Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids
-
R. Eymard
, T. Gallouët und R. Herbin
Veröffentlicht/Copyright:
12. Oktober 2009
Abstract
This work is devoted to the discretisation of non linear elliptic problems on general polyhedral meshes in several space dimensions. The SUSHI scheme which was recently studied for anisotropic heterogeneous problems is applied in its full barycentric version, thus resulting into a cell centred scheme written under variational form, also known as ‘SUCCES’. We prove the existence of the approximate solution and its convergence to the weak solution of the continuous solution as the mesh size tends to 0. Numerical examples are shown for the p-Laplacian.
Received: 2008-12-14
Revised: 2009-06-28
Published Online: 2009-10-12
Published in Print: 2009-October
© de Gruyter 2009
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids
- Mesh adaptive multiple shooting for partial differential equations. Part I: linear quadratic optimal control problems
- A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems
Schlagwörter für diesen Artikel
discretisation;
non linear elliptic equations;
general meshes
Artikel in diesem Heft
- Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids
- Mesh adaptive multiple shooting for partial differential equations. Part I: linear quadratic optimal control problems
- A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems