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Abstract This paper discusses multi-period stochastic cash balance problem with fixed costs when

the decision maker is risk averse. By using the consumption model introduced by Chen et al, we

characterize the structure of the optimal policy for the stochastic cash balance problem under the

general increasing concave utility function and exponential utility function, respectively. We show that

the structure of the optimal policy for a decision maker with exponential utility function is almost

identical to the structure of the optimal risk-neutral operations policy. Furthermore, we extend the

results for the exponential utility function to the ambiguity aversion case.
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1 Introduction

The stochastic cash balance problem is an optimization problem faced by a firm, which

has to decide how much cash to hold in order to meet its transaction requirement for a given

planing horizon with multiple periods. Arrow et al[1] point out that the similarity between the

motives of inventories of goods and those for keeping cash balances. In contrast to the usual

inventory problem, the stochastic cash balance problem with a case where the cash level (i.e.,

the checking account level) during the period can either increase or decrease, depending on

whether the income is larger or smaller than the expenses during that period. It also allows

the decision maker to change the cash level in any direction at the beginning of each period.

He can increase the checking account level by withdrawing money from his savings, or decrease

it by transferring money to his savings. Therefore, the stochastic cash balance problem can

be regarded as a special type of inventory control problems, where the customer demands may

be positive or negative and the decision maker can increase or decrease it. Hence, we will use

the term inventory level instead of cash level, and also use the terms “order” or “return” to

indicate the increase or decrease of the cash levels. At the beginning of each period, the firm

may decide to replenish the inventory or return excess stock. Both the ordering cost and the
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return cost may include a fixed component and a variable component which is proportional

to the transaction amount. A holding or penalty cost is charged depending on whether the

inventory level is positive or negative. The objective of the firm is to find an ordering or return

policy so as to minimize the total expected cost, or equivalently, maximize the total expected

profit over the entire planning horizon. Of course, this focus on optimizing expected profit or

cost is appropriate for a risk-neutral decision maker, i.e., a firm that is insensitive to profit

variations.

The stochastic cash balance problem received considerable amount of attention in the 1960s.

Eppen and Fama[2], Whisler[3] consider a cash balance model with independent and identical

distribution discrete demands with finite support and without fixed costs. They show the

existence of order-up-to and return-down-to levels in the finite and infinite horizon models

with discounted cost criterion. Feinberg and Lewis[4] justify the average cost case with the

general demand distribution and study the problems with borrowing and lending options and

no fixed costs, for which they establish the optimality of simple four-threshold policies. Girgis[5]

investigates finite and infinite horizon discounted cost problems with continuous demand when

there are fixed costs for increasing or decreasing demand (but not both). Neave[6] studies finite

horizon problems with continuous demand when both transactions have fixed costs. However,

Chen and Simchi-Levi[7] and Ye and Duenyas[8] notice that some of the claims in [6] are not

proved. By using the notion of a (K, Q)-convex function introduced by [8], Chen and Simchi-

Levi[7] describe the structural properties of optimal solutions of finite horizon cash balance

problems when both transactions have fixed costs. Feinberg and Lewis[9] show that structural

results stated by [7] indeed hold for finite horizon cash balance problems with discounted criteria

and extend the results to the average cost per unit time criteria.

All the papers referenced above assume that the decision makers are risk-neutral. However,

many are willing to tradeoff lower expected profit for downside protection against possible

losses. Note that traditional stochastic cash balance models fall short of meeting the needs of

risk-averse planners. For instance, traditional stochastic cash balance models do not suggest

mechanism to reduce the chance of unfavorable profit levels. Thus, it is important to incorporate

the notions of risk aversion in the stochastic cash balance problem.

A parallel stream of research studies risk-averse inventory models. Many of the risk-averse

inventory models consider single period newsvendor type of models (see, for example, Chen,

Xu and Zhang[10], Eeckhoudt, Gollier and Schlesinger[11], Lau[12], Wu, Zhu and Teunter[13]).

