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Abstract Taking the special nonlinear characteristics of the domestic and international gold price into
account, this paper systematically analyzed its nonlinearity by the methods of BDS test, R/S analysis
and improved largest Lyapunov exponent. We find three main results: (1) ARMA-GARCH model could
adequately explain the linear and nonlinear dependence of gold price series; (2) long-memory does not
exist anymore in price series explained by ARMA-GARCH model; (3) chaos phenomenon which is
sensitive to the initial value does not exist either in the residuals of regression model. Therefore, we
believe that the nonlinearity of gold price is mainly characterized in conditional heteroscedasticity

rather than chaos.
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1 Introduction

With the fluctuations of the global economy and the depression of expectation in recent
years, the international price of gold reached one after another peak. As a symbol of the
precious metal prices, the nonlinear characteristics of the changes of the prices of gold reflect the
characteristics of the changes of the macroeconomic. Whether the nonlinearity of the gold price
is chaotic or not affects the judgment of the characteristics of the macroeconomic. Many scholars
have found nonlinear features in commercial price such as conditional heteroscedasticity. But
it is hard to observe directly whether there is chaos behind the superficial price fluctuation.

The characteristic of the nonlinearity of the price of gold is essential. If the nonlinear

fluctuation shows only in conditional heteroscedasticity, it is safe and proper to follow the EMH
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framework to analyze the macroeconomic and the financial market, and it is still reasonable to
hold the points that the yield follows a martingale process and the prices of the assets can be
predicted. But if the nonlinearity of the price is chaos, suggesting that it is a deterministic low-
dimension dynamic system, the randomness of asset prices then comes from their sensitivity to
the initial state mostly rather than the turbulence outside. The abnormal yield produced by a
chaotic dynamic system happens to explain the extremely negative yield of the capital market,
such as the stock disaster in 1987, the so-called “six sigma event”. If it is really chaotic, the
supervisor should change the methods they use to regulate the market.

The common tests for randomness cannot distinguish the chaos in the financial time series
data with so much noise. The most effective way nowadays for testing chaos phenomenon are
the followings: BDS test, R/S test and the largest Lyapunov test. The three methods are
not contradictory, they are testing the chaos phenomenon from different perspectives, that is,
nonlinear dependence, long memory and sensitivity of initial conditions. Firstly, BDS test is a
nonparametric test designed to test if there is nonlinear dependence, whose result is sensitive
to the choice of embedding dimension and proximity parameters. Secondly, R/S test is capable
of testing the long-term memory in the data, judging whether the reverting phenomenon is
negative or positive and finding the average period of the data. Thirdly, largest Lyapunov
exponent describes the sensitivity of the motion to its initial conditions quantitatively and
reflecting its chaotic characteristic.

Most of the methods testing chaos have some relationship with correlation integral. Grass-
berger and Pocaccial®) proposed the correlation integral and correlation dimension test to test
the dimension of a chaotic system. Since the existence of nonlinear dependence is a prerequisite
of the existence of chaos, Brock, Dechert and Scheinkman proposed the BDS test based on the
correlation integral to test the nonlinear dependence of financial series data. Similarly, with
a basis of the correlation integral, Kim et al.l”l proposed CC phase space reconstruction algo-
rithm, which, relying on Takens’ theorem, is the basis for calculating Lyapunov exponents. The
largest Lyapunov exponent gives a chaotic system a quantitative description on its sensitivity
to the initial state of the system. Aimed at the largest Lyapunov exponent, Rostentein et al.!'?!
proposed the small-amount-data algorithm that is not only simple and direct but also more
accurate than the previous algorithms.

Frank and Stengos!¥ estimated the correlation dimensions and Kolmogorov entropy of gold
and silver spot prices, finding chaotic characteristics. DeCoster et al.l3 calculated the corre-
lation dimensions of the futures of sugar, silver, copper and coffee, in which evidence for the
existence of chaos had been found. By calculating correlation integral and carrying out BDS
test, Yang and Brorsen!'” analyzed prices of several future products and pointed out that
chaos existed in prices of commodity futures. Arjun et al. (2001), however, found nonlinear
dependence instead of chaos existed in series by calculating correlation integral and Kolmogorov
entropy and testing residuals of ARMA-GARCH model. Also, Andres et al. (2002) discovered
through BDS and Kaplan tests that nonlinear characteristics existed in foreign exchange rates

(13] calculated the correlation dimensions d of Shanghai Composite Index

series. Wang et al.
using G-P algorithm, and Lyapunov exponent using Wolf method and reached a conclusion

that chaos existed in Chinese stock market.
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By reviewing the recent literatures, we found that direct test of nonlinearity without delin-
earizing series, i.e. filtering the series by ARMA model, would lead to a conclusion that chaos
existed in series. The reason for the conclusion is that current BDS and R/S analytical method
both rejected i.i.d.! assumption in testing linear, nonlinear and chaos characteristics. Besides,
the adoption of low order ARCH model? in filtering the nonlinear characteristics of series fre-
quently leads to wrong conclusion that chaos exists in series. So far there is no widely accepted
conclusion on whether nonlinear characteristics of financial time series are results of low di-
mension chaos or conditional heteroscedasticity. Considering the robustness of the empirical
results and the principle of “test test and test”, we determinate the nonlinear characteristics of
gold price series by carrying out BDS test and R/S analysis and calculating largest Lyapunov
exponent respectively in these papers.

