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ABSTRACT

The stresses in an elastic continuum (i.e. a continuum with zero strains after unloading) are classically
deemed to be conservative (i.e. their total work all over the continuum is a single-valued function of only the
displacement distribution in the continuum). So, internal damping in an elastic continuum appears to be a
contradiction in itself. Actually, the total work of the internal stresses all over a continuum does not coincide
with the strain energy of the continuum, but also includes the work of the internal body forces formed by the
stress derivatives 00,, /0x, Ot,, [y, ., [0z,..., which only contributes to the kinetic energy of the con-
tinuum. Owing to this inclusion, the total work of the internal stresses cannot be a single-valued function of
only the displacement distribution in the continuum, and hence, the internal stresses must be nonconserva-
tive, which indicates internal damping inherent in any continuum whether elastic or not. Only statically de-

forming continua may possess conservative internal stresses.
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1. CONSISTENCY OF ELASTICITY WITH DAMPING

The demarcation of science from metaphysics can be crystallized as follows /1/: “Every scientific theory
starts from a set of hypotheses, which are suggested by our observations, but represent an idealization of
them. The theory is then tested by checking the predictions deduced from these hypotheses against experi-
ment. When persistent discrepancies are found, we try to modify the hypotheses to restore the agreement
with observation. If many such tests are made and no serious disagreement emerges, then the hypotheses
gradually acquire the status of ‘laws of nature’. When results that apparently contradict well-established laws
appear, as they often do, we tend to look for other possible explanations-for simplifying approximations we
have made that may be wrong, or neglected effects that may be significant.” On this basis therefore, the dis-
crepancy between the classical hypothesis that “elastic means an absence of damping forces™ /2/ and the ob-
servation of damping and hysteresis loops in elastic bodies /3/ calls for a reasonable explanation. That is, we
need to carefully investigate and re-examine whether or not the real nature of the stresses developed in the
continuum model of the elastic bodies is conservative.

As is well known, elasticity consists in a force-deformation or stress-strain relation, which allows a struc-
ture to recover its initial unstrained configuration, thereby excluding any residual strains, after removing the
applied loads /3/, /4/. In Sokolnikoff’s words: “A body is called elastic if it possesses the property of recov-
ering its original shape when the forces causing deformations are removed. The elastic property is character-
ized mathematically by certain functional relationships connecting forces and deformations.” /4/. A body is
therefore inelastic if it exhibits residual deformation (residual strains) after loading removal.

Bodies are modelled as continuous or discrete systems. In both models, elasticity, by its very definition,
does not impose any absence of damping forces, notwithstanding the classical hypothesis that “elastic means
an absence of damping forces” /2/. After all, if elastic meant absence of damping forces, then abruptly re-
moving all loads would lead an elastic system to an everlasting free undamped vibration, which cannot com-
ply with the classical definition of elasticity mentioned above (i.e. no strains after unloading). Besides, a lot
of engineering structures (e.g. buildings or bridges subject to earthquakes or winds, aircrafts subject to air
flow) can undergo damped vibrations with no residual strains after unloading. Such a structural behaviour
rather indicates that damping complies with elasticity and ‘elastic’ may be ‘damped’ as well as ‘inelastic’ is.

On the other hand, the hypothesis that ‘elastic’ means ‘undamped’ /2/ not only is arbitrary but also re-
quires that no damping surface tractions be applied to an elastic body. Indeed, owing to the classical bound-
ary stress conditions /5/, the internal elastic stresses at a point of the boundary surface of an elastic continuum
must equal the surface tractions applied at this point. So, if ‘elastic’ meant ‘undamped’, then the internal
elastic stresses could not include damping components, and hence, the surface tractions could not include
damping components either. That is, in the classical view, elasticity cannot comply with nonconservative
surface tractions, which implies that these two entities cannot coexist in nature. However, in nature, we can

realize nonconservative surface tractions (e.g. velocity-dependent wind surface tractions) applied to elastic
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bodies (i.e. bodies recovering their original shape after unloading), which indicates that nonconservative
stresses, and hence, damping, can comply with elasticity despite the classical hypothesis that ‘elastic’ means

‘undamped’.

2. CLASSICAL MODEL OF INTERNAL STRESSES

We shall first review the classical model of internal stresses in a continuum and specify the internal
stresses and their spatial derivatives, the total work of the internal stresses, the strain energy and the kinetic
energy are and how they are interrelated. Let us consider a deformable body as a continuum subjected to de-
formation by externally applied loads. Owing to the deformation of the whole body, an infinitesimal element
of the body deforms and also moves as if it were a rigid particle. Thus, the energy supplied by the deforma-
tion of the whole body to the infinitesimal element consists of two parts: the strain energy due to the defor-
mation of the element itself and the kinetic energy due to the motion of the element as a rigid particle /6/.