Bouakiz and Sobel[14] characterize the inventory control strategy so as to minimize the expected

utility of the net present value of costs over a finite planing or an infinite horizon. Assuming

linear ordering cost, they prove that a base stock policy is optimal. Chen et al[15] propose

a general framework to incorporate risk aversion into multi-period inventory models as well

as multi-period models that coordinate inventory and pricing strategies. In both cases, they

distinguish between models with fixed ordering costs and models with no fixed ordering costs.

They show that the structure of the optimal policy for a decision maker with exponential utility

function is almost identical to the structure of the optimal risk-neutral inventory (and pricing)

policies. These structural results are extended to models in which the decision maker has access

to a (partially) complete financial market and can hedge his operational risk through trading
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financial securities.

On the other hand, a decision maker may not know the exact demand distributions and have

to estimate them from limited historical data. In this case, the decision maker is ambiguous

about the probability distribution. Recently, Nilim and EI Ghaoui[16] study robust solutions to

Markov decision problems with uncertain transition matrices. They propose the general idea

on the ambiguity averse models, that is, the decision maker choose his policies assuming that

nature is adversarial, choosing probability distributions from an ambiguity set to minimize the

decision maker’s expected utility. Chen and Sun[17] adopt the robust dynamic programming

modelling framework introduced by [16] to ambiguity and risk averse inventory and pricing

models. They show that the optimal control policies share similar structure properties as Chen

et al[15] for the finite horizon case and extend Chen et al[15] to including ambiguity aversion

and considering infinite horizon models.

In this paper, we propose a framework for incorporating risk aversion in stochastic cash bal-

ance problem. We characterize the structure of the optimal policy on the risk-averse stochastic

cash balance problem by using the consumption model introduced by Chen et al[15]. We show

that the structure of the optimal policy for a decision maker with exponential utility function

is almost identical to the structure of the optimal risk-neutral operations policy. Furthermore,

we extend the results for the exponential utility function to the ambiguity aversion case.

The paper is organized as follows. In Section 2, we propose a model to incorporate risk

aversion in the stochastic cash balance problem. In Sections 3 and 4, we focus on characterizing

the structure of the optimal policies under the general increasing concave utility function and

exponential utility function, respectively. In Section 5, we extend the results for the exponential

utility function to the ambiguity aversion case. Finally, Section 6 is concluding section.

2 The basic model

Consider a risk-averse firm facing stochastic demand that has to make ordering or return

decisions over a finite planning horizon with a total of T periods.

At the beginning of each period, an ordering or return decision is made. Let xt be the

inventory level at the beginning of period t before a decision is made and yt be the inventory

level at the beginning of period t after an ordering or return decision is made. Lead time for

the ordering or return transaction is assumed to be zero. The transaction cost is denoted by

c(xt, yt), which is calculated as follows:

c(xt, yt) =















K + k(yt − xt), if yt > xt,

0, if yt = xt,

Q + q(xt − yt), if yt < xt,

where K ≥ 0, Q ≥ 0, k + q ≥ 0. Note that the assumption that k + q ≥ 0 implies that the unit

refund is no more than the unit ordering cost.

For t = 1, 2, · · · , T , let pt be per unit “sale price” of product in period t and Dt(εt) (here εt

is a random variable) be “stochastic demand” in period t, which consists of obligations paid less

funds received (note that the demand in a period can be negative, which corresponds to receiving

more funds than were paid out that period). Furthermore, demands in different periods are



The Stochastic Cash Balance Problem with Fixed Costs: The Risk-averse Case 523

independent of each other. Unsatisfied demand is backlogged. Therefore, the inventory level

carried over from period t to the next period, xt+1, may be positive or negative. A cost

ht(xt+1) is incurred at the end of period t which represents holding cost when xt+1 > 0 and

shortage cost if xt+1 < 0. For technical reasons, we assume that function ht(x) is convex and

lim
|x|→∞

ht(x) = ∞. Further, similar to Assumption 1 in Chen and Simchi-Levi[7], it is assumed

that there are finite numbers xt ≤ yt ≤ vt ≤ zt such that (ht(yt) − ht(xt))/(yt − xt) < −k and

(ht(zt) − ht(vt))/(zt − vt) > q.

