = c4 = 1

2 , c5 = c6 = 10
21 . Suppose that the

payoffs are given by (1), where f(y) = ln(1 + y). We can check that s∗ = (x∗, g∗) is a Nash
equilibrium, where x∗ = (x∗

1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, , x

∗
6) = (12

70 , 12
70 , 12

70 , 12
70 , 29

70 , 29
70 ), the corresponding

connection matrix and the network structure are given below:

g∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g∗1
g∗2
g∗3
g∗4
g∗5
g∗6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

2 3

4

5

6

Figure 1 A network



100 GAO H W, QIAO H, SEDAKOV A, et al.

Notice that equilibrium network in this example has typical “two-core-periphery” architec-
ture. Player 5 and Player 6 become two hubs because they have slightly lower costs of acquiring
information, the information that they acquire personally is 29

70 . Players 1, 2, 3 and 4 become
spokes. Because the cost of linking with one other person is low, so the information that they
acquire personally is 12

70 (x∗
1 = x∗

2 = x∗
3 = x∗

4 = 12
70 ) and aggregate information is 1 through

linking with two hubs, in fact ŷ1 = ŷ2 = ŷ3 = ŷ4 = 1 at this moment, the aggregate information
which Player 5 and Player 6 own is 11

10 = ŷ5 = ŷ6. Under the equilibrium network, the payoff
of spokes is

Πi(s∗) = ln(1 + ŷi) − cix
∗
i − 2k = ln(1 + 1) − 1

2
× 6

35
− 2 × 1

5
= 0.2074, i = 1, 2, 3, 4

However, when spokes acquire the optimal aggregate information 1 personally and do not link
with hubs, the payoff is

Πi(s) = ln(1 + ŷi) − ci = ln(1 + 1) − 1
2

= 0.193, i = 1, 2, 3, 4

Similarly, we can verify Πi(s) < Πi(s∗), ∀s ∈ Si, ∀i ∈ N . So the spokes form links with two
hubs while do not form links between them and two hubs do not form links between them is
the equilibrium strategy for the players.

In this example, there is no link between two hubs because of k > c5ŷ6 = c6ŷ5 (0.2 > 10
21 ×

29
70 = 0.1973). Spokes choose to form links with hubs because of k < ciŷ5 = ciŷ6 (i = 1, 2, 3, 4),
i.e. 0.2 < 1

2 × 29
70 = 0.2071.

As we see in Example 1, the cost heterogeneity of information acquisition is based on two
levels. The primary cause lies in the high complexity of the algorithm of general equilibrium
network. In fact, slight cost difference can help us distinguish which players attain information
actively and which players become spokes.

To simplify symbolic system, we mark ŷ1 and ŷ as the optimal value of information, which
are obtained by players who have information cost advantage and have not advantage. We use
c̃ = c − ε < c to express the slight advantage of attaining information cost, where ε > 0 is a
small number.

In the network g with core-periphery architecture, we assume that Nc(g) be the set of hubs,
where |Nc(g)| = m, then N\Nc(g) be the set of spokes, and we have |N\Nc(g)| = mq, where
q ∈ N+, namely n = (q + 1)m. The homogeneous cost of linking with one other person is k

which satisfies f(ŷ) − cŷ < f(mŷ1) − mk.
Lemma 1 In the equilibrium networks with core-periphery architecture, if for each l ∈ N ,

we have xl > 0, then xi + yi = ŷ1, for each i ∈ Nc(g). Moreover, xp + yp = ŷ, for each
p ∈ N\Nc(g).

The proof of this lemma is similar to Lemma 1 in [1].
Definition 1 The local information flow network is called core-empty-periphery, if for

any pair of players i, i′ ∈ Nc(g), we have ḡii′ = 0, and for each player p ∈ N\Nc(g), we have
gp1 = gp2 = · · · = gpm = 1.

