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Abstract The GM(1,N) model is a very important prediction model of the grey system. But the

inherent defect of GM(1,N), which may cause very large error, is still there. This paper analyzes the

source of the error of GM(1,N) and reveals that it’s all the back ground values that effect the precision

and applicability of GM(1,N). Three methods are employed to revise the GM(1,N) model. The simu-

lation test shows the new models perform with higher precision and robustness. Even in some extreme

cases, in which the original GM(1,N) is invalid, the new models are still valid and perform well.
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1 Introduction

The prediction models[1] are important parts of the grey system models. Being easy to

implement and simply structured, the grey prediction models have been applied to a range of

areas, varying in economics[2], industry[3, 4], aerography[5] and so on. But there still exist some

defects in the grey prediction models, which appeals a plenty of researches.

Tan’s[6] research revealed that it was the structure of back ground value of the GM(1,1)

model effects the precision of the model, and also for the generalized models[7]. Luo, Liu, et al.[8]

pointed out that the back ground value was the integration of the 1-AGO sequence, and induced

the formulation of the back ground value. Based on the research of Luo, researchers employed a

plenty of different numeric integral formulas to structure the back ground value, such as Gauss-

Legendre formula[9, 10], Simpson formula[11], Newtown-Cortes[12], and the revised models all

performed well than the original GM(1,1). Other researchers such as Li[13], Li[14] and Wang[15],

structured a lot of formulations to compute the back ground value and improved the precision

of the GM(1,1) model and its generalized models. These researches proved that restructuring

of the back ground value was capable to improve the precision of the GM(1,1) model.
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As an extension model of GM(1,1), the GM(1,N) is more complex and more useful in

the multiple regression problems. It was also used in varied of areas, such as industry[16],

economics[17], biology[18] and so on. But the GM(1,N) is still not available in a plenty of

situations, in which the error is very large. Several works have been employed to try to solve

this problem. As is sharing a lot of similarities to GM(1,1), researchers tried to restructure

the back ground value of GM(1,N). Liu[19] structured a formulation of the background value

for GM(1,N), which was proved to perform better in predicting the upside-down of the road.

Shen, etc.[20] used the Newton-Cotes formula and Gauss-Legendre formula to structure the back

ground value, which was proved to be better performing in prediction of the transportation

noise. But as its complexity, restructuring the back ground value is still limited, which will

be shown in this paper, in some cases, the revised back ground value is still not available to

improve the precision of the GM(1,N).

In order to extend the validation of the GM(1,N), Zhai, etc.[21] introduced the MGM(1,N)

model, which analysed the grey relationship value of the input data and the output data, and

then built N GM(1,1) models. Some improving works have also been done on this model[22–24],

which indeed presented higher precision and robustness. However, these methods still failed to

revise the GM(1,N) itself, the stationed defects still exist, of which the essence has still not

been revealed. And obviously, there has been no way to overcome the defects.

The rest of this paper is organized as follows, Sec.2 introduces the principles of the GM(1,N)

model; Sec.3 analyses the essence of the defects of GM(1,N); Sec.4 gives the method to im-

prove the precision and robustness of GM(1,N); Sec.5 presents some simulation tests and some

conclusions are drawn in Sec.6.

2 The principles of GM(1,N)

Definition 1 [1]

Set the sequence

X
(0)
1 = (x

(0)
1 (1), x

(0)
1 (2), · · · , x

(0)
1 (n))

as the feature sequence of the system, the sequences

X
(0)
2 = (x

(0)
2 (1), x

(0)
2 (2), · · · , x

(0)
2 (n)),

X
(0)
3 = (x

(0)
3 (1), x

(0)
3 (2), · · · , x

(0)
3 (n)),

...

X
(0)
N = (x

(0)
N (1), x

(0)
N (2), · · · , x

(0)
N (n))

as the reliance sequences. Generally, all these sequences are nonnegative sequences.