To study the stochastic cash balance problem with fixed costs under risk aversion, we adopt

the consumption model under uncertainty introduced by Chen et al[15]. The general idea is to

directly model consumption, saving and borrowing decisions as well as inventory decisions for

the stochastic cash balance problem. Specifically, assume that the decision maker has access to

a financial market for borrowing and lending with a risk-free saving and borrowing interest rate

rf , or equivalently, the discount factor is γ = 1
1+rf

. At the beginning of period t, assume that

the decision maker has initial wealth wt and chooses an operations policy (order or return) that

affects his income cash flow. At the end of period t, that is, after the uncertainty of this period

has been resolved, the decision maker observes his current wealth level wt + Pt and decides his

consumption level ft for the period, where Pt is the income generated at period t. Note that

the income at period t is

Pt(xt, yt; εt)=−Kδ(yt−xt)−Qδ(xt−yt)−k(yt−xt)
+−q(yt−xt)

−+ptDt(εt)−ht(yt−Dt(εt)),

where x+ = max{x, 0}, x− = min{x, 0},

δ(x) =







1, if x > 0,

0, otherwise.

The remaining wealth, wt +Pt−ft, is then saved (or borrowed, if negative) for the next period,

i.e., wt+1 = (1 + rf )(wt + Pt − ft), or, equivalently, ft = wt − γwt+1 + Pt. The decision maker’s

objective is to maximize his expected utility of the consumption flow E[Π(f1, · · · , fT )] over

the planing horizon 1, · · · , T . Moreover, at the last period T , we assume the decision maker

consumes everything, which corresponds to wT+1 = 0.

According to the consumption model, the decision maker’s problem is to find the inventory

level yt and decide the initial wealth level wt (or equivalently, the consumption level ft) for the

following optimization problem.

max E[Π(f1, f2, · · · , fT )] (1)

s.t. xt+1 = yt − Dt(εt),

ft = wt − γwt+1 + Pt(xt, yt; εt),

wT+1 = 0.

When the utility function Π(f1, f2, · · · , fT ) takes the linear form Π(f1, f2, · · · , fT ) =
∑T

t=1 γt−1ft, the consumption model reduces to the traditional risk-neutral stochastic cash

balance problem. In this case, we denote Vt(x) to be the profit-to-go function at the beginning

of period t with the initial inventory level x. A natural dynamic program for the risk-neutral
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stochastic cash balance problem is as follows:

Vt(x) = max
y

{−Kδ(y − x) − Qδ(x − y) − k(y − x)+ − q(y − x)− + pDt(εt) −

ht(y − Dt(εt)) + γVt+1(y − Dt(εt))}

= max{Ht(x), max
y>x

Ht(y) − K − k(y − x), max
y<x

Ht(y) − Q − q(x − y)},

with boundary condition VT+1(x) = 0, where Ht(x) = E{pDt(εt)− ht(x−Dt(εt)) + γVt+1(x−

Dt(εt))}. Without loss of generality, we assume that K ≥ Q. Define Lt ∈ arg max
x

{Ht(x)−kx},

lt = min{x|Ht(x)−kx = Ht(Lt)−kLt−K}, l′t = min{x|Ht(x)−kx = Ht(Lt)−kLt−(K−Q)},

Ut ∈ arg max
x

{Ht(x) + qx}, ut = max{x|Ht(x) + qx = Ht(Ut) + qUt −Q}, u′
t = min{x|Ht(x) +

qx = Ht(Ut) + qUt − (K − Q)}.

From Lemma 3 in Chen and Simchi-Levi[7], we have Lt ≤ Ut, l′t ≤ u′
t. Moreover, u′

t ≤ Ut

due to K ≥ Q ≥ 0. Therefore, the above parameters satisfy the following relationship: lt ≤

l′t ≤ Lt ≤ Ut ≤ ut, l′t ≤ u′
t ≤ Ut ≤ ut.

Notice that these critical points have explicit implications in the stochastic cash balance

problem. By definition, lt is the largest value below which one always orders; l′t is the smallest

value above which one never orders; ut is the smallest value above which one always returns;

u′
t is the largest value below which one never returns. In particular, we call {lt, l

′
t} and {ut, u

′
t}

the pairs of order- and return-associated critical points, respectively.