Definition 2 The local information flow network is called core-completely-periphery, if for
any pair of players i, i′ ∈ Nc(g), we have ḡii′ = 1, and for each player p ∈ N\Nc(g), we have
gp1 = gp2 = · · · = gpm = 1.
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Theorem 1 The local information flow network is a equilibrium network with “core-empty-
periphery” architecture, if

1) the personal information acquired by each player i is

xi = ŷ

(
mq

m2q − 1

)
−

(
1

m2q − 1

)
ŷ1, ∀i ∈ Nc(g)

2) the personal information acquired by each player p is

xp =
mŷ1 − ŷ

m2q − 1
, ∀p ∈ N\Nc(g)

3) cxp < k < cxi, k > c̃xi,
c
k > m

ŷ−xp
, where i ∈ Nc(g), p ∈ N\Nc(g).

In fact, the first inequality in term 3) assures that spokes are not being connected and spokes
are favorable to link with hubs; the second inequality assures that hubs are not being connected;
the third inequality assures that spokes link with hubs if they acquire partial information
actively. Meeting with information level of terms 1) and 2) can guarantee hubs owning the
aggregate information ŷ1 in the network, while the aggregate information owned by spokes is
ŷ. It is shown in Example 1.

Theorem 2 The local information flow network is a equilibrium network with “core-
completely-periphery” architecture, if

1) The personal information acquired by each player i is

q

mq − 1
ŷ − 1

m2q − m
ŷ1, ∀i ∈ Nc(g)

2) The personal information acquired by each player p is

xp =
ŷ1 − ŷ

mq − 1
, ∀p ∈ N\Nc(g)

3) cxp < k < c̃xi < cxi,
c
k > m

ŷ−xp
, where i ∈ Nc(g), p ∈ N\Nc(g).

Similar to Theorem 1, the first inequality in term 3) assures that spokes do not form links
between them while hubs are favorable to form links with each other and spokes are favorable
to form links with hubs; the second inequality assures that spokes link with hubs if they acquire
partial information actively. Meeting with information level of terms 1) and 2) can guarantee
hubs own the aggregate information ŷ1 in the network, while the aggregate information owned
by spokes is ŷ.

We can see from the above situation, after fixing the amount of hubs, the information
acquisition of spokes is degressive. So if q −→ +∞, then xp −→ 0. Relatively, the information
acquisition of hubs is increasing.

The result also reflects contents of “The law of the few”, that is a lot of information will be
grasped in a few hubs, while most of other players, that is, the spokes will choose to link with
hubs to get information, but themselves will choose little “personal information acquisition”, or
even entirely depends on the connection to get information, making their “personal information
acquisition” to zero.

Example 2 Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9} be the set of players, the cost of linking with one
other person be homogeneous, we denote by k = 0.15, the cost of information that personally
acquired be heterogeneous and is denoted by c1 = c2 = c3 = c4 = c5 = c6 = 1

2 , c7 = c8 = c9 =
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10
21 . Suppose that payoffs are given by (1), where f(y) = ln(1 + y). The initial matrix is a zero
matrix, and the initial information vector is (0, 0, 0, 0, 0, 0, 11

30 , 11
30 , 11

30 ).
We can check that s∗ = (x∗, g∗) is a Nash equilibrium, where

x∗ =
(

0, 0, 0, 0, 0, 0,
11
30

,
11
30

,
11
30

)
, g∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g∗1
g∗2
g∗3
g∗4
g∗5
g∗6
g∗7
g∗8
g∗9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

23

4

5

6

78

9

Figure 2 A three-core-completely-periphery equilibrium network

2.2 A Dynamic Formation Procedure and the Algorithm

The algorithm of finding equilibrium networks in this paper is based on a dynamic procedure
used in [12, 19, 20].

Given the set of players, at each stage, agents who are chosen at random play their best
response, adjust their links in response to the network structure and the personal information
acquired by oneself in previous period and then compose the network structure and the personal
information (it is called the player’s non-coordinated behavior).