2 BDS tests of gold prices in home and abroad

BDS test is usually used to detect nonlinear dependence structure of series, popular among

researches because of its non-substitutability. Our BDS test idea is as follows:

e Pre-process data by converting price series { Xy} to log return series {Ry_1}, carry out
descriptive statistical analysis and test whether the series are weak stationary by ADF
unit root tests.

e Test the hypothesis that return series are i.i.d. by BDS test. The rejection of i.i.d.

hypothesis means linear of nonlinear dependence exists in series.

e Eliminate the linear dependence of series. We choose BIC information criteria and pa-
rameters t-test to choose the proper ARMA model for each series thus to filter the linear
structure, followed by BDS test on residuals. The failure of BDS test illustrated nonlinear
dependence of series, thus we should consider whether it results from characteristics in

various time periods.

e Due to the long time span of data collection 3, it is possible that characteristics of series in
different time periods cause series’ failure to be i.i.d.. In order to exclude this possibility,
we divide return series into two sample intervals of the same length, filter respectively
with optimal linear model and carry out BDS tests on their residuals. If test results are
significantly different from those of entire population, then the reason why population
fails BDS test might be the structural change of population series; if test results are not

distinct different, then time-varying variance should be considered as a cause.

e Exclude the time-varying variance in series. Xie and Yang!'¥ standardized series with
standard error in current month, paving the way for such a practice. More specifically,
we use GARCH model to filter the time-varying variance, and then choose the optimal

linear model under BIC information criteria. After excluding the effects of time-varying

n this paper i.i.d. refers to Independent Identically Distributed.
2For example, ARCH(1), ARCH(2).
Soversea data of 35-year and domestic data of 9-year.
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variance, we conduct BDS test again. If BDS test is passed, we can conclude that ARMA-
GARCH model can explain the characteristics of series effectively, and that chaos doesn’t

exist in series. Otherwise nonlinear structure such as chaotic systems exists in series,
which can not be detected by AMRA-GARCH model.

2.1 BDS test

BDS test is based on a basic idea that, if a series {X,,} is i.i.d., then Vi # j, Ve, Vm, we
have

Py =P(IX; = Xj| <&, |Xio1 — Xjou| <€) = [P(X; — X;| < o) (1)
Pr =P(X; - Xj| <&, |[Xiocy = Xjal <& [ Ximmpr — Xjompa| <é) @)

= [P(IXi = Xj[ <o)
where e shows the approaching level (often called approach parameter) of status in the series,
m shows the dimension of reconstructed phase space (often called embedding dimension). The
equations above are established if and approximately only if time series {X,} is i.i.d.. Thus
by selecting any of the equations as null hypothesis we can test whether {X,} is i.i.d.. In
practice, Brock et al. (1987) calculated correlation integral Cy, () and P,, acquired , based
on which later scholars made much generalization and improvements. In this paper we choose
Kanzler’s 16 method, a practical generalization in 1999 based on Brock’s achievements that can

be described as follows. First we define indicative function

1, |Xz — XJ| S 13
I(X3, X;) = (3)
0, |X1 — Xj| >e€
For finite time series {X,,}, proper proximity parameter ¢ and embedding dimension m, we

define correlation integral revised by Kanzler as follows:

9 n n m—1
Crnn(e) = g T ;n DN | RAC S oy (4)

t=s+1 j=0

™ and we

If {X,} ~ ii.d., correlation integral C,, ,(¢) approximately equals to [C1 n—m+1(€)]
could use [Cy n—m+1(€)]™ to estimate the mean of C), ,(g). After standardizing Cy, ,(g) we

could get statistic W:

Wm ”(E) = \/mcmx"(g) - [Cl,n—m+1(5)]m (5)

’ Tm,n(€)
where
Fmn(€) = 4{’“" +2 S EICL(& 4 (m — 12 (e m%cl,n(s)?m-?} (6)
2 n n n
kn(e) =3 L(X0, X,)L(Xs, X,
) n(n —1)(n —2) ; s:zt;rl T:Zs;rl{ ( et ) (7)

+ Ia (Xt, XT)IE(Xru Xs) + Ia (Xsu Xt)Ia (Xt7 Xr)}

Brock et al.l?! demonstrated that under the assumption of {X,} ~ ii.d., the limiting distri-
bution of W, »(¢) is standard norm distribution. When & > 200, quantile of standard norm

distribution can be used as judgment criteria.
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Two important parameters should be set before BDS test: proximity parameter ¢ and
embedding dimension m (see Table 1 for a summary on parameter choice). In theory, we
need only to satisfy 0 < € < max(X,) — min(X,) to choose proximity parameter . However,
Kocendal®! pointed out that the result of BDS test is quite sensitive to the choice of €, and
during practice we also found that as long as slight difference exists in proximity parameter,
the calculated correlation integral varies greatly and thus causes the result of BDS test to be
entirely different. In actual testing practice, it often occurs that the results contradict each
other under different proximity parameter €. Improper proximity parameter could incorrectly
measure the closeness between data, which is the same as using a too-long or too-short ruler to

measure the length of an object, causing relatively large errors.