To provide a characterization of the optimal policy, Chen and Simchi-Levi use the following

concept of (K, Q)-convexity, which is introduced by Ye and Duenyas[8].

Definition 1 A real-valued function is called (K, Q)-convex for K, Q ≥ 0, if for any x0,

x1 with x0 ≤ x1, and λ ∈ [0, 1],

f((1 − λ)x0 + λx1) ≤ (1 − λ)f(x0) + λf(x1) + λK + (1 − λ)Q − min{λ, 1 − λ}min{K, Q}.

A function f is called (K, Q)-concave if −f is (K, Q)-convex.

See Lemmas 1 and 2 in [7] for the properties of the (K, Q)-convex function.

Note that the (K, 0)-convexity is exactly the K-convexity introduced by Scarf[18] for the

classical stochastic inventory control problem with fixed ordering costs. Moreover, the (K, K)-

convexity is the symmetric K-convexity, a concept introduced and applied in Chen and Simchi-

Levi[19] to analyze a joint inventory control and pricing problem with fixed ordering costs and

a general demand distributions.

Similar to the proof of Theorems 3.1 and 3.2 in [7], we have the following main results for

the traditional risk-neutral stochastic cash balance problem.

Theorem 1 Assume that K ≥ Q > 0. The profit-to-go functions Vt(x) and Ht(x) are

(K, Q)-concave and the optimal inventory level yt(x) after a decision is made satisfies

yt(x) =







































Lt, if x ≤ lt,

∈ {x, Lt}, if x ∈ (lt, l
′
t),

x, if x ∈ (l′t, u
′
t),

∈ [l′t, x], if x ∈ (u′
t, ut),

Ut, if x ≥ ut

(2)
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The results for the case Q ≥ K > 0 follow from a symmetric argument.

On a special case of the stochastic cash balance problem where K = Q > 0, we have

Theorem 2 Assume that K = Q. The profit-to-go functions Vt(x) and Ht(x) are sym-

metric K-concave and the optimal inventory level yt(x) after a decision is made satisfies

yt(x) =







































Lt, if x ≤ lt,

∈ {x, Lt}, if x ∈ (lt,
lt+Lt

2 ),

x, if x ∈ [ lt+Lt

2 , ut+Ut

2 ],

∈ {x, Ut}, if x ∈ (ut+Ut

2 , ut),

Ut, if x ≥ ut

(3)

3 Additive increasing concave utility model

In this section, we focus on the additive general increasing concave utility function. In this

case, the objective function of (1) becomes Π(f1, · · · , fT ) =
∑T

t=1 πt(ft), where the function

πt(·) is increasing and concave. That is, the utility of the consumption flow is the summation

of the utility from the consumption in each period. According to the sequence of events as de-

scribed before, the optimization model (1) can be solved by the following dynamic programming

recursion.

Vt(x, w) = max
y

E[Wt(x, w, y; εt)] (4)

where

Wt(x, w, y; εt) = max
w′

{πt(w − γw′ + Pt(x, y; εt)) + Vt+1(y − Dt(εt), w
′)} (5)

with boundary conditions VT (x, w) = πT (w + PT (x, y; εT )), VT+1(x, 0) = 0. In contrast to

risk-neutral stochastic cash problem, here the state variable is two-dimensional, i.e, the current

inventory level x and the wealth level w.

Instead of working with the dynamic program (4)∼(5), we find that it is more convenient to

work with an equivalent formulation. If y ≥ x, let Π′
t(x, w) = Vt(x, w − kx), and the modified

income in period t be P ′
t (y; εt) = (γk − k)y + (p− γk)Dt(εt)− ht(yt −Dt(εt)). In this case, the

dynamic program (4)∼(5) becomes

Π′
t(x, w) = max

y≥x
E[W ′

t (x, w, y; εt)] (6)

where

W ′
t (x, w, y; εt) = max

z′

{πt(w − γz′ − Kδ(y − x) + P ′
t (y; εt)) + Π′

t+1(y − Dt(εt), z
′)} (7)

