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Abstract This paper discusses multi-period stochastic cash balance problem with fixed costs when
the decision maker is risk averse. By using the consumption model introduced by Chen et al, we
characterize the structure of the optimal policy for the stochastic cash balance problem under the
general increasing concave utility function and exponential utility function, respectively. We show that
the structure of the optimal policy for a decision maker with exponential utility function is almost
identical to the structure of the optimal risk-neutral operations policy. Furthermore, we extend the
results for the exponential utility function to the ambiguity aversion case.
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1 Introduction

The stochastic cash balance problem is an optimization problem faced by a firm, which
has to decide how much cash to hold in order to meet its transaction requirement for a given
planing horizon with multiple periods. Arrow et all'l point out that the similarity between the
motives of inventories of goods and those for keeping cash balances. In contrast to the usual
inventory problem, the stochastic cash balance problem with a case where the cash level (i.e.,
the checking account level) during the period can either increase or decrease, depending on
whether the income is larger or smaller than the expenses during that period. It also allows
the decision maker to change the cash level in any direction at the beginning of each period.
He can increase the checking account level by withdrawing money from his savings, or decrease
it by transferring money to his savings. Therefore, the stochastic cash balance problem can
be regarded as a special type of inventory control problems, where the customer demands may
be positive or negative and the decision maker can increase or decrease it. Hence, we will use

> or “return” to

the term inventory level instead of cash level, and also use the terms “order’
indicate the increase or decrease of the cash levels. At the beginning of each period, the firm

may decide to replenish the inventory or return excess stock. Both the ordering cost and the
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return cost may include a fixed component and a variable component which is proportional
to the transaction amount. A holding or penalty cost is charged depending on whether the
inventory level is positive or negative. The objective of the firm is to find an ordering or return
policy so as to minimize the total expected cost, or equivalently, maximize the total expected
profit over the entire planning horizon. Of course, this focus on optimizing expected profit or
cost is appropriate for a risk-neutral decision maker, i.e., a firm that is insensitive to profit
variations.

The stochastic cash balance problem received considerable amount of attention in the 1960s.
Eppen and Famal?!, Whisler!®! consider a cash balance model with independent and identical
distribution discrete demands with finite support and without fixed costs. They show the
existence of order-up-to and return-down-to levels in the finite and infinite horizon models
with discounted cost criterion. Feinberg and Lewis!*! justify the average cost case with the
general demand distribution and study the problems with borrowing and lending options and
no fixed costs, for which they establish the optimality of simple four-threshold policies. Girgis!®!
investigates finite and infinite horizon discounted cost problems with continuous demand when
there are fixed costs for increasing or decreasing demand (but not both). Neavel® studies finite
horizon problems with continuous demand when both transactions have fixed costs. However,
Chen and Simchi-Levill and Ye and Duenyas(® notice that some of the claims in [6] are not
proved. By using the notion of a (K, @)-convex function introduced by [8], Chen and Simchi-
Levil? describe the structural properties of optimal solutions of finite horizon cash balance
problems when both transactions have fixed costs. Feinberg and Lewis[®) show that structural
results stated by [7] indeed hold for finite horizon cash balance problems with discounted criteria
and extend the results to the average cost per unit time criteria.

All the papers referenced above assume that the decision makers are risk-neutral. However,
many are willing to tradeoff lower expected profit for downside protection against possible
losses. Note that traditional stochastic cash balance models fall short of meeting the needs of
risk-averse planners. For instance, traditional stochastic cash balance models do not suggest
mechanism to reduce the chance of unfavorable profit levels. Thus, it is important to incorporate
the notions of risk aversion in the stochastic cash balance problem.

A parallel stream of research studies risk-averse inventory models. Many of the risk-averse
inventory models consider single period newsvendor type of models (see, for example, Chen,
Xu and Zhang!'%, Eeckhoudt, Gollier and Schlesinger™", Laul'?!, Wu, Zhu and Teunter[l?’]).
Bouakiz and Sobell'¥ characterize the inventory control strategy so as to minimize the expected
utility of the net present value of costs over a finite planing or an infinite horizon. Assuming
linear ordering cost, they prove that a base stock policy is optimal. Chen et all'®! propose
a general framework to incorporate risk aversion into multi-period inventory models as well
as multi-period models that coordinate inventory and pricing strategies. In both cases, they
distinguish between models with fixed ordering costs and models with no fixed ordering costs.
They show that the structure of the optimal policy for a decision maker with exponential utility
function is almost identical to the structure of the optimal risk-neutral inventory (and pricing)
policies. These structural results are extended to models in which the decision maker has access
to a (partially) complete financial market and can hedge his operational risk through trading
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financial securities.