At stage t, first select a subset R of the set of players N at random. For every selected player
i ∈ R, we calculate his optimal personal information and the best link set by comparing all of
his possible links, namely the player’s best response strategy. Each player who is selected at
random chooses a pure strategy best response to the strategy of all other agents in the previous
period and for the player who is not selected he maintains the strategy chosen in the previous
period. Compose all strategies, and then dynamic procedure comes to stage t + 1.

Based on above dynamic procedure, the advantage of the algorithm is that the optimization
question has only one variable. The network reaches a stable state when no one chooses to
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change his links and personal information during dynamic procedure, and then we can get
equilibrium strategy profile s∗ = (x∗, g∗) and relative information equilibrium network.

Given an initial stage t0, an initial information vector xt0 = (xt0
1 , xt0

2 , · · · , xt0
n ), initial link

matrix [αt0
ij ] ∈ {0, 1}N×N , where αt0

ii = 0, i ∈ N and αt0
ij ∈ {0, 1}, ∀j ∈ N\{i}. Homogeneous

link costs k ≥ 0 and heterogeneity costs ci ≥ 0 are given.
At stage t, let information vector be xt = (xt

1, x
t
2, · · · , xt

n), link matrix [αt
ij ] = (αt

1, α
t
2, · · · ,

αt
n)T ∈ {0, 1}N×N , where αt

i is the row i of the link matrix [αt
ij ].

Select randomly the set of players R = (i1, i2, · · · , ir) ⊆ N . For every ik ∈ R, the row ik

of link matrix has 2n−1 possibilities if we fix the rest n − 1 rows. For every possibility, first
calculate ᾱt

ikj = max{αt
ikj , α

t
jik

} ∈ {0, 1}, it is easy to see ᾱt
ikik

= 0.
Consider that

max θt
ik

= f

(
xt

ik
+

∑
j∈N

ᾱt
ikjx

t
j

)
− cik

xt
ik
−

∑
j∈N

αt
ikjk (3)

subject to xt
ik

≥ 0.
Notice that

∑
j∈N ᾱt

ikjx
t
j and

∑
j∈N αt

ikjk in objective function are constant for given stage
t and all probably value of line ik in link matrix [αt

ij ]. So the variable in (3) is xt
ik

.
Suppose that the optimal value is reached at xt

ik
. For all the possibilities in row ik we

calculate relative optimal value xt
ik

and θt
ik

. At last by comparing above 2n−1 optimal value
θt

ik
, we can find max θt

ik
, and then output relative optimal value x̃t

ik
and α̃t

ik
.

Let
[αt+1

ij ] = (αt
1, · · · , α̃t

i1 , · · · , α̃t
ir

, · · · , αt
n)T

be link matrix at stage t + 1, and information vector

xt+1 = (xt+1
1 , · · · , xt+1

n ) = (xt
1, · · · , x̃t

i1 , · · · , x̃t
ir

, · · · , xt
n)T

The dynamic procedure comes into stage t + 1. Select the set of players at random again
and the network formation procedure is repeated.

The dynamic procedure is end until no one chooses to change his links and personal informa-
tion. At last we get the information flow equilibrium network and equilibrium strategy profile
will comprise the link matrix of the equilibrium network and the optimal personal acquired
information vector. It should be noticed that to guarantee the valid of the algorithm we must
suppose that the dynamic procedure is not a circulation.

Example 3 Given the set of players N = {1, 2, 3, 4, 5, 6}, homogeneous link costs k =
0.04 and personal information heterogeneity costs c1 = c2 = c3 = c4 = 1

10 , c5 = c6 = 1
11 .

Payoff function is given by (1), where f(y) = ln(1 + y). The initial link matrix and the initial
information vector are 0.

It is different to reach final stage for each implementation of the dynamic process program
and convergence to the equilibrium state because the non-coordinated behavior of the players
caused by the randomness of process of forming network. Therefore there is not practical
significance for number of stages to achieve an equilibrium state.

We only had one interception of several typical stages in some run results in Figure 3, and
let K be the number of stages needed to achieve an equilibrium state.