If y ≤ x, let Π′′
t (x, w) = Vt(x, w + qx), and the modified income in period t be P ′′

t (y; εt) =

(q−γq)y+(γq−p)Dt(εt)−ht(yt−Dt(εt)). In this case, the dynamic program (4)∼(5) becomes

Π′′
t (x, w) = max

y≤x
E[W ′′

t (x, w, y; εt)] (8)

where

W ′′
t (x, w, y; εt) = max

z′′

{πt(w − γz′′ − Qδ(x − y) + P ′′
t (y; εt)) + Π′′

t+1(y − Dt(εt), z
′′)} (9)
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Therefore, The dynamic program (4)∼(5) becomes

max{Π′
t(x, w), Π′′

t (x, w)} (10)

Lemma 1 Assume that K = 0. In this case, Π′
t(x, w) is jointly concave in x and w for

any period t. Furthermore, a wealth dependent base stock policy with the base stock level Lt(w)

is optimal.

Proof We prove the lemma by induction. Obviously, Π′
T+1(x, w) is jointly concave in x and

w. Assume that Π′
t+1(x, w) is jointly concave in x and w. Note that P ′

t (y; εt) is concave in y

for any realization of εt. Thus,

W ′
t (w, y; εt) = max

z′

{πt(w − γz′ + P ′
t (y; εt)) + Π′

t+1(y − Dt(εt), z
′)}

is jointly concave in (w, y), which further implies that E[W ′
t (w, y; εt)] is jointly concave in (w, y).

Let Lt(w) be an optimal solution for the problem max
y≥x

E[W ′
t (w, y; εt)]. Since E[W ′

t (w, y; εt)]

is concave in y for any fixed w, it is optimal to order up to Lt(w) when x < Lt(w) and not

to order otherwise. That is to say, a wealth dependent base stock policy is optimal. Further,

according to the properties of the concave function, it is easy to show Π′
t(x, w) is jointly concave

in x and w. Hence, the lemma follows by induction.

Similar to Lemma 1, we have

Lemma 2 Assume that Q = 0. In this case, Π′′
t (x, w) is jointly concave in x and w for

any period t. Furthermore, a wealth dependent base return policy with the base return level

Ut(w) is optimal.

Note that we have Lt(w) ≤ Ut(w). Otherwise, there exists a x such that Ut(w) ≤ x ≤ Lt(w).

By Lemma 1, it is optimal to order up to Lt(w) when x ≤ Lt(w); By Lemma 2, it is optimal

to reduce down to Ut(w) when x ≥ Ut(w). This is a contradiction.

Due to Lemmas 1 and 2, we have

Theorem 3 Assume that K = Q = 0, the optimal inventory level yw
t (x) after a decision

is made satisfies

yw
t (x) =















Lt(w), if x ≤ Lt(w),

x, if x ∈ (Lt(w), Ut(w)),

Ut(w), if x ≥ Ut(w)

(11)

Recall that in the case of risk-neutral decision maker, Eppen and Fama[2] and Whisler[3]

study a special case of the stochastic cash balance problem where K = Q = 0. They show that

in period t, there exist two parameters Lt and Ut with Lt ≤ Ut, such that the optimal inventory

level yt(x) after a decision is made satisfies

yt(x) =















Lt, if x ≤ Lt,

x, if x ∈ (Lt, Ut),

Ut, if x ≥ Ut.

However, Theorem 3 implies that the optimal policy for the additive increasing concave utility

model is different. Indeed, in the risk-averse case, two parameters in the optimal policy depend

on the wealth, measured by the position of the risk-free financial security.
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4 Additive exponential utility function

In this section, we focus on a special case — the exponential utility function πt(f) =

−αte
− f

βt with parameters αt, βt > 0, where βt is the risk tolerance factor, αt reflects the

decision maker’s attitude towards the utility obtained from different periods.

According to Chen et al[15], for a risk tolerance parameter R, denote the “certainty equiv-

alent” operator with respect to a random variable ξ to be CER
ξ [ξ] = −R ln E[e−

ξ
R ], which

represents the amount of money a decision maker feels indifferent to a gamble with random

payoff ξ. We also consider the “effective risk tolerance” per period defined as Rt =
∑T

τ=t γτ−tβτ .