On the other hand, a decision maker may not know the exact demand distributions and have
to estimate them from limited historical data. In this case, the decision maker is ambiguous
about the probability distribution. Recently, Nilim and EI Ghaouil'® study robust solutions to
Markov decision problems with uncertain transition matrices. They propose the general idea
on the ambiguity averse models, that is, the decision maker choose his policies assuming that
nature is adversarial, choosing probability distributions from an ambiguity set to minimize the
decision maker’s expected utility. Chen and Sun['”} adopt the robust dynamic programming
modelling framework introduced by [16] to ambiguity and risk averse inventory and pricing
models. They show that the optimal control policies share similar structure properties as Chen
et all'® for the finite horizon case and extend Chen et all’®! to including ambiguity aversion
and considering infinite horizon models.

In this paper, we propose a framework for incorporating risk aversion in stochastic cash bal-
ance problem. We characterize the structure of the optimal policy on the risk-averse stochastic
cash balance problem by using the consumption model introduced by Chen et al'®. We show
that the structure of the optimal policy for a decision maker with exponential utility function
is almost identical to the structure of the optimal risk-neutral operations policy. Furthermore,
we extend the results for the exponential utility function to the ambiguity aversion case.

The paper is organized as follows. In Section 2, we propose a model to incorporate risk
aversion in the stochastic cash balance problem. In Sections 3 and 4, we focus on characterizing
the structure of the optimal policies under the general increasing concave utility function and
exponential utility function, respectively. In Section 5, we extend the results for the exponential

utility function to the ambiguity aversion case. Finally, Section 6 is concluding section.

2 The basic model

Consider a risk-averse firm facing stochastic demand that has to make ordering or return
decisions over a finite planning horizon with a total of T" periods.

At the beginning of each period, an ordering or return decision is made. Let z; be the
inventory level at the beginning of period ¢ before a decision is made and y; be the inventory
level at the beginning of period ¢ after an ordering or return decision is made. Lead time for
the ordering or return transaction is assumed to be zero. The transaction cost is denoted by

c(x¢,yi), which is calculated as follows:

K+ k(yt — :vt), if Y¢ > T,
(e, yr) = 0, if oy =@y,
Q + q(zt — yr), ity <y,

where K >0, Q >0, k+ ¢ > 0. Note that the assumption that k 4+ ¢ > 0 implies that the unit
refund is no more than the unit ordering cost.

Fort=1,2,--- T, let p; be per unit “sale price” of product in period ¢ and D;(e;) (here ¢
is a random variable) be “stochastic demand” in period ¢, which consists of obligations paid less
funds received (note that the demand in a period can be negative, which corresponds to receiving

more funds than were paid out that period). Furthermore, demands in different periods are
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independent of each other. Unsatisfied demand is backlogged. Therefore, the inventory level
carried over from period ¢ to the next period, x;y1, may be positive or negative. A cost
ht(x¢41) is incurred at the end of period ¢ which represents holding cost when z;y; > 0 and
shortage cost if x;11 < 0. For technical reasons, we assume that function h:(z) is convex and

lim hy(x) = co. Further, similar to Assumption 1 in Chen and Simchi-Levil™, it is assumed

z|—o0
|th|at there are finite numbers z; < y; < v; < z; such that (he(y:) — he(x1))/(ye — x¢) < —k and
(he(2e) = he(ve))/ (2 — ve) > q.

To study the stochastic cash balance problem with fixed costs under risk aversion, we adopt
the consumption model under uncertainty introduced by Chen et al'®. The general idea is to
directly model consumption, saving and borrowing decisions as well as inventory decisions for
the stochastic cash balance problem. Specifically, assume that the decision maker has access to
a financial market for borrowing and lending with a risk-free saving and borrowing interest rate
r¢, or equivalently, the discount factor is v = ﬁ At the beginning of period ¢, assume that
the decision maker has initial wealth w; and chooses an operations policy (order or return) that
affects his income cash flow. At the end of period ¢, that is, after the uncertainty of this period
has been resolved, the decision maker observes his current wealth level w; + P, and decides his
consumption level f; for the period, where P; is the income generated at period t. Note that
the income at period t is

Py(ze, ys€0) =—K0(ys —x¢) — Q0w —ye) — k(g —20) V= q(ye —24) ™ +pe De(er) — ha(ye — Dy(e4)),

where 7 = max{z,0}, = = min{z, 0},

1, ifz>0,
6((3): I r

0, otherwise.