Table 1 A summary on worldwide scholar’s choice of proximity parameter

Year Scholar Name ¢ (multiple of series standard error o)
1992 Rothman 0.50, 1.00, 1.25, 1.50, 2.00
1993 Kugler and Lenz 1

1993  Hsieh 0.50, 1.00, 1.50, 2.00

1993  Brock, Hsieh, and LeBaron 0.50, 0.75, 1.00, 1.25, 1.50

1996 Cecen and Erkal 0.5

1996 de Lima 1.00, 1.25

1996 Chappell, Padmore, and Ellis  0.40, 0.625, 1.00, 1.60

1997  Serletis and Gogas 0.50, 1.00, 1.50, 2.00

2000 Brooks and Henry 1.00, 1.50

2000 Aguirre and Aguirre 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
2002 Chen and Kuan 0.75, 1.00

2003  Panagiotidis 0.50, 1.00, 2.00

2004 Kocenda and Briatka 0.6 to 1.9

Through empirical study, Kanzler discovered that under the condition of smaller embedding
dimensions m, BDS statistic Wy, ,(¢*) is optimal if we choose proximity parameter ¢ which
makes single dimension correlation integral C; ,(¢) near 0.7. The algorithm’s complexity in
time and space is rather high and, as Jorge et al. (2002) mentioned, computer capacity in
the past could hardly satisfy its requirement. However, with the significant improvement of
computer performance and algorithm, optimizing proximity parameter ¢ becomes feasible and
easy. In this paper we adopt Kanzler’s method, for each embedding dimension m, choose an
optimal proximity parameter € on conditions that single dimension correlation integral C1 ,(¢)
is fixed to 0.7, and thus obtain the optimal BDS statistic W, »(¢*). In terms of choosing the
embedding dimension, Brock et al.l? suggested that, on the premise of ensuring = = 200,
choose m between 2 and 10; Barnett et al.[ll suggested m not exceed 8. In this paper, based
on conservative principles, we choose all embedding dimension m between 2 and 10 to satisfy
= > 200.

2.2 Data sample selection

During the century before the end of The Bretton Woods System, gold underlies the cur-
rencies of the world. It makes little sense to study the ‘fixed’ gold price. In 1997 America
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ended the convertibility of gold into US dollars, terminating the gold standard that had lasted
for more than a century. Since then, gold has faded from the currency scene and evolved into
a commodity with price attribute. London Gold Market and COMEX, with their long history,
have been the largest spots and futures market, and therefore data from the two exchanges
are representative. We choose daily London Gold Fixing in London Gold Market and closing
price of dominant futures of gold in COMEX from 2nd Jan. 1975 to 19th Apr. 2011%. For
domestic data, we choose daily closing price of spot Gold AU9995 in Shanghai Gold Exchange
from 31st Oct. 2002 to 20th Apr. 2011°. After the founding of New China, the purchasing,
marketing and pricing of gold has been monopolized. The trading price of gold hasn’t come
out until the opening of Shanghai Gold Exchange in Oct. 2002. Gold AU9995 indicates gold
with purity above 99.95%. Its spot trading has been active, and it has been the settlement for
gold futures in major future exchanges home and abroad. Consider that Chinese future market
of gold wasn’t formally formed until 2008, the data volume is limited, and thus we don’t use
domestic gold future data.

In this paper we converted gold prices of London spot, COMEX futures and Shanghai
futures into logarithmic return series, conducting unit root test and obtained the stationary,

descriptive statistics and unit-root test results of series (see Table 2 and Table 3).

Table 2 Descriptive statistics and normality test

Mean SD Skewness Kurtosis JB statistic P-value
London spot price 0.0002  0.0126 0.0027 14.17 47693.79 0.0000
COMEX future price  0.0002  0.0126 0.0084 10.07 18845.71 0.0000
Shanghai spot price 0.00065 0.0113  -0.2563 9.221 3369.85 0.0000

Table 3 Unit root test
ADF test Philips-Perron test

T statistic P value Adjusted t statistic P value

London spot price —14.93347 0.0000 —-100.0707 0.0001
COMEX future price —15.30907  0.0000 -96.68592 0.0001
Shanghai spot price -31.0917 0.0000 —47.94408 0.0001

2.3 Results of BDS tests
2.3.1 BDS test of the original series

In order to test the existence of dependence in original series, we first carry out BDS
test on original return series. Here we choose the proximity parameter €* which makes the
single dimensional correlation integral Cy ,(¢) approximate 0.7, and we choose the embedding
dimension m between 2 to 10. BDS test results of original series are in Table 4. As the table
shows, test results in all embedding dimensions reject in 1% significance level the hypothesis
that original return series is i.i.d., but we cannot decide the existence of nonlinear dependence
in the series.