Further, we can obtain the expression Rt(1 + rf ) = (1 + rf )βt + Rt+1.

The next lemma states that we are able to separately make the operations decisions without

considering the wealth/consumption decisions.

Lemma 3 The optimal operations decisions are independent of the wealth/consumption

decisions under additive exponential utility function.

Proof We prove the lemma by induction. First, let Pt(yt; εt) := ptDt(εt) − ht(yt − Dt(εt))

in the profit function Pt(xt, yt; εt) = −Kδ(yt − xt)−Qδ(xt − yt)− k(yt − xt)
+ − q(yt − xt)

− +

ptDt(εt) − ht(yt − Dt(εt)) of period t.

For t = T , we have

VT (x, w) = max
y

E[−αT e
−(w−Kδ(y−x)−Qδ(x−y)−k(y−x)+−q(y−x)−+PT (y;εT ))

βT ]

= αT e
−w
βT max

y
−e

Kδ(y−x)+Qδ(x−y)+k(y−x)++q(y−x)−

βT E[e
−PT (y;εT )

βT ].

Let GT (x) = max
y

{−Kδ(y − x)−Qδ(x− y)− k(y − x)+ − q(y − x)− + CEβT
εT

[PT (y; εT )]}, then

max
y

−e
Kδ(y−x)+Qδ(x−y)+k(y−x)++q(y−x)−

βT E[e
−PT (y;εt)

βT ]=−e
−GT (x)

βT . Thus, VT (x, w)=−αT e
−(GT (x)+w)

RT .

Suppose that the lemma is true for some t + 1, i.e., Vt+1(x, w) = −At+1e
−(Gt+1(x)+w)

Rt+1 for

some constant At+1 > 0. We have

Vt(x, w) = max
y

E[max
w′

{−αte
−(w−γw′

−Kδ(y−x)−Qδ(x−y)−k(y−x)+−q(y−x)−+Pt(y;εt))
βt

−At+1e
−(Gt+1(y−Dt(εt))+w′)

Rt+1 }].

For any given y, the first order optimality condition with respect to w′ is

1

βt

αte
−(w−γw′)

βt e
Kδ(y−x)+Qδ(x−y)+k(y−x)++q(y−x)−−Pt(y;εt)

βt =
1

γRt+1
At+1e

−w′

Rt+1 e
−Gt+1(y−Dt(εt))

Rt+1 (12)

equivalently,

ln
αt

βt

−
w − γw′

βt

+
Kδ(y − x) + Qδ(x − y) + k(y − x)+ + q(y − x)− − Pt(y; εt)

βt

= ln
At+1

γRt+1
−

w′

Rt+1
−

Gt+1(y − Dt(εt))

Rt+1
.

Thus, at state (x, w), for any given y and the realization of the current period uncertainty εt,

the optimal banking decision w′
∗ is

w′
∗ = −

βt

Rt

Gt+1(y − Dt(εt)) +
Rt+1

Rt

(−Kδ(y − x) − Qδ(x − y) − k(y − x)+ − q(y − x)−
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+Pt(y; εt)) +
Rt+1

Rt

w +
Rt+1βt

Rt

ln
At+1βt

γαtRt+1
,

which implies that the optimal consumption decision in period t is

f ′
t =

βt

Rt

[w + (−Kδ(y − x) − Qδ(x − y) − k(y − x)+ − q(y − x)− + Pt(y; εt)) +

γGt+1(y − Dt(εt))] −
γRt+1βt

Rt

ln
At+1βt

γαtRt+1
.

Furthermore, by Eq (12), we have

Vt(x, w) =
Rt

γRt+1
At+1 max

y
E[−e

(w′

∗
+Gt+1(y−Dt(εt))

Rt+1 ]

= Ate
− w

Rt max
y

E[−e−
γGt+1(y−Dt(εt))−Kδ(y−x)−Qδ(x−y)−k(y−x)+−q(y−x)−+Pt(y;εt))

Rt ],

where At = Rt

γRt+1
At+1(

At+1βt

γαtRt+1
)−

βt
Rt > 0. Let

Gt(x) = max
y

{−Kδ(y − x) − Qδ(x − y) − k(y − x)+ − q(y − x)−

−Rt ln E[e{−
1

Rt
[Pt(y;εt)+γGt+1(y−Dt(εt))]}]}

= max
y

{−Kδ(y − x) − Qδ(x − y) − k(y − x)+ − q(y − x)−

+CERt
εt

[Pt(y; εt) + γGt+1(y − Dt(εt))]} (13)

then Vt(x, w) = −Ate
−(Gt(x)+w)

Rt . Hence, the lemma follows by induction.