The remaining wealth, w; + P; — f, is then saved (or borrowed, if negative) for the next period,
ie, wir1 = (L47rp)(wy + Py — fi), or, equivalently, f; = w; — ywi+1 + Pr. The decision maker’s
objective is to maximize his expected utility of the consumption flow E[II(f1,---, fr)] over
the planing horizon 1,---,T. Moreover, at the last period T, we assume the decision maker
consumes everything, which corresponds to wry; = 0.

According to the consumption model, the decision maker’s problem is to find the inventory
level y; and decide the initial wealth level w; (or equivalently, the consumption level f;) for the

following optimization problem.

max  E[II(f1, f2,-+, fr)] (1)
st. Tep1 = yr — Di(er),
ft = we — ywegr + P, yes €0,
wr4+1 = 0.
When the utility function II(f;, fa,--, fr) takes the linear form II(fi, fo, -+, fr) =
Zthl ~t=1f,, the consumption model reduces to the traditional risk-neutral stochastic cash

balance problem. In this case, we denote V;(z) to be the profit-to-go function at the beginning

of period ¢t with the initial inventory level z. A natural dynamic program for the risk-neutral
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stochastic cash balance problem is as follows:
Vilw) = max{=Ké(y —x) = Qd(x —y) = k(y — )" —aly —2)” + pDi(es) =

he(y — Di(et)) +vVir1(y — Di(er))}
= max{H(x), {gggHt(y) - K —k(y—2), max Hy(y) — Q —q(z —y)},

with boundary condition Vrq(x) = 0, where Hi(x) = E{pD¢(et) — he(x — Di(€t)) +yViy1(x —
D;(e))}. Without loss of generality, we assume that K > Q. Define L; € arg max{H(z) —kx},
ly = min{z|Hy(z) —kx = Hy (L) —kL;— K}, I} = min{z|H(z) —kx = H¢(Ly) —:EkLt —(K-Q)},
U € argmwax{Ht(x) + qx}, uy = max{z|Hy(x) + gz = H(U,) + qUy — Q}, up = min{z|H(z) +
gz = Hy(Up) + qUy — (K — Q) }.

From Lemma 3 in Chen and Simchi-Levil”, we have L, < Uy, I} < wj. Moreover, u; < U
due to K > @Q > 0. Therefore, the above parameters satisfy the following relationship: [; <
I <L <U < ly <up <Up < uy.

Notice that these critical points have explicit implications in the stochastic cash balance
problem. By definition, /; is the largest value below which one always orders; [} is the smallest
value above which one never orders; u; is the smallest value above which one always returns;
u} is the largest value below which one never returns. In particular, we call {l;,1}} and {u, u}}
the pairs of order- and return-associated critical points, respectively.

To provide a characterization of the optimal policy, Chen and Simchi-Levi use the following

concept of (K, Q)-convexity, which is introduced by Ye and Duenyas!®.

Definition 1 A real-valued function is called (K, Q)-convezx for K,Q > 0, if for any xo,
x1 with xg < x1, and X € [0, 1],

F((L =Nz + A1) < (1= N)f(xo) + Af(z1) + AK + (1 — A)Q — min{\, 1 — A} min{K, Q}.
A function f is called (K, Q)-concave if —f is (K, Q)-conver.

See Lemmas 1 and 2 in [7] for the properties of the (K, Q)-convex function.

Note that the (K,0)-convexity is exactly the K-convexity introduced by Scarfl'8] for the
classical stochastic inventory control problem with fixed ordering costs. Moreover, the (K, K)-
convexity is the symmetric K-convexity, a concept introduced and applied in Chen and Simchi-
Levil' to analyze a joint inventory control and pricing problem with fixed ordering costs and
a general demand distributions.