The network structure and dynamics of information vectors in Example 3:
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1) At the initial stage we select the set of players R = {2, 3, 4, 5, 6} at random, because of
the initial matrix is zero, they all choose to acquire their optimal aggregate information and do
not form any link. And then it will come into an empty network by the first round of iteration.
But the information level vector is x1 = (x1

1, · · · , x1
6) = (0, 9, 9, 9, 10, 10).

2) If the selected set of players is R = {3, 5, 6} at stage 1, we can infer that it is the best
response for Player 3 to form links with Players 2, 4, 5 and 6 and he do not acquire information
personally, the payoff Π3(.) = ln[1 + (9 + 9 + 10 + 10)] − 4 × 0.04 ≈ 3.5036 is larger than the
payoff in any other situation. Because Players 5 and 6 have the same acquired advantage, it
is the best response for Players 5 and 6 to form links with 2, 3, 4, 6 and he do not acquire
information. The dynamic procedure comes into stage 2.

3) When the dynamic procedure comes into stage t1, the current network has two-core-
periphery architecture. The information level vector of players is xt1 = (0, 9, 0, 0, 0, 0). Select
set of the players R = {1, 4, 5, 6} randomly. Although here the two-core-periphery architecture
is the same as the eventual equilibrium structure formally (Players 2 and 4 are temporal core),
obviously, for Players 5 and 6 their aggregate information do not reach their optimal value
ŷ5 = ŷ6 = 10, so here the network is not an equilibrium network and not stable. For Players 5
and 6 they will delete their links with Player 4 and maintain their link with Player 2 and acquire
information 1 by themselves, the payoff Πi(·) = ln[1 + (9 + 1)]− 1

11 × 1− 0.04 ≈ 2.2669, i = 5, 6
is lager than in any other situation, so it is the best response for them on this stage. Because
Player 4 dose not acquire any information personally, Players 1, 5 and 6 will delete their links
with 4 and Players 1 and 4 can acquire their optimal aggregate information 9 by maintaining
their links with 2.

4) When the dynamic procedure comes into stage t2, the current network has three-core-
completely-periphery architecture. The information level of players is xt2 = (0, 3, 1, 0, 5, 1).
Selected set of the players R = N . So here for Players 1 and 4 it is their best response to maintain
their links with Players 2, 3, 5 and 6. Players 2 and 3 will maintain their links and reduce their
information 1 by themselves and for Players 5 and 6 they maintain their strategies from the
previous period. Notice that here the network is four-core-completely-periphery architecture,
it is not stable.

5) When the dynamic procedure comes into stage K − 1, the information level of players
is xK−1 = (0, 0, 0, 0, 8, 2). Selected set of the players R = {1} randomly. For Player 1 his best
response is to delete his link with Player 3 and maintain his link with 5 and 6 while he acquires
no information. The “two-core-periphery” equilibrium network is formed. The hub is composed
of two players with information cost advantage acquired actively. The dynamic procedure is
over.

Core-periphery structure is the most representative equilibrium network in the case of the
local information flow without information loss. In fact, under the premise of players have two
levels of information each person who has a comparative advantage of the cost of acquiring
information would become the hub possibly. The statistical results show that it is the easiest to
form “single-core-periphery” structure; but the “multi-core-periphery” structure which contains
all players who has the same advantage on the cost as the hubs (maximum) has the smallest
probability; those which between these two kinds become harder and harder with the increasing
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of the players’ number in the core.

2

3

45

6

0 0 0
1 6,..., (0,0,0,0,0,0)x x x

2

3

45

6

1 1 1
1 6,..., (0,9,9,9,10,10)x x x

1

2 3 4

5

6

1 1 1 1 1 1
1 6,..., (0,9,0,9,0,0)x x x

1

2

3

4

5

6

1 1 1
1 6,..., (0,9,0,0,0,0)t t t

x x x

1

2

3

4

5

6

1 1 11 1 1
1 6,..., (0,9,0,0,1,1)t t t

x x x

1

2

34

5

6

2 2 2
1 6,..., (0,3,1,0,5,1)t t t

x x x

1

2 3

4

5 6

2 2 21 1 1
1 6,..., (0, 2,0,0,5,1)t t t

x x x

1

2

3

4

5

6

1 1 1
1 6,..., (0,0,0,0,8, 2)K K K

x x x

1

2 3

4

5

6

1 6,..., (0,0,0,0,8, 2)K
x x x x

Figure 3 Stage examples of the dynamic process
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We believe that there are several reasons why the dynamics are important. One of the
reasons is that a dynamic model allows us to study the process by which individual agents
learn about the network and adjust their links in response to their learning. And the dynamics
may help select among different equilibria of the static game.