4data source: Wind financial database.
5data source: Resset financial research database.
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Table 4 BDS test of original series
m 2 3 4 5 6 7 8 9 10

London spot price 25.8 323 374 421 471 522 581 64.7 725
COMEX future price 22.9 282 319 352 388 429 47.6 52.8 59.0

Shanghai spot price 9.32 121 141 158 174 19.1 21.2 235 259
Note: All test results rejected the null hypothesis of i.i.d..

2.3.2 BDS test after linear model filtration

Based on the results that hypothesis of i.i.d. are all rejected in original series, we choose the
optimal ARMA model under BIC information criteria and t-test of auto-regression parameters
to filter and eliminate the linear dependence of return series, and then test the residuals of
ARMA model to decide whether nonlinear dependence existed in series. For London spot
return series we choose ARMA(3,3) as linear model, for COMEX future return ARMA(3,3),
and for Shanghai spot return MA(2)(see Table 5 for detailed results). After eliminating the
linear dependence with optimal linear model, we test the residuals of the three return series

respectively (see Table 6 for test results).

Table 5 Parameters in ARMA-GARCH model of London gold spots

Mean Equation Variance Equation
c 1.50 x 107° w 7.13 x 1077
(0.175055) (10.69556)
01 —0.031518"* o1 0.083008™**
(—2.892106) (32.95886)
0 0.017221* o 0.917649***
(1.657169) (405.1998)
03 0.016047*
(1.479584)
R-squared 0.002467 Durbin-Watson stat 2.026494
Loglikelihood 29263.06 Akaike info criterion —6.378732
F-statistic 3.777334 Schwarz criterion —6.373296

Table 6 BDS statistic for residuals of ARMA model
m 2 3 4 5 6 7 8 9 10
London spot price 249 315 36.6 422 46.1 51.1 56.7 36.1 70.5
COMEX future price 22.6 27.8 31.5 347 38.1 42.0 46.6 51.7 57.7
Shanghai spot price 9.27 119 139 155 172 189 209 322 25.7
Note: All test results rejected the null hypothesis of i.i.d..

The ARMA model residuals of London spot return, COMEX future return and Shanghai
spot return all reject the i.i.d. hypothesis in 1% significance level. This indicates that ARMA
model cannot effectively explain the dependent characteristic, which is the nonlinear depen-
dence, in gold return series. To further determine whether the cause is the characteristics that
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vary with different time period, we divide gold return series into two parts of the same length,
and filter with proper ARMA model respectively. Here we filter with ARMA model series from
London, New York and Shanghai, which add up to 6 subsample intervals, and conduct BDS test
on obtained residuals. In view of the short length of Shanghai spot return series, the embedding

dimension m were chose between 2 to 6 (see detailed results in Table 7).

Table 7 BDS tests of ARMA model residuals on subsample intervals

London spot price COMEX future price Shanghai spot price

m  1975-1993  1993-2011  1975-1993  1993-2011  2002-2007  2007-2011
ARMA(3,3) ARMA(3,3) ARMA(3,3) ARMA(22) ARMA(4,4) ARMA(3,1)

2 20.99 10.82 18.45 9.90 7.30 4.68
3 25.88 15.14 21.71 13.73 9.43 5.68
4 29.86 18.33 24.35 16.34 10.54 7.09
5 33.27 21.31 26.68 18.69 11.31 8.10
6 37.04 24.30 29.27 21.17 12.01 9.13
7 40.93 27.38 32.17 23.95
8 45.38 30.78 35.51 26.99
9 50.30 34.53 39.11 30.36
10 56.00 39.09 43.48 34.18

Note: All test results rejected the null hypothesis of i.i.d..

The test results agree on different subsample intervals. Residuals of ARMA model all reject
the i.i.d. hypothesis. Although BDS statistic varies with different intervals, the i.i.d. hypothe-
sis are all rejected in minuscule significant level. According to this, we find that the nonlinear

dependence in series is not caused by the different characteristic in different time period.

2.3.3 Test after conditional heteroscedasticity model filtration

Here we test whether the nonlinear dependence is caused by time-varying variance of the
return series. We choose ARMA-GARCH model to eliminate the time-varying variance and
obtain the MA(3)-GARCH(1,1) model for London spot, ARMA(5,5)-GARCH(4,4) model for
COMEX future and MA(2)-GARCH(1,1) model for Shanghai spot, and then carry out BDS

test on standardized residuals(see results in Table 8).

Table 8 BDS tests on residuals of fitting models
Subintervals 2 3 4 5 6 7 8 9 10
London spot price 0.45 0.26 0.61 0.92 1.34 1.47 1.56 1.53 1.63
COMEX future price -0.11 -049 -0.63 -0.92 -097 -085 -0.74 -0.70 -0.54
Shanghai spot price -0.33 -0.24 -034 -0.15 -0.14 -0.18 -0.15 -0.09 -0.09
Note: all test results accepted the null hypothesis of i.i.d..

Almost all test results accept the i.i.d. hypothesis®, which showed the nonlinear dependence
of gold return series could be fully described with GARCH model. In other words, from the

6 Actually under higher embedding dimension m, the null hypothesis of BDS test is also accepted for regression

residuals of both London spot and New York futures.
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aspects of BDS tests, nonlinear dependence beyond ARMA-GARCH model doesn’t exist in the

daily gold price series, i.e., chaos doesn’t exist.

3 R/S analysis on gold price at home and abroad

Hurst discovered the durability of water level when studying the Niles River and calculated
Hurst index through rescaled range analysis, which quantified the characteristic. Peters1%> ]
pointed out that R/S analysis was an effective tool in discriminating fractional noise (random
sequence) and chaotic noise series, and could observe the series’ average period of non-periodic
cycle. An evidence for the existence of chaotic attractor is the characteristic of infinite period.
As a result R/S analysis can be an effective judgment on the existence of chaos. Lo (1991)
proposed revised R/S analysis method and can eliminate the disturbance of short-term memory
and heteroscedasticity.

Here we hope to determine the nonlinear attributes of series by R/S analysis and we divide
the empirical method into two aspects: On one hand, since the standardized residuals (here-
inafter ‘fitting model residuals’) we use where the short-term memory and heteroscedasticity
in series have been removed by ARMA-GARCH models”, we can employ directly the classic
R/S analysis. In this paper we employ R/S analysis on original gold price series and fitting
model residuals respectively, and by comparing these empirical study results we can determine
the nonlinear attributes of series. On the other hand, according to the parameters in fitting
models, we employ R/S analysis on a generated series, which uses random numbers as resid-
uals and has same characteristics with the original series, and study the difference between
two analysis results. No difference between them indicates that simple ARMA-GARCH model
can generate same characteristics with original series, which means no characteristics beyond
ARMA-GARCH model exist in original series.

3.1 R/S analysis method
For sequence {X,},n=1,2,--- /N,--- 2N ,--- 3N, - the length for each subsequence is

N. Here we divide the sequence to several nonintersecting N-length subsequences, and calculate
the accumulative deviation for each subsequence

t

Din =Y (Xu— My) (8)

u=1
where M is mean of X,,. The difference between maximum and minimum cumulative deviation

is regarded as the range of N-length subsequence of series {X,,}
Ry = MAX(X;n) — MIN(X, n) (9)

To eliminate the effect of dimension and ensure the scale invariance of statistics, Hurst intro-
duced rescaled range g—;’, in which Sy stood for the standard deviation of original series. Since
for each appropriate N, a comparatively long sequence can be divided into several noninter-
secting subsequences, here we use the mean of rescaled range };—g as observation for N-length
rescaled range. In order to ensure the uniformity of data in calculating rescaled range, we

intercept a T-length sequence which is relatively long and contains more factors, and choose all

"Here ARMA model is identical to that used in BDS test.
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factors above 4 and below % as length of subsequence, N.
Hurst discovered that rescaled range was a power function of observation time N, satisfying
R
= = (aN)H (10)
Sn
where a is constant and H is Hurst index. In practice we often convert the above equation to

logarithmic form
Ry

In—=HInN+1Inb (11)
SN

For each observation time IV, we obtain different rescaled range g:, and get an estimation for
Hurst index through LS regression.

There are three possible values for Hurst index: 1) H = 0.5, which means the sequence is
random and independent; 2) 0 < H < 0.5, which means the system is ergodic or antipersistant;
3) 0.5 < H < 1.00, which means the sequence is persistence. In fact, since the length of
sequences is finite, the Hurst index of randomly generated sequence with complete i.i.d. does
not equal to 0.5. As a result, based on previous study results, Peters (1994) obtained the

Ry

expectation of 1;—:, E(S—n) under the assumption of i.i.d.%.

Ry N-05 =\ &= [N—r
E(g) = T X (NX 5) X , (12)

r=1

Similarly, through LS regression we can obtain an estimation of Hurst index expectation. By

comparing analysis results of time series g—: with expectation E(g—:) under i.i.d. assumption,

we can discriminate the difference between long memory and i.i.d..

3.2 Analysis results of R/S
3.2.1 R/S analysis on empirical data

We carry out R/S analysis on series of spot price in London and Shanghai®. In Figure 1,

the steep curve is In( IS%Z) of original return series and the gradual curve is the expectation of

ln(};—:), ln(E(g—Z)) under i.i.d. assumption. It is obvious that for original gold price series, the
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Figure 1 R/S analysis on original gold price data in London and Shanghai

8In this paper, E(%) refers to the expected value of rescaled range when the series is i.i.d..