Therefore, by Lemma 3, the stochastic cash balance problem under additive exponential

utility function reduces to the optimal problem (13) with boundary condition GT+1(x) = 0.

To present our main result for the problem with K > 0 and Q > 0, we need the following

proposition.

Proposition 1 If a function f(x, ξ) is (K, Q)-concave in x for any realization of ξ, then

for any R > 0 the function

g(x) = CER
ξ [f(x, ξ)]

is also (K, Q)-concave.

Proof Let M(x) = E[exp(f(x, ξ)]. For any x0, x1 with x0 ≤ x1 and λ ∈ [0, 1], xλ =

(1 − λ)x0 + λx1, We have

M(xλ) ≤ E[exp((1 − λ)f(x0, ξ) + λf(x1, ξ) + λK + (1 − λ)Q − min{λ, 1 − λ}min{K, Q})]

= exp(λK) exp((1 − λ)Q) exp(−min{λ, 1− λ}min{K, Q})

E[exp((1 − λ)f(x0, ξ)) exp(λf(x1, ξ))]

≤ exp(λK) exp((1 − λ)Q) exp(−min{λ, 1− λ}min{K, Q})

E[exp(f(x0, ξ)]
1−λE[exp(f(x1, ξ))]

λ

= M(x0)
1−λM(x1)

λ exp(λK) exp((1 − λ)Q) exp(−min{λ, 1 − λ}min{K, Q}),

where the first inequality holds since f(·) is (K, Q)-convex and the second inequality follows

from the Hölder inequality with 1
p

= 1 − λ and 1
q

= λ.

Note that Proposition 1 also holds for K-concave and symmetric-K-concave function since

K-concave and symmetric-K-concave are both special cases of (K, Q)-concave function.
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We can now present the optimal policy for the risk-averse stochastic case balance problem

with additive exponential utility function. Without loss of generality, we assume that K ≥ Q ≥

0.

Let

He
t (x) = CERt

εt
[Pt(x; εt) + γGt+1(x − Dt(εt))].

Define Le
t ∈ argmax

x
{He

t (x) − kx}, let = min{x|He
t (x) − kx = He

t (Le
t) − kLe

t − K}, l′et =

min{x|He
t (x)−kx = He

t (Le
t)−kLe

t−(K−Q)}, U e
t ∈ argmax

x
{He

t (x)+qx}, ue
t = max{x|He

t (x)+

qx = He
t (U e

t ) + qU e
t − Q}, u′e

t = min{x|He
t (x) + qx = He

t (U e
t ) + qU e

t − (K − Q)}.

Then, with Proposition 1, similar to Theorems 1 and 2, we have the following main results

for the additive exponential utility model with K > 0 and Q > 0.

Theorem 4 Assume that K ≥ Q > 0. Gt(x) and He
t (x) are (K, Q)-concave and the

optimal inventory level ye
t (x) after a decision is made satisfies

ye
t (x) =







































Le
t , if x ≤ let ,

∈ {x, Le
t}, if x ∈ (let , l

′e
t ),

x, if x ∈ (l
′e
t , u

′e
t ),

∈ [l
′e
t , x], if x ∈ (u

′e
t , ue

t),

U e
t , if x ≥ ue

t

(14)

The results for the case Q ≥ K > 0 follow from a symmetric argument.