There is very important prospect to study the characterization of the architecture of infor-
mation flow equilibrium networks and the dynamics of network formation under the premise
of local information flow and without the presence of decay. In addition, consider that some
of the players may coordinate and prepare to maximize the common interests of members by
some local cooperation; the model and algorithm in this essay can be transformed to an incom-
plete information cooperative game model. This article assumes that the players have the need
and competence of acquiring information personally and getting information from others in the
given network structure, in fact, this can also be diversified.

3 Local Information Flow Networks with Information Decay

Lemma 2 In the local information flow equilibrium network g with information decay, we
have xi + yi ≥ ŷ, for all i ∈ N , and if xi > 0, then xi + yi = ŷ. Here yi =

∑
j∈Ni(ḡ) δxj, that

is to say yi represents the information that Player i acquires from his neighbors.
Proof Suppose not, then there must exist some Player i such that xi +yi < ŷ in equilibrium

network g. Under the assumptions that f(y) is twice continuously differentiable, increasing,
and strictly concave in y, we know f ′(xi + yi) > c, so Player i can strictly increase his payoffs
by increasing personal information acquisition, a contradiction with equilibrium. So we know
xi + yi ≤ ŷ, ∀i ∈ N . Next suppose that xi > 0 and xi + yi > ŷ. Under our assumptions on f(·)
and c, if xi + yi > ŷ then f ′(xi + yi) < c, and then Player i can strictly increase his payoffs by
lowering personal information acquisition, which contradicts equilibrium. Therefore, if xi > 0,
then xi + yi = ŷ.

Theorem 3 In the local information flow equilibrium network with information decay,
if k > cδŷ, the empty network is unique equilibrium. Every player acquires information ŷ

personally and no one forms links.
Proof 1) Suppose that the strategy profile s = (x, g) corresponds to an empty network. If

Player i forms m1 links with other m1 players and personally acquires information x′
i, here the

strategy profile is s|s′i. Lemma 2 implies that the aggregate information of Player i should be
ŷ, and then his payoff is

Πi(s|s′i) = f(ŷ) − c(ŷ − δm1ŷ) − m1k

however, in the empty networks, his payoff is

Πi(s) = f(ŷ) − cŷ

Since k > cδŷ, we have
Πi(s) > Πi(s|s′i)

2) Suppose Player i forms m2 links with other m2 players initiatively based on the empty
network, and x′′

i = 0, the strategy profile is s|s′′i , payoff is

Πi(s|s′′i ) = f(δm2ŷ) − m2k
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Here δm2ŷ ≥ ŷ, then δm2 ≥ 1. Therefore

Πi(s|s′′i ) = f(δm2ŷ) − m2k < f(δm2ŷ) − cm2δŷ ≤ f(ŷ) − cŷ = Πi(s)

Due to k > cδŷ, the first inequality is strict obviously, since f(y) is twice continuously
differentiable, increasing, and strictly concave in y, the second is hold. Then the empty network
is an equilibrium network.

Finally, we will show that the empty network is the unique equilibrium. As we know, every
player’s personal information acquisition is no more than ŷ, if some Player i wants to form a link
with other player (say j), Player i can obtain δxj from j, and cδxj > k, this would contradict
with k > cδŷ (because ŷ > xj).