Definition 2 [1] A sequence X
(1)
i = (x

(1)
i (1), x

(1)
i (2), · · · , x

(1)
i (n)) is the 1-AGO (Accumu-

lated Generating Operation) sequence of the X
(0)
i , which satisfies X

(1)
i (k) =

∑k
m=1 X

(0)
i (m).

Definition 3 [1]

x
(0)
1 (k) + az

(1)
1 (k) =

N
∑

i=1

bix
(1)
i (k) (1)

is called the original GM(1,N) model, where z
(1)
1 (k) = 0.5(x

(1)
1 (k) + x

(1)
1 (k − 1)) is called the

mean generation of consecutive neighbors sequence.
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Theorem 1 [1] The least squares estimation for â = [a, b2, · · · , bN ] of the GM(1,N) model

satisfies

â = (BT
B)−1

B
T

Y (2)

where

B =

















−z
(1)
1 (2) x

(1)
2 (2) · · · x

(1)
N (2)

−z
(1)
1 (3) x

(1)
2 (3) · · · x

(1)
N (3)

...
...

...

−z
(1)
1 (n) x

(1)
2 (n) · · · x

(1)
N (n)

















, Y =

















x
(0)
1 (2)

x
(0)
1 (3)

...

x
(0)
1 (n)

















.

Definition 4 [1] The

dx
(1)
1

dt
+ ax

(1)
1 = b2x

(1)
2 + b3x

(1)
3 + · · · + bNx

(1)
N (3)

is called the whiten equation of the GM(1,N) model, also called image equation.

Theorem 2 [1]

a) The solution of the whiten equation is

x
(1)
1 (t) = e−at

[

N
∑

i=2

∫

bix
(1)
i (t)eatdt + x

(0)
1 (0) −

N
∑

i=2

∫

bix
(0)
i (t)eatdt

]

= e−at

[

x
(0)
1 (0) − t

N
∑

i=2

bix
(0)
i (t) +

N
∑

i=2

∫

bix
(1)
i (t)eatdt

]
(4)

b) When the X
(0)
i (i = 2, 3, · · · , N) does not fluctuate violently, the

∑N

i=1 bix
(1)
i (k) could be

regarded as grey constant, thus the approximation time responding formulation is

x̂
(1)
1 (k + 1) = e−ak

(

x
(1)
1 (0) −

1

a

N
∑

i=2

bix
(1)
i (k + 1)

)

+
1

a

N
∑

i=2

bix
(1)
i (k + 1) (5)

where x
(1)
1 (0) values x

(1)
1 (1).

c) The minus formulation is

x̂
(0)
1 (k + 1) = x̂

(1)
1 (k + 1) − x̂

(1)
1 (k) (6)

d) The difference reduction formulation is

x̂
(0)
1 (k) = −az

(1)
1 (k) +

N
∑

i=2

bix̂
(1)
i (k) (7)

3 The analysis on the source of error for GM(1,N)

Consider the integration of the equation (3), which is

x
(1)
1 (k) − x

(1)
1 (k − 1) + a

∫ k

k−1

x
(1)
1 (t)dt =

N
∑

i=2

bi

∫ k

k−1

x
(1)
i (t)dt.

As x
(0)
1 (k) = x

(1)
1 (k) − x

(1)
1 (k), we have

x
(0)
1 (k) + a

∫ k

k−1

x
(1)
1 (t)dt =

N
∑

i=2

bi

∫ k

k−1

x
(1)
i (t)dt (8)
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To the Definition 3, equation (8) is equivalent to the original GM(1,N) model, i.e. the

equation (1).

It is obvious that the
∫ k

k−1 x
(1)
1 (t)dt has been taken place by z

(1)
1 (k) = 0.5(x

(1)
1 (k)+x

(1)
1 (k−

1)) and the
∫ k

k−1
x

(1)
i (t)dt has been taken place by x

(1)
i (k). The z

(1)
1 (k) is also called the back

ground value. In this paper, we call the z
(1)
i (k) as the ith back ground value, thus the z

(1)
1 (k)

will be called as the first back ground value in the rest of this paper.