9We only show R/S analysis results of London spot and Shanghai spot here. New York futures shares similar
results.
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slope of ln(g—:) to In(N) approximates 1, which is significantly different from the slope of
1n(E(%)) to In(N). This means that long memory exists in original series. Besides, the
Hurst index result obtained from LS regression approximates 1 (see Table 9 for results), also

supporting the conclusion. The long memory of original series might be the result of both
ARMA structure and GARCH effect.

Table 9 Hurst index of gold data under different processing at home and abroad

Gold in London  Gold in Shanghai

Hurst index of original price series 1.0091 0.9997
Hurst index of residuals of ARMA-GARCH model 0.5921 0.6225
Expectation of Hurst index under i.i.d. 0.5897 0.6301

However, after converting gold price series into logarithmic return series and filtering with
ARMA-GARCH model, we obtain a significantly different result (see Figure 2 for details): No
difference exists between fitting model residuals of gold price and expectations of i.i.d. series,
which means that in the series, long-term memory beyond the ARMA-GARCH process does
not exist in series. According to Fig. 2, ln(g—:) overlaps In(E (1;—:)) in standardized residuals,
and both slope approximates each other, which shows the absense of long-term memory. The
result differs from Peters’ due to two reasons. First, Peters employed R/S analysis directly
on price series instead of return series. Second, Peters left out the effects of ARMA structure
and conditional heteroscedasticity in series. Besides, we can see from the following table that
the long-term memory of original price series is quite obvious, while that of return series is

relatively weak. In fitting model residuals, long-term memory does not exist.

16 T 15
»* :
+
¥
14
,b’ -i-:"
12 i s
#J w ¥
1 7 -
L o # #
# ¥
fr o * ¥
=@ # +*
de 08 + #
S2 *F +*
g2 &
== b
;i?L 0.5F e‘ﬁ 1
04 s ¥
4 1 W3
+% .
-+ +
02t 4 4+
+ -
s 1 15 z 25 T 1 15 2 25 3

London ) lag 10{N) : Shanghal Tog0(H)
Figure 2 R/S analysis on fitting model residuals of gold return series in London and
Shanghai

3.2.2 R/S contrastive analysis of surrogate data

To further verify our assumption (i.e. the absense of deterministic process beyond ARMA-
GARCH in series'?), we generate a simulated ARMA-GARCH process which shares the same
parameters with London gold price process'!. Through R/S contrastive analysis and compari-

son with results of R/S analysis original gold price series in London and Shanghai, we discover

10Refer to a nonlinear dynamic system that may generate chaos.
1Pure ARMA-GARCH process, innovation is simulated by random number.
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from Figure 3 that the linear and nonlinear dependence of gold price series in London and
Shanghai can be perfectly described by corresponding ARMA-GARCH model. There is little
difference between original series and simulated series, suggesting that ARMA-GARCH process
can discribe effectively the characteristics of series.

Through R/S test on gold price series, we find the long-term memory existing in original
price series rather than in residual series filtered with ARMA-GARCH models. Besides, by
simply simulating series with ARMA-GARCH model (same parameters with original series), we
can obtain identical characteristics in R/S analysis. This further illustrates that the nonlinear
characteristics can be effectively discribed with ARMA-GARCH model, and long-term memory
beyond ARMA-GARCH model does not exist in gold price series. The nonlinear characteristic
of gold price series is conditional heteroscedasticity, instead of chaos.

4 Revised Lyapunov exponent analysis

A system with chaotic structure has an important feature-extreme sensitivity on initial
condition, i.e. subtle change in initial value will cause unpredictable enormous variation in the
future. The sensitivity can be discribed quantitatively by Lyapunov exponent. Different axis
in phase space has different Lyapunov exponent. A negative Lyapunov exponent of a certain
axis means that, measured by this axis, two adjacent points tend to approach fixed point and
periodic attractors over time, while a positive Lyapunov exponent means the seperation of two
adjacent points. This phenomenon is the result of sensitivity on initial condition and thus
corresponds with chaotic motion. The zero Lyapunov exponent represents a critical status
between stable mode and chaotic mode. It can be viewed either as an end of periodic motion
or as the beginning of chaotic motion, but is random in nature.

The study of chaotic characteristics in time series begins with the proposal of theory of
reconstructed phase space by Packard et al. in 1980. Due to the nonlinear interaction between
all degrees of freedom in the system, the evolution of each independent variable over time
contains information about long-term evolution of all other variables in system. As a result,
we could study the chaotic behavior of whole nonlinear system through time series of a certain
variable. The calculation of Lyapunov exponent based on reconstructed phase space of time
series is of significance for determinating whether chaotic behavior exists in a dynamic system

that cannot be discribed with differential equation.