Similar to the proof of Theorems 3.1 and 3.2 in [7], we have the following main results for

the traditional risk-neutral stochastic cash balance problem.

Theorem 1 Assume that K > @ > 0. The profit-to-go functions Vi(z) and Hi(x) are

(K, Q)-concave and the optimal inventory level y:(x) after a decision is made satisfies

Ly, if  z<l,
e{x, L}y, if  ze(l,l}),
y(z) =< =, it xe(l,u}), (2)
€ [l}, ], it xe (u},u),
U, if x>
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The results for the case @ > K > 0 follow from a symmetric argument.
On a special case of the stochastic cash balance problem where K = @ > 0, we have

Theorem 2 Assume that K = Q. The profit-to-go functions Vi(z) and Hi(x) are sym-

metric K-concave and the optimal inventory level yi(x) after a decision is made satisfies

Ly, it x <,
S {1’7Lt}7 if T € (lt, lt-;Lt),
ye(x) = 4 z, if oz e [ldhe wdli] (3)
€ {x, U}, if xze€ (%Uf,ut),
Ut, lf X 2 Ut

3 Additive increasing concave utility model

In this section, we focus on the additive general increasing concave utility function. In this
case, the objective function of (1) becomes II(fy,---, fr) = Zthl 7 (ft), where the function
m¢(+) is increasing and concave. That is, the utility of the consumption flow is the summation
of the utility from the consumption in each period. According to the sequence of events as de-

scribed before, the optimization model (1) can be solved by the following dynamic programming

recursion.
Vi(z,w) = m;ixE[Wt(ﬂC,ww;ﬁt)] (4)
where
Wiz, w,yer) = max{m (w —yw' + Pi(x,y: e)) + Viga(y = Deler),w')} ()

with boundary conditions Vr(z,w) = 7r(w + Pr(z,y;er)), Vrii(z,0) = 0. In contrast to
risk-neutral stochastic cash problem, here the state variable is two-dimensional, i.e, the current
inventory level x and the wealth level w.

Instead of working with the dynamic program (4)~(5), we find that it is more convenient to
work with an equivalent formulation. If y > x, let II}(z, w) = Vi(z,w — kx), and the modified
income in period t be P/(y;€;) = (vk — k)y + (p — vk)Di(€r) — he(ys — Di(e;)). In this case, the
dynamic program (4)~(5) becomes

T} (z,w) = max E[W/(z,w,y; )] (6)

y>x

where

Wi (z,w,y; &) = max{m(w — 72" = Ko(y —2) + P/(y; &) + i1 (y = Diler), 2} (7)
If y <z, let I} (z,w) = Vi(z,w + ¢qz), and the modified income in period ¢t be P/ (y;e:) =
(¢—vq)y+ (vq—p)Di(€) — hi(y: — Di(€r)). In this case, the dynamic program (4)~(5) becomes

H;/(CL',’LU) = aXE[WtH(wi7y;€t)] (8)

y<z

where

W', w,y; ) = max{m(w —7z" = Qd(x —y) + P'(y; &) + 1 (y — Di(er),2")} (9)
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Therefore, The dynamic program (4)~(5) becomes
max{Il}(x, w), I} (z,w)} (10)

Lemma 1 Assume that K = 0. In this case, IT}(x,w) is jointly concave in x and w for
any period t. Furthermore, a wealth dependent base stock policy with the base stock level Li(w)
is optimal.

Proof We prove the lemma by induction. Obviously, 117, ; (z,w) is jointly concave in z and
w. Assume that IT}, ; (x, w) is jointly concave in z and w. Note that P;(y;e;) is concave in y

for any realization of €;. Thus,
Wi (w,y; ) = max{m(w —v2' + Py(y; ) + My (y — Diler), )}

is jointly concave in (w, y), which further implies that E[W/(w, y; €)] is jointly concave in (w, ).

Let L:(w) be an optimal solution for the problem max E[W/(w,y; €)]. Since E[W/(w,y; et)]
is concave in y for any fixed w, it is optimal to order_up to Ly(w) when x < L;(w) and not
to order otherwise. That is to say, a wealth dependent base stock policy is optimal. Further,
according to the properties of the concave function, it is easy to show II}(z, w) is jointly concave
in z and w. Hence, the lemma follows by induction.