3.1 Errors from the first back ground value

According to the research of Tan[6], the z
(1)
1 (k) = 0.5(x

(1)
1 (k) + x

(1)
1 (k − 1)) is the 2-point

trapezoid formula, which performs a very little algebra precision in integration. And researches

proved that, a higher precision integration formula could overcome this defect. Fig.1 shows the

reason why the low precision integration formula will cause a higher error.

Figure 1 The indication of error which caused by the structure of the first back ground

value

3.2 Errors from the second to the N th back ground value

However, no research has paid attention to the right side of the equation (8). The original

theorem of GM(1,N) made an assumption “the x
(1)
i (k) does not fluctuate violently”, and then

the
∫ k

k−1 x
(1)
i (t)dt(i = 2, 3, · · · , N) was taken by x

(1)
i (k) itself. But researches have never shown

that in what kind of conditions the sequence could be regarded as “not fluctuating violently”,

and how close is the
∫ k

k−1 x
(1)
i (t)dt(i = 2, 3, · · · , N) to the x

(1)
i (k). Thus, it is still difficult to

explain why the GM(1,N) model could not perform well in a plenty of cases.

x(1)(t)
i

x(1)(k-1)
i

x(1)(k
k-1
x(1)(t)dt

i

k

i

x(1)(k)
i

k-1   k              t

Figure 2 The indication of error which caused by the structure of the ith(> 1) back

ground value
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Firstly, we consider the geometrical meaning of the ith back ground value z
(1)
i (k) =

∫ k

k−1 x
(1)
i (t)dt

(i = 2, 3, · · · , N). As is shown in Fig.2, the
∫ k

k−1
x

(1)
i (t)dt is the area of the trapezoid with curve

side, of which the vertices are k, k − 1, x
(1)
i (k) and x

(1)
i (k − 1), and x

(1)
i (k) is the area of the

rectangle, of which the length is x
(1)
i (k) and width is 1. The shadow area is the redundancy

when the
∫ k

k−1 x
(1)
i (t)dt is taken place by x

(1)
i (k). This is obviously another reason which cause

some significant error to GM(1,N) model.

According to the geometrical analysis, we could draw some results, which reflect the re-

lationship between the error and the original sequence. To prove these results, we need to

overview the definition of the convex and concave function and the Hadamard theorem.

Definition 5 If f(x1)+f(x2)
2 ≥ f(x1+x2

2 ) or f(x1)+f(x2)
2 ≤ f(x1+x2

2 ) , then f(x) is a convex

or concave function, respectively.

Theorem 3 (Hadmard Theorem) If f(x) is a convex or concave function, there must be

f

(

a + b

2

)

≤
1

b − a

∫ b

a

f(x)dx ≤
f(a) + f(b)

2

or

f

(

a + b

2

)

≥
1

b − a

∫ b

a

f(x)dx ≥
f(a) + f(b)

2

respectively.

Remark 4 If the 1-AGO sequence X
(1)
i = (x

(1)
i (1), x

(1)
i (2), · · · , x

(1)
i (n)) is a linear se-

quence, i.e. x
(1)
i (k) = αk + β(i = 1, 2, · · · , N, k = 1, 2, · · · , n), then x

(1)
i (k) −

∫ k

k−1
x

(1)
i (t)dt =

0.5x
(0)
i (k).

Proof As x
(1)
i (k) = αk + β, thus

x
(1)
i (k) −

∫ k

k−1

x
(1)
i (t)dt = (αk + β) −

{

α[k2 − (k − 1)2]

2
+ β

}

= 0.5α = 0.5x
(0)
i (k).

Remark 5 If the 1-AGO sequence X
(1)
i = (x

(1)
i (1), x

(1)
i (2), · · · , x

(1)
i (n)) is a concave se-

quence, then x
(1)
i (k) −

∫ k

k−1 x
(1)
i (t)dt < 0.5x

(0)
i (k).