Lemma 3 If complete network is the local information flow equilibrium network with
information decay, the personal information acquisition of each player equals x = ŷ

1+(n−1)δ .
Proof For every player he acquires information personal xi ≥ 0. If there are m(1 ≤ m < n)

players who personally acquires information 0, we let x1 = x2 = · · · = xm = 0, according to
Lemma 2, we conclude following inequalities:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∑
i∈N\{1,2,··· ,m}

δxi ≥ ŷ

xj +
∑

i∈N\{j}
δxi = ŷ, j = m + 1, m + 2, · · · , n

We can obtain xm+1 = · · · = xn = ŷ
1+(n−m−1)δ from the second inequality, hence, δ ≥ 1 a

contradiction. Hence, in complete network, we have xi > 0, ∀i ∈ N . By Lemma 2, we have

xi +
∑

j∈N\{i}
δxj = ŷ, i = 1, 2, · · · , n

therefore
x1 = x2 = · · · = xn = x =

ŷ

1 + (n − 1)δ
Theorem 4 In the local information flow equilibrium network with information decay, if

k < cδx = cδŷ
1+(n−1)δ , complete network is the unique equilibrium.

Proof Firstly prove that if the personal information acquisition of each player equals x =
ŷ

1+(n−1)δ in the complete network, the complete network is an equilibrium structure. Let
s∗ = (s∗1, s

∗
2, · · · , s∗n) be the strategy profile in complete network, where s∗i = (g∗i , x). If Player

i has m (0 ≤ m ≤ n − 1) links which he formed with others, since every player can obtain
information from other n − 1 players, they would not form links with others.

Secondly, we show that it is not the best response for Player i of deleting links or changing
his personal information level.

Now consider the case m = 0, Player i can change their personal information acquisition to
be x′, we can write strategy profile s∗|s′i, hence

Πi(s∗|s′i) = f(ŷ − x + x′) − cx′ < f(ŷ) − cx = Πi(s∗)

so changing strategies is not the best response for Player i.
Consider the case m = 1, if Player i deletes links and acquires information (1+δ)x personally,

hence
Πi(s∗|s′i) = f(ŷ) − c(1 + δ)x
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Since k < cδx,
Πi(s∗|s′i) = f(ŷ) − c(1 + δ)x < f(ŷ) − cx − k = Πi(s∗)

so changing strategies is not the best response for Player i.
Similarly, we can show that the best response for Player i is to maintain current strategy

and completeness of network when m = 2, 3, · · · , n − 1 and k < cδx.
In the following we show that if k < cδx = cδŷ

1+(n−1)δ , each player acquires information

x = ŷ
1+(n−1)δ personally, complete network is the unique equilibrium.

Lemma 3 implies that if a complete network is the equilibrium structure, the personal
information acquisition of each player equals x = ŷ

1+(n−1)δ .
Two steps: The first step is to prove the connected but not completely network is not

equilibrium, the second step is to prove not connected network is not the equilibrium.
Step 1:
Suppose the connected but not completely network is an equilibrium. Noticed that the

equilibrium network must be essential[2].
We delete any link in complete network, gij = 0 or gji = 0, let g1 be the network. Suppose

g1 is equilibrium. By Lemma 2, every player’s aggregate information should be more than or
equal to ŷ. Since ḡij = 0, we have k > cδxi and k > cδxj . Players who are in N\{i, j} have links
with each other, let N1 = {i, j}, N2 = N\{i, j}, I(s) = {p|xp > 0, p ∈ N}. For q ∈ N2 ∩ I(s),
we have

xq +
∑

p∈(N2∩I(s))\{q}
δxp +

∑
t∈N1

δxt = ŷ

If xi = xj = 0, and i, j ∈ N1, so that

xi +
∑

p∈N2∩I(s)

δxp = 0 +
∑

p∈N2∩I(s)

δxp < ŷ

xj +
∑

p∈N2∩I(s)

δxp = 0 +
∑

p∈N2∩I(s)

δxp < ŷ

a contradiction with equilibrium.
If xi = 0, xj > 0, and i ∈ N1, hence

xi +
∑

p∈N2∩I(s)

δxp = 0 +
∑

p∈N2∩I(s)

δxp < ŷ

then Player i can strictly increase his payoffs by increasing personal information acquisition. It
contradicts with equilibrium.

The case of xj = 0, xi > 0 is similar to the above.
Hence, we can conclude that personal information acquisition of i and j more than 0.

Otherwise, for l ∈ N2\I(s), we have

xl +
∑

p∈N2∩I(s)

δxp +
∑
t∈N1

δxt = 0 +
∑

p∈N2∩I(s)

δxp +
∑
t∈N1

δxt

=
∑

p∈(N2∩I(s))\{q}
δxp + δxq +

∑
t∈N1

δxt

< xq +
∑

p∈(N2∩I(s))\{q}
δxp +

∑
t∈N1

δxt = ŷ
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That is to say, the aggregate information of l is less than ŷ, contradiction. Hence, for any
i ∈ N , every player’s personal information acquisition is xi > 0. According to Lemma 2, the
following inequalities are held⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xt +

∑
p∈N2

δxp = ŷ, ∀t ∈ N1

xq +
∑

p∈N2\{q}
δxp +

∑
t∈N1

δxt = ŷ, ∀q ∈ N2

So the personal information acquisition in N1 equals to xi = xj = x′, and the personal
information acquisition in N2 equals to xq = x′′, ∀q ∈ N2, so that⎧⎪⎪⎨

⎪⎪⎩
x′ =

(1 − δ)ŷ
1 + δ − 2nδ2 + 4δ2

x′′ =
(1 − 2δ)ŷ

1 + δ − 2nδ2 + 4δ2

For any n ≥ 3, any network is not equilibrium network.
Similarly, we can show that except complete network, connected network is not the equilib-

rium network.
Step 2:
Firstly, suppose there is an isolated player in equilibrium network at least, the set of these

players is N0. The personal information acquisition is ŷ in N0. Due to k < cδx < cδŷ,
there must exist some player in N \ N0 who will strictly increase his payoffs by lowering his
personal information acquisition and switching to link with players in N0, contradiction with
equilibrium.

Secondly, suppose C1(ḡ) and C2(ḡ) are two parts of the network ḡ, and every part has more
than one player.

From Step 1, we know that the two parts are complete.
Suppose |C1(ḡ)| = n1 > 1, |C2(ḡ)| = n2 > 1, and assume n1 ≤ n2. Lemma 2 and Lemma 3

claimed that the information is equal in C1(ḡ) and C2(ḡ), respectively:

xn1 =
ŷ

1 + (n1 − 1)δ
, xn2 =

ŷ

1 + (n2 − 1)δ

Then xn1 ≥ xn2 > x. We can concluded that k < cδx < cδxn2 ≤ cδxn1 , the players in
C2(ḡ) will link with the players in C1(ḡ) initiatively. A contradiction completes the proof.

Similarly, we can show that non-connected network which contains multiple parts is not the
equilibrium.

Example 4 Let N = {1, 2, 3, 4, 5, 6} be the set of players, the homogeneous cost of linking
with one other person is denoted by k, the homogeneous cost of information that players acquire
is denoted by c, the index of local information decay is denoted by δ and 0 < δ < 1, where
payoffs are given by (1), f(y) = ln(1 + y).

As shown in Figure 4, δ is x-coordinate, k is y-coordinate, where n = 6, c = 1
3 , ŷ = 2,

the curve equation is k = 2δ
3+15δ , and the linear equation is k = 2

3δ. If k < 2δ
3+15δ , complete

network (Figure 5) is the unique equilibrium, Region C; if k > 2
3δ, empty network is the unique

equilibrium, Region A; if 2δ
3+15δ < k < 2

3δ, there exists no equilibrium, Region B.
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Figure 4 A distribution of equilibrium networks
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Figure 5 A complete network

But if cδx < k < cδŷ, x = ŷ
1+(n−1)δ , what is the equilibrium structure in the local informa-

tion flow network with information decay? Many examples show that no equilibrium structure
exists in that case. Until now it is still an interesting open problem.
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