Similar to Lemma 1, we have

Lemma 2 Assume that Q = 0. In this case, II} (x,w) is jointly concave in x and w for
any period t. Furthermore, a wealth dependent base return policy with the base return level
Ui(w) is optimal.

Note that we have L;(w) < Ui(w). Otherwise, there exists a x such that Uy (w) < & < L¢(w).
By Lemma 1, it is optimal to order up to L:(w) when < Li(w); By Lemma 2, it is optimal
to reduce down to U(w) when x > Uy(w). This is a contradiction.

Due to Lemmas 1 and 2, we have

Theorem 3 Assume that K = Q = 0, the optimal inventory level yi*(z) after a decision

is made satisfies
Li(w), it  z< Li(w),
yi'(x) =< a, itz € (Ly(w),Up(w)), (11)
Ug(w), if x>U(w)

Recall that in the case of risk-neutral decision maker, Eppen and Famal?! and Whisler[®!
study a special case of the stochastic cash balance problem where K = QQ = 0. They show that
in period t, there exist two parameters L; and Uy with L; < Uy, such that the optimal inventory
level y(x) after a decision is made satisfies

Lt7 if z S Lta
yt(iﬂ) = z, if xT € (Lt, Ut),
Ut, if X 2 Ut.
However, Theorem 3 implies that the optimal policy for the additive increasing concave utility

model is different. Indeed, in the risk-averse case, two parameters in the optimal policy depend

on the wealth, measured by the position of the risk-free financial security.
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4 Additive exponential utility function

In this section, we focus on a special case — the exponential utility function m:(f) =
—ate_ﬁit with parameters oy, 3; > 0, where (; is the risk tolerance factor, a; reflects the
decision maker’s attitude towards the utility obtained from different periods.

According to Chen et all!), for a risk tolerance parameter R, denote the “certainty equiv-
alent” operator with respect to a random variable £ to be CEgR[g] = —RlnFE [e*%], which
represents the amount of money a decision maker feels indifferent to a gamble with random
payoff £&. We also consider the “effective risk tolerance” per period defined as R; = Zf:t T8,
Further, we can obtain the expression R;(1+ ) = (1 4+ r7)0 + Riy1.

The next lemma states that we are able to separately make the operations decisions without

considering the wealth/consumption decisions.

Lemma 3 The optimal operations decisions are independent of the wealth/consumption
decisions under additive exponential utility function.

Proof We prove the lemma by induction. First, let P;(y:;€:) := peDi(er) — he(yr — Di(€r))
in the profit function P;(xs,ys;€) = —K6(ye — x¢) — Q6(x¢ — y¢) — k(ye — )T — qlye — x) ™ +
peDi(er) — he(ys — De(et)) of period t.

For t =T, we have

—(w-K§(y—2)—Q8(z—y)—k(y—2)t —q(y—2) " +Pp(yier))

Vr(z,w) = max E[—are BT
Y
—w Ko(y—2)+Q8(z—y)+k(y—a) T +a(y—=)~ —Pr (yier)
= arefT max —e BT Fle 8r
Y

Let Gr(x) = muax{—Ké(y —x)—Qé(x—y)—k(y—x)T —qly—x)” + CE?TT [Pr(y; er)]}, then
Ko(y—2)4+Qé(w—y)+k(y—a)t tay—=z)~ —Pr(yicy) —Gr(=) —(Gr () tw)

max —e T Ele #Pr ]=—e Pr . Thus, Vp(z,w)=—are  Fr

Y
—(Gig1(x)tw)

Suppose that the lemma is true for some t + 1, i.e., Viyi(x,w) = —Azpqe Rit1 for

some constant A; 11 > 0. We have

—<w—ww’—Ké(y—m)—@&(wy)ﬂ—k(y—m)* —a(y=2) " +Py (yier))
t

Vi(z,w) = 3XE[H11U37X{—O[,56
—(Gi41(y—Dg(ep))+w’)
_AtJrle Riq1 }]

For any given y, the first order optimality condition with respect to w’ is

—(w—ruw’ e o — o)t taly—z)— — Py (yse Cw!  —Gyp1 (= Dy(ep))
iate ( ﬁ: >eK6<y )+Q5( ka(ym )T ta(y—2)T =Py (yiey) _ 1 Ay e e%(m)
Bt YR 1
equivalently,
& woyw | Ky —2) + Qi —y) + Ky —2)" +qly —2)” — Plyie)
n— — +
B B Bt
o A W Gy — Di(e))
YRiy1 R Ry '

Thus, at state (z,w), for any given y and the realization of the current period uncertainty e,

the optimal banking decision w’, is

W, = —PEGriay = Dile) + TE KBy — 2) — Q3w — y) — hly )" —aly — )"
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Ry Ri1B,  Avr1Be
w + In ,
Ry Ry VOZth-H

which implies that the optimal consumption decision in period ¢ is

fi = Bt (CK8(y — ) - Q8 —y) ~ Ky~ )" —aly )" + Py ) +

4
YR 158 ! Ai1Be
— n

+Pi(y;€)) +

YGi+1(y — Di(er))]

R Yo Ritq
Furthermore, by Eq (12), we have
R, (wi+Geq1(y=De(er))
Vi(z,w) = Aty max E[—e Rt ]
YRi+1 Y
_w 7th+1(y*Dt(et))7K5(y7m)7Q5(mfy)fk(yfr)+7q(y7z)’+Pt(y;et))
= Ase” Tt max E[—e 2D ,

Y

Bt
_ Ry At418: \— &
where A; = ’YRt+1At+1(’Yath+1) + > 0. Let

Gi(z) = max{-Kd(y —2) - Qd(z —y) —k(y — )" —qly—2)”

_Rt 1nE[e{*R%t[Pt(y€5t)+’YGt+1(nyt(et))]}]}

= m;ix{—Ké(y —2)—Qé(x—y)—k(y—=z)" —qly—2)”

+COE[[Py(y; ) +7Gr1(y — Diler))]} (13)
then Vi (z,w) = —Atei(Gt’;me . Hence, the lemma follows by induction.

Therefore, by Lemma 3, the stochastic cash balance problem under additive exponential
utility function reduces to the optimal problem (13) with boundary condition G741 (z) = 0.

To present our main result for the problem with K > 0 and @ > 0, we need the following
proposition.

Proposition 1 If a function f(z,€) is (K, Q)-concave in x for any realization of &, then
for any R > 0 the function

g(z) = CE{[f(x,€)]
is also (K, Q)-concave.
Proof Let M(z) = Elexp(f(z,£)]. For any xg, x1 with o < z; and A € [0,1], z) =
(1 —X)zo + Az1, We have
M(zx) < Elexp((1 = A)f(z0,€) + Af(21,€) + AK + (1 = N)Q — min{A, 1 — A} min{ K, Q})]
= exp(AK) exp((1 — N)Q) exp(— min{\, 1 — A} min{K, Q})
Elexp((1 = A)f (w0, €)) exp(Af (x1,€))]
exp(AK) exp((1 — A)Q) exp(— min{\, 1 — A} min{ K, Q})
Elexp(f(zo,&)]' *Elexp(f(21,€)))*
= M(x0)' M (21)* exp(AK) exp((1 — \)Q) exp(— min{\, 1 — A} min{ K, Q}),

IN

where the first inequality holds since f(-) is (K, @)-convex and the second inequality follows
from the Holder inequality with % =1-—Xand % =\
Note that Proposition 1 also holds for K-concave and symmetric-K-concave function since

K-concave and symmetric-K-concave are both special cases of (K, Q)-concave function.
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We can now present the optimal policy for the risk-averse stochastic case balance problem
with additive exponential utility function. Without loss of generality, we assume that K > Q >
0.

Let

H{(z) = CEF[Py(;€0) + 7Gria(x — Di(er))].

Define L € argmax{Hf(z) — kx}, If = min{z|Hf(z) — ka = H(L§) — kLS — K}, I =
min{z|H{ (z)—kz = H(LS)—kLs—(K—-Q)}, Us € argmgx{Hf(:c)—l—qx}, u$ = max{z|H{(x)+
qr = Hy (UF) + qU — Q}, ui® = min{x|H} () + gz = H{ (UF) + qU — (K — Q) }.

Then, with Proposition 1, similar to Theorems 1 and 2, we have the following main results
for the additive exponential utility model with K > 0 and @ > 0.

Theorem 4 Assume that K > Q > 0. Gi(x) and Hi(z) are (K,Q)-concave and the

optimal inventory level y5(x) after a decision is made satisfies

Le, it o <Ig,
e {x, L8}, if  xze (810,

yi(z) =< =, if =ze (l;e,u;e), (14)
AR if e (ulul),
Ug, it o>l

The results for the case @ > K > 0 follow from a symmetric argument.
On a special case of the stochastic cash balance problem where K = ) > 0, we have
Theorem 5 Assume that K = Q. Gi(z) and Hg(x) are symmetric K-concave and the

optimal inventory level y$(x) after a decision is made satisfies

Lg, it x<I,
€ {x, g}y, it we (),
y;(x) = q =, it ze il vl (15)
e{z,Us}, if =ze€ (U:J;U‘C,u‘f),
Uy, it x>uf

5 Additive exponential utility function with ambiguity aversion

In this section, we introduce the finite horizon ambiguity averse model under exponential
utility function. Specially, assume that the decision maker does not know the exact probability
distribution for the random variable €¢;. Rather, the decision maker is only aware of a set
of probability distributions to which the probability distribution of €; belongs. According to
Chen and Sunl'™, in period ¢, the decision maker choose his policies assuming that nature is
adversarial, choosing probability distributions g., from an ambiguity set €2; to minimize the
decision maker’s expected utility. Thus, similar to (4)~(5), a dynamic program for the risk and
ambiguity averse stochastic cash balance problem is as follows:

Vi(z,w) = max min E, Wi (2, w,y; €)] (16)
Y ge, € ¢
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where

Wiz, w,y; ) = H%Ua,x{ﬂt(w —yw' + Pi(x,y; ) + Viga(y — Diler), w')} (17)

with the boundary condition Vr(z,w) = 77 (w + Pr(z,y;€)), Vry1(x,0) = 0.

According to [17], we adopt the “general certainty equivalent” operator ¢(-) defined on

a function g(-) of an ambiguous uncertainty &, i.e, ®E[p(¢)] = mi% —RInFE,, [e*$]. Note
ge€

that ®F = C’Ef when Q is a singleton. Obviously, the operator ®& generalizes the certainty

equivalent operator CE? in Section 4.

_ L
Assume that m;(f) = —aze” P¢, and the ambiguity sets satisfy certain technical conditions
so that the minimization in the general certainty equivalent operator can always be attained.
Similar to the proof of Lemma 3, the stochastic cash balance problem in the ambiguity and risk

averse model (16)~(17) can be calculated through the following dynamic programming

Gi(w) = max{-Kd(y —z) - Qd(z —y) —k(y —2)" —qly - 2)"
+O5 [Py (y; 1) + ¥Ge1(y — Di(er))]} (18)
with boundary condition Gp41(z) = 0.

To obtain the structure on the optimal policies, we need the following result, which implies

the minimum envelope of (K, Q)-concave functions is still (K, Q)-concave.

Proposition 2 If f(z,v) is (K, Q)-convezr in x for any v, then g(x) = max, f(x,v) is
also (K, Q)-convez.

Proof For any xg < x1 and A € [0,1], zx = (1 — A\)xo + Az1, we have

g(ax) = max f((1 = N)zo + Ar1,v)

< mf)ix[(l =N f(xo,v) + Af(z1,v) + AK + (1 = )@ — min{\, 1 — A} min{ K, Q}]

< mf)ix[(l =N f(xo,v)] + mvax[)\f(:cl,v)] +AK 4+ (1 = N)Q —min{\, 1 — A} min{K, Q}
(1= XN)g(xo) + Ag(z1) + AK + (1 = N)Q — min{\, 1 — A\} min{ K, Q}.

Note that Proposition 2 also holds for K-concave and symmetric- K -concave since K-concave
function and symmetric- K-concave are both special cases of (K, Q)-concave function.

Then, combined with Proposition 2, similar to the proof of the exponential utility function
case, it is easy to see that Theorems 4 and 5 hold for the stochastic cash balance problem under

the exponential utility function with ambiguity aversion.

6 Conclusions

In this paper, we propose a framework for incorporating risk aversion in stochastic cash bal-
ance problem. We characterize the structure of the optimal policy on the risk-averse stochastic
cash balance problem according to the consumption model. We show that the structure of the
optimal policy for a decision maker with exponential utility function is almost identical to the
structure of the optimal risk-neutral operations policy. Furthermore, we extend the results for

the exponential utility function to the ambiguity aversion case.
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