4.1 Reconstructing phase space with C-C algorithm

To reconstruct phase space, we need two parameters: delay time T, and embedding dimen-
sion m . Chinese scholar Liil®) discovered that, the result of Lyapunov exponent calculation
is sensitive to the choice of parameters in reconstruction of phase space. Current methods to
choose reconstruction parameters are: methods of autocorrelation, multiple autocorrelation,
mutual information and C-C algorithm. To begin with, since the series to be calculated in the
paper are residuals of ARMA-GARCH models which have no obvious autocorrelation character-
istic, and no smooth and meaningful autocorrelation or multiple autocorrelation curves can be

generated, as a result methods of autocorrelation and multiple autocorrelation cannot be used
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in this paper. Besides, due to the large data volumn in this paper'?, the mutual information
method which requires high computation cannot be realized in short period of time.

In an overall consideration of mutual information method’s power and computation speed,
we choose C-C algorithm in this paper. The idea of C-C algorithm, as well as BDS tests, is

based on correlation integral using the following relationship
S(m,N,r,t) =C(m,N,r,t) - C"(1,N,r1) (13)

where r stands for correlation radius (same meaning with the proximity parameters in BDS
tests). Brock et al. assumed that, given an i.i.d. series, for any m and r, C(m, N, r,t) approx-
imately equals to C™(1, N,r,t) at all time, which can be regarded as a measure of nonlinear
dependence. Based on this assumption, we could search for delay time T, by using the figure
of S(m, N,r,t) varying with time under nonlinear dependence. The figure can also be viewed
as the meaning of changes in autocorrelation function with time under linear dependence.

In order to analyze the nonlinear dependence of series and eliminate short-term spurious
correlation, we divide series into ¢ nonintersecting series by time interval ¢, calculate S(m, %, T, t)
of each series and obtain the mean. On condition of ¢ = 1, the divided series is the original
series itself

S(m,N,r,1)=C(m,N,r,1) — C™(1,N,r,1) (14)

When t = 27 {Xl} is divided into {Xl,Xg, cee ,XNfl} and {X27X4, s 7XN}

S(m,N,r,2) = [Cl (m,%,r,?) —C{”(l,g,rﬂ)} + {Cg<m,%,r,2) —C;”(l,g,rﬂ)]

(15)
For general ¢, the series is divided into ¢ nonintersecting series, having

g(m7N7r7t):%Z[C(m,¥,r,t) —C’”(Lg,r,tﬂ (16)

Suppose that the time series subjects to i.i.d., for a given m and r, when N approximates
infinite, for all » we have

S(m,N,r,t) =0 (17)
Although actual series might be quite long, it cannot be treated as infinite, and thus S(m, N, r, t)
generally does not equal to zero. As a result, the local largest time interval can be chosen as
either null point of S(m, N,r,t) or the smallest range time point which is least sensitive to
radius change, because the space consists of these points is homogeneous. For convenience, we

difine range as follows:
AS(m,N,t) = max(S(m, N, R;,t)) — min(S(m, N, R;,t)) (18)

4.2 The calculation of Lyapunov exponent

The major calculation methods of Lyapunov exponent are: defination, Wolf method, Jaco-
bian method, P-norm method and Rosenstein method. To employ defination method we need
original differential equations that generate dynamic system, which, unfortunately, we cannot

obtain. Wolf method is suitable for small sample and low noise time series, which cannot be

12The sample size is beyond 10,000.
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adopted in this paper because the sample data (daily trading data over 30 years) are large
and noisy. Jacobian method, suitable for large and noisy sample, seems adoptable here, but
we find that in this method, Lyapunov exponent is calculated using the speed tangent vec-
tor evloves with time, and the tangent vector in reconstructed phase space, which consists of
ARMA-GARCH model residuals, shakes violently. As a result, the employment of Jacobian
method becomes quite difficult.

In the study of chaos, we can determine a system’s chaotic characteristics simply by calcu-
lating the largest Lyapunov exponent. Based on that consideration, we choose the Rosenstein
method (also called small data set arithmetic), which only calculates the largest Lyapunov ex-
ponent. However, traditional Rosenstein method determines delay time Ty by autocorrelation
method, while here we use C-C algorithm instead. Besides, to employ Rosenstein method we
need to determine the average period'®. Here we choose Fast Foourier Transform.

4.3 Lyapunov exponents of gold price abroad

In this paper we use Rosenstein method to calculate largest Lyapunov exponent based on
phase space reconstruction by C-C algorithm. Although C-C algorithm can reduce both the
time spent in iterative operation and the space complexity, to determine the real minimal value
of pg, the total length of series has to be as large as possible. For price series in London and
New York, we make use of all 9000 samples from ARMA-GARCH model residuals, while for
those in Shanghai, the data amount is too limited to search for smallest value of pg, thus we
fail to determine the embedding dimension and reconstruct the phase space. As a result, in
this chapter we only listed empirical results of gold data in London and New York.