Proof As X
(1)
i = (x

(1)
i (1), x

(1)
i (2), · · · , x

(1)
i (n)) is a strict concave sequence, x

(1)
i (t) ap-

proaches to a concave function. To the Hadamard theorem and differential mean value theorem,

we have
∫ k

k−1

x
(1)
i (t)dt = x

(1)
i (ξk) >

x
(1)
i (k) + x

(1)
i (k − 1)

2
, where k − 1 < ξk < k.

Then

x
(1)
i (k) −

∫ k

k−1

x
(1)
i (t)dt < x

(1)
i (k) −

x
(1)
i (k) + x

(1)
i (k − 1)

2
= 0.5x

(0)
i (k).

Remark 6 If the 1-AGO sequence X
(1)
i = (x

(1)
i (1), x

(1)
i (2), · · · , x

(1)
i (n)) is a convex se-

quence, then x
(1)
i (k) −

∫ k

k−1
x

(1)
i (t)dt > 0.5x

(0)
i (k).

Proof In a similar way to the Remark 5, we have

x
(1)
i (k) −

∫ k

k−1

x
(1)
i (t)dt > x

(1)
i (k) −

x
(1)
i (k) + x

(1)
i (k − 1)

2
= 0.5x

(0)
i (k).
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It could be easily seen based on the above three results that only when the 1-AGO sequence

X
(1)
i is a strict concave sequence and the original sequence X

(0)
i is very small, the

∫ k

k−1
x

(1)
i (t)dt

could be taken place by x
(1)
i (k), and then the least squares estimation of the Eq.(1) is close

enough to its real value. Thus, the assumption in Theorem 2(b), which says “the x
(1)
i (k) does

not fluctuate violently” could be translated to “ the x
(1)
i (k) is a concave sequence and not too

large”. But if the X
(1)
i is linear or convex, the difference between x

(1)
i (k) and

∫ k

k−1 x
(1)
i (t)dt could

not be ignored anymore, and the original operations of GM(1,N) may cause very large error,

and this is exactly the inherent defect of the original GM(1,N) theory. Hence, the assumption

in Theorem 2(b) is a too strong condition, and could not be satisfied in a lot of situations. But

we want the GM(1,N) to be available in more cases, such as when the x
(1)
i (k) is concave or

linear sequence. To extend the GM(1,N) and overcome its inherent defect original GM(1,N),

we need to consider the following theorem.

Theorem 7 [1] If the original sequence X
(0)
i is a non-negative quasi-smooth sequence, its

1-AGO sequence X
(1)
i satisfies the approximation exponential law.

A so-called “non-negative quasi-smooth sequence” is used most frequently in the grey mod-

eling. Within the above discussion and Theorem 7, we could see that for any non-negative

quasi-smooth sequence X
(0)
i , the original theory of GM(1,N) is not available at all. However,

as the 1-AGO sequence X
(1)
i satisfies the approximation exponential law, it is reasonable to

set x
(1)
i (t) = Bie

Ait, and then the ith background value is
∫ k

k−1
Bie

Aitdt. Now, the ith back-

ground value is an integration of the exponential function. If an appropriate numeric formula

is employed to compute its real value, the precision and applicability of GM(1,N) could be

improved. The following section will present the details of rebuilding all the background values

using different numeric formula.

4 Methods to improve the GM(1,N)

According to the analysis, it is the back ground values that effect the error of the GM(1,N)

model. Thus, to improve the GM(1,N) model, we need to choose better ways to compute all

the back ground values. Being similar to the first back ground value, the second to N th back

ground values are essentially integrations. Thus, using appropriate numeric integral formula

could reduce the error of GM(1,N).

4.1 Trapezoid formula

In the original GM(1,N), the first back ground value is set as

z
(1)
1 (k) = 0.5(x

(1)
1 (k) + x

(1)
1 (k − 1)),

which is essentially the trapezoid formula of the z
(1)
1 (k) =

∫ k

k−1 x
(1)
1 (t)dt. Thus, the second to

N th back ground values could also be computed by the trapezoid formula, i.e. for all the i, we

have

z
(1)
i (k) =

∫ k

k−1

x
(1)
i (t)dt = 0.5(x

(1)
i (k) + x

(1)
i (k − 1)) (9)

4.2 Logarithmic form

As is shown in Theorem 7, the 1-AGO x
(1)
i (k) satisfies the approximation exponential law,

thus to the knowledge of grey system, it could be fitted by an exponential function. Set
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x
(1)
i (t) = Bie

Ait, thus

z
(1)
i (k) =

∫ k

k−1

x
(1)
i (t)dt =

1

Ai

(Bie
Aik − Bie

Ai(k−1)) =
1

Ai

(x
(1)
i (k) − x

(1)
i (k − 1)) (10)

and also
x

(1)
i (k)

x
(1)
i (k − 1)

=
Bie

Aik

BieAi(k−1)
(11)

thus

Ai = ln x
(1)
i (k) − ln x

(1)
i (k − 1) (12)

Combining the (11) and (12), we have

z
(1)
i (k) =

x
(1)
i (k) − x

(1)
i (k − 1)

ln x
(1)
i (k) − ln x

(1)
i (k − 1)

(13)

4.3 Gauss-Legendre formula

The two points Gauss-Legendre formula is
∫ 1

−1

f(x)dx ≈ f

(

−
1
√

3

)

+ f

(

1
√

3

)

(14)

Take x
(1)
i (t) = Bie

Ait and Ai = ln x
(1)
i (k) − ln x

(1)
i (k − 1) into formula (14), we have

z
(1)
i (k) =

∫ k

k−1

x
(1)
i (t)dt = 0.5x

(1)
i (k − 0.5)

[

(

x
(1)
i (k − 1)

x
(1)
i (k)

)
1

2
√

3

+

(

x
(1)
i (k)

x
(1)
i (k − 1)

)
1

2
√

3

]

(15)

Set x
(1)
i (k − 0.5) = 0.5(x

(1)
i (k) + x

(1)
i (k − 1)), thus

z
(1)
i (k) = 0.25[x

(1)
i (k) + x

(1)
i (k − 1)]

[

(

x
(1)
i (k − 1)

x
(1)
i (k)

)
1

2
√

3

+

(

x
(1)
i (k)

x
(1)
i (k − 1)

)
1

2
√

3

]

(16)

5 Simulation test

The raw data NO.1 to NO.7 is taken from reference [25], and raw data NO.8 is taken

from reference [1]. All the raw data is shown in Table 1 to Table 8 below.

Table 1 Raw data NO.1

t 1 2 3 4 5 6 7 8

X1 9941 10608 10389 10160 10427.8 10495.8 10563.8 10679.3

X2 4306.9 4526.3 4570.6 4694.7 4840.2 4980.4 5016 5287.1

Table 2 Raw data NO.2

t 1 2 3 4 5 6 7 8

X1 4526.3 4570.6 4306.9 4694.7 4840.2 4980.4 5016 5287.1

X2 14462.8 14931.5 14870.1 18138.4 19613.4 21522.3 24658.1 28044

Table 3 Raw data NO.3

t 1 2 3 4 5 6 7 8 9 10

X1 405 366 356 357 334 362 371 380 381 399

X2 1766 1860 1969 2062 2103 2301 2560 2847 3265 3756

X3 2210 2253 2366 2475 2622 2936 3255 3587 4140 4760
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Table 4 Raw data NO.4