On a special case of the stochastic cash balance problem where K = Q > 0, we have

Theorem 5 Assume that K = Q. Gt(x) and He
t (x) are symmetric K-concave and the

optimal inventory level ye
t (x) after a decision is made satisfies

ye
t (x) =







































Le
t , if x ≤ let ,

∈ {x, Le
t}, if x ∈ (let ,

let+Le
t

2 ),

x, if x ∈ [
let+Le

t

2 ,
ue

t+Ue
t

2 ],

∈ {x, U e
t }, if x ∈ (

ue
t+Ue

t

2 , ue
t),

U e
t , if x ≥ ue

t

(15)

5 Additive exponential utility function with ambiguity aversion

In this section, we introduce the finite horizon ambiguity averse model under exponential

utility function. Specially, assume that the decision maker does not know the exact probability

distribution for the random variable εt. Rather, the decision maker is only aware of a set

of probability distributions to which the probability distribution of εt belongs. According to

Chen and Sun[17], in period t, the decision maker choose his policies assuming that nature is

adversarial, choosing probability distributions gεt
from an ambiguity set Ωt to minimize the

decision maker’s expected utility. Thus, similar to (4)∼(5), a dynamic program for the risk and

ambiguity averse stochastic cash balance problem is as follows:

Vt(x, w) = max
y

min
gεt∈Ωt

Egεt
[Wt(x, w, y; εt)] (16)
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where

Wt(x, w, y; εt) = max
w′

{πt(w − γw′ + Pt(x, y; εt)) + Vt+1(y − Dt(εt), w
′)} (17)

with the boundary condition VT (x, w) = πT (w + PT (x, y; εt)), VT+1(x, 0) = 0.

According to [17], we adopt the “general certainty equivalent” operator φ(·) defined on

a function g(·) of an ambiguous uncertainty ξ, i.e, ΦR
Ω [φ(ξ)] = min

gε∈Ω
−R ln Egε

[e−
φ(ξ)

R ]. Note

that ΦR
Ω = CER

ξ when Ω is a singleton. Obviously, the operator ΦR
Ω generalizes the certainty

equivalent operator CER
ξ in Section 4.

Assume that πt(f) = −αte
− f

βt , and the ambiguity sets satisfy certain technical conditions

so that the minimization in the general certainty equivalent operator can always be attained.

Similar to the proof of Lemma 3, the stochastic cash balance problem in the ambiguity and risk

averse model (16)∼(17) can be calculated through the following dynamic programming

Gt(x) = max
y

{−Kδ(y − x) − Qδ(x − y) − k(y − x)+ − q(y − x)−

+ΦRt

Ωt
[Pt(y; εt) + γGt+1(y − Dt(εt))]} (18)

with boundary condition GT+1(x) = 0.

To obtain the structure on the optimal policies, we need the following result, which implies

the minimum envelope of (K, Q)-concave functions is still (K, Q)-concave.

Proposition 2 If f(x, v) is (K, Q)-convex in x for any v, then g(x) = maxv f(x, v) is

also (K, Q)-convex.

Proof For any x0 ≤ x1 and λ ∈ [0, 1], xλ = (1 − λ)x0 + λx1, we have

g(xλ) = max
v

f((1 − λ)x0 + λx1, v)

≤ max
v

[(1 − λ)f(x0, v) + λf(x1, v) + λK + (1 − λ)Q − min{λ, 1 − λ}min{K, Q}]

≤ max
v

[(1 − λ)f(x0, v)] + max
v

[λf(x1, v)] + λK + (1 − λ)Q − min{λ, 1− λ}min{K, Q}

= (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q − min{λ, 1 − λ}min{K, Q}.

Note that Proposition 2 also holds for K-concave and symmetric-K-concave since K-concave

function and symmetric-K-concave are both special cases of (K, Q)-concave function.

Then, combined with Proposition 2, similar to the proof of the exponential utility function

case, it is easy to see that Theorems 4 and 5 hold for the stochastic cash balance problem under

the exponential utility function with ambiguity aversion.

6 Conclusions

In this paper, we propose a framework for incorporating risk aversion in stochastic cash bal-

ance problem. We characterize the structure of the optimal policy on the risk-averse stochastic

cash balance problem according to the consumption model. We show that the structure of the

optimal policy for a decision maker with exponential utility function is almost identical to the

structure of the optimal risk-neutral operations policy. Furthermore, we extend the results for

the exponential utility function to the ambiguity aversion case.
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