First we determine the parameters in phase space reconstruction-delay time T; and embed-
ding dimension m (see results Figure 3 and Figure 5). Fig. 4 shows that AS reaches the first
minimal value when 7" = 2. We choose T; = 2 as the actual delay for model residual series of
London spot. pg reaches its minimal value when ¢t = 10, i.e. T, = (m — 1)T4 = 10, from which

we obtain embedding dimension m = 6.
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Figure 3 A comparison of R/S analysis on gold original price series in London and
Shanghai

13This average period may not be significant, and the existence of an average period does not necessarily mean
the series is periodic. Peters pointed out that the average period of an non-period cycle is just resulted from

FFT, which cannot support the series to be periodic.
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Figure 5 Delay time 7; and embedding dimension m for model residuals of New York

futures

According to Figure 5, AS reaches its first minimal value at T'= 2. As a result, we choose
T4 = 2 as actual delay for gold residual series. The minimum of pg is reached at ¢t = 15, i.e.
Ty = (m — 1)T; = 15 from which we obtain embedding dimension m = 8.

In this paper we determine the average period with Fast Foourier Transform (FFT), which is
a fast algorithm to calculate discrete Foourier Transform. Using this algorithm, the multiplica-
tion number required by calculation reduce significantly. The larger the transformed sampling
point number N is, the more it saves on calculation cost. By FFT calculation, the average
period of fitting model residual series in London and New York is 20.0893 and 34.8231.

Finally, we reconstruct phase space using C-C algorithm, and obtained Lyapunov expo-
nents figure of ARMA-GARCH model residuals with revised Rosenstein method. In Figure
6 (upper one), the slope of line stands for the largest Lyapunov exponents of fitting model
residuals in New York. As is obvious, although the slope is negative, it approximates zero
(-5.113574144831425E-04). This illustrates that fitting model residuals of New York gold fu-
tures are random rather than chaotic. According to Figure 6 (lower one) the slope of line is
the largest Lyapunov exponent of fitting model residuals in London. From the figure we can
clearly see that the slope of the curve approximates zero (0.0062). This illustrates that fitting

model residuals of London gold spots are random instead of chaotic.

5 Conclusion

In this paper we employed BDS test, rescaled range (R/S) analysis and revised largest Lya-

punov exponents on gold price data at home and abroad, and analyzed the nonlinear attribute
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Figure 6 Largest Lyapunov exponents of model residuals in New York (upper) &

London (lower)

of gold price.

First, we discovered that ARMA model residuals of gold price return series could not pass the
BDS test, while standardized residuals of ARMA-GARCH model could pass the BDS test. This
suggests that the nonlinear dependence of gold series can be discribed perfectly with GARCH
model. Thus, nonlinear dependence beyond ARMA-GARCH model in daily gold price series
does not exist, i.e. chaos doesn’t exist.

Second, we employed R/S test on original gold price series and discovered strong long-
term memory, which did not exist in fitting model residuals. According to the phenomenon
that simulated data exhibited same characteristic with original series, we conclude that long-
term memory beyond ARMA-GARCH model does not exist in gold price series, and that the
nonlinear characteristic of gold price is conditional heteroscedasticity.

Third, we reconstructed phase space according to C-C algorithm and discovered that the
largest Lyapunov exponent of ARMA-GARCH model residuals approximated zero, which means
that chaotic phenomenon, characterized by initial value sensitivity does not exist in fitting model
residuals of gold series.

In conclusion, all linear and nonlinear dependence can be effectively discribed by ARMA-
GARCH model. Long term memory beyond ARMA-GARCH model does not exist in series.
Chaotic phenomenon characterized by initial value sensitivity does not exist in fitting model
residuals. As a result, the nonlinear characteristic in gold price series is conditional heteroscedas-

ticity instead of chaos'.

141n order to rule out the possibility that a GARCH model may damage the chaos structure in the original
series, we chose a number of typical chaotic system, filtered them with ARMA and GARCH model and then
conducted BDS test. The results showed that ARMA and GARCH model did not damage the chaos structure
in the series, supporting that ARMA and GARCH model is able to ‘safely’ filter the characteristics of linearity
and time-varying variance out of series. In addition, we analyzed and tested the residuals of 5-minute returns of
domestic gold futures, finding out that the standardized residuals of high frequency data model did not follow
i.i.d., which means ARMA and GARCH model cannot fully describe the characteristics of high frequency data.
However, the largest Lyapunov exponent of the residuals of high frequency data model is —0.03047451402670,
much smaller than that of a daily return series. The negative Lyapunov exponent showed the convergence
tendency of the system. More original features were retained in high frequency data of gold futures than in low
frequency data, and we suppose this has something to do with the characteristic of mean reversion of futures.
Though we chose data of dominant contracts that changed months several times every year, in a period that

those contracts did not change, the futures still followed the mean-reverting behavior.
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