t 1 2 3 4 5 6 7 8

X1 4582 4940 5431 6096 6660 7335 8265 9258

X2 3621 4012 4504 4918 5476 6301 7077 7665

Table 5 Raw data NO.5

t 1 2 3 4 5 6 7 8

X1 146.9 204 181.8 277 348 426.8 511 539.7

X2 7.069 9.276 8.725 13 17.16 21.327 27.082 30.24

Table 6 Raw data NO.6

t 1 2 3 4 5 6 7 8 9 10

X1 7.19 7.44 7.84 8.78 8.7 11.02 12.12 13.94 16.1 17.12

X2 2831.9 3175.5 3522.4 3878.4 3442.3 4710.7 5285.9 6229.7 7770.6 8749.3

Table 7 Raw data NO.7

t 1 2 3 4 5 6

X1 0.9166 1.09 1.203 1.249 1.318 1.3

X2 174.06 257.4 292.9 339.5 419.2 408.4

Table 8 Raw data NO.8

t 1 2 3 4 5

X1 2.874 3.278 3.307 3.39 3.679

X2 7.04 7.645 8.075 8.53 8.774

Table 9 Average growing speed and growing rate of reliance sequence

NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8

Growing Speed 140.0 1940.0 187.4, 241.3 577.7 3.3 617.3 61.3 0.4

Growing Rate 2.99 10.14 8.54, 8.69 11.33 24.17 12.69 19.70 5.68

Table 10 The simulation results

NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8

Original Model 4.56 101430.76 43.25 4.43 8.78 27.74 34106352.54 7.42

1st BGV-EF 4.67 160644.00 39.13 4.23 17.24 35.03 200743360.68 6.49

1st BGV-GL 4.78 31463.06 35.78 4.80 7.34 20.45 44566.62 9.19

A-BGV-TF 4.65 18.95 16.69 3.89 10.71 11.33 18.16 2.96

A-BGV-EF 4.65 19.00 16.69 3.90 10.79 11.47 18.20 2.91

A-BGV-GL 4.65 18.85 16.81 3.88 10.55 11.05 18.09 3.15

In Table 5, the growing speed is computed as x(0)(k) − x(0)(k − 1), and growing rate is
x(0)(k)−x(0)(k−1)

x(0)(k)
× 100%, respectively. The raw data of which both the growing speed is larger

than 50 and growing rate is larger than 10% is NO.2, 3, 4, 6, 7. According to analysis, the error

may be very large using the GM(1,N) model.
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Table 10 shows the simulation results, which are the mean percentage error (MPE) of

each model. In Table 10, 1st BGV-EF indicates the GM(1,N) model of which the 1st back

ground value is computed by the exponential form(Eq.(13)), and the 1st BGV-GL indicates

the GM(1,N) model of which the 1st back ground value is computed by the Gauss-Legendre

formula (Eq.(16)), respectively. The results shows that the models with revised 1st back ground

value perform better than the original model in most cases. However, the original model and

the models with revised 1st back ground value all shows very large errors for raw data NO.2,

NO.3, NO.6 and NO.7, even the revised models show smaller errors. For raw data NO.2 and

NO.7, especially, the models are totally invalid, of which the errors are extremely large. This

indicates, the models with revised 1st back ground value doesn’t overcome the inherent defect

of GM(1,N) model.

Also in Table 10, the A-BGV-TF, A-BGV-EF and A-BGV-GL indicate the GM(1,N) model

with all revised back ground value, which are computed by trapezoid formula (Eq.(9)), expo-

nential form (Eq.(13)) and Gauss-Legendre formula (Eq.(16)), respectively. Compared with the

original model and the models with revised 1st back ground value, the models with all revised

back ground value perform much better in almost all the raw data. Especially for the raw

data that the original model and models with revised 1st back ground value are invalid, the

models with all revised back ground values are still valid and perform a very high precision.

This indicates that the models with all revised back ground values have a higher precision and

robustness than the original model and models with revised 1st back ground value.

However, the simulation results present another attribute of the models with all revised

back ground values. For these models, the differences of errors are not significant, which means

the new models are not sensitive to the form of the integration formulas.

6 Conclusions

The GM(1,N) model has some inherent defect which may cause significant error or even

make the GM(1,N) model invalid. In this paper, we analyze the source of the error of GM(1,N)

model, and indicate that it is the form of all the back ground values that effect the error of

GM(1,N) model, and also point out it is “dangerous” to use the original GM(1,N)when the

reliance sequences are non-negative quasi-smooth sequences.

To overcome this defect, we employ three types of numeric integral formula to compute all

the back ground values. The simulation test indicates that the methods of this paper are valid,

even in some extreme cases, in which the GM(1,N) is invalid, the revised models still perform

well. Thus the methods of this paper enhance the precision and robustness of the GM(1,N)

model.
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