We now focus on the infinitesimal element assuming that its shape is an orthogonal parallelepiped for an
interior element, or an orthogonal triangular pyramid with base on the boundary surface of the body for a
boundary element, with dimensions dx,dy,dz /7/. Its interactions with the adjacent infinitesimal elements
as well as the surface loading externally applied to it in the case of a boundary element may be represented as
stresses acting on the boundary surface of the element, which are herein called inrternal stresses. The internal
stresses act in addition to possible body forces externally applied to the volume of the element. The total
work performed by the internal stresses acting on the infinitesimal element during the transition from the un-
strained configuration (i.e. the natural configuration with no deformation) of the body to its strained (de-
formed) configuration consists of two parts: The work of the balanced components of the internal stresses
and the work of the unbalanced components of the internal stresses.

The balanced components of the internal stresses of the infinitcsimal element, that is, the classical stresses

0,0, acting at the element’s three pairs of opposite sides with a zero resultant force, are

Oz Ty T

xx*¥) = Ty Tyzo Ty
exclusively responsible for the deformation of the infinitesimal clement, and their work equals the strain en-
ergy of the element. The unbalanced components of the internal stresses of the infinitesimal element, that is,

the internal-stress differences (o, /ox)dx, (ar}.x /ay) dy, (8., /0z)dz, ..., result in the internal body
Jorces 8o, [0x. Ot [y, Ot [0z,..., which together with the externally applied body forces are exclu-

sively responsible for the motion of the element as described by the classical differential equations of motion
13/
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where  0,,.,0,,,0.,,T,,,T),,T,. stand for the balanced components of the internal stresses acting on the

infinitesimal element, while 8o, /Ox, Oty / dy, 0r_, [0z, ... represent the internal body forces per unit of

volume of the infinitesimal element formed by  the unbalanced  components
(aaxx / 6x) dx, (aryx / 8y) dy, (Gt:x / az) dz,... of the internal stresses, X, Y, Z stand for the components
of the external body forces per unit of volume of the infinitesimal element along the x, y, z coordinate axes,

respectively, u,,u,,u, stand for the displacements of the infinitesimal element along the x, y, = coordinate

)l ’
axes, respectively, p stands for the mass density of the infinitesimal element.

From the above differential equations it follows /3/ that the sum of the work done by the internal body
forces 0o, [0x, Ot [Dy, Oty [0z, ... and the work done by the external body forces X, Y, Z equals the

kinetic energy of the infinitesimal element. As a consequence, the work done by the internal body forces (i.e.
the stress derivatives 9o, [0x, Oty / dy, 0t [0z,...) acting on an infinitesimal element exclusively con-

tributes to the formation of the infinitesimal element.
Within this frame, for either an infinitesimal element of a body or the entire body, the total work of the in-

ternal  stresses, the strain energy and the work done by the stress derivatives
00, [0x, Otyy [By, Oty [0z,... are interrelated as follows

Total work of int ernal stresses = strain energy + work of stress derivatives . )
It is emphasized that in many vibration problems only surface loads act on the structures. In this case,

Egs. (1) imply that the work done by the stress derivatives do,, /0x, Oty / dy, 9t [0z, ... coincides with

the kinetic energy of the body.

3. THE NOTION OF CONSERVATIVE FORCES AND STRESSES

Actually, a stress is but a surface force per unit area /3/, /4/, /8/, /9/. So, a stress at a point (i.e. at a side of
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an infinitesimal parallelepiped) is conservative as long as the surface force that results from the stress is con-
servative. In the classical theory /10/, /11/,/12/,/13/, /14/, an individual force is classified as conservative, if
its work done along any path of its application point is a single-valued function of only the positions of the
end points of the path, thereby being independent of the path and zero along any closed path.

Let us now consider a system of interacting mass points whose configuration deforms under a loading.
The deformation of the configuration consists in different displacements of the mass points around their equi-
librium positions (i.c. the positions defining the unstrained configuration), and can completely be described
by the displacement vectors of the mass points relative to their equilibrium positions /13/, /15/. As an effect

of the deformation, internal forces develop within the system. In line with the mentioned classical definition
of a conservative force, the resultant F, of the internal forces acting on the i mass point of the system is

classified as conservative, if its work I, done when the i mass point moves from its equilibrium position
with zero displacement vector up to a position with displacement vector u, is a single-valued function of

only the displacement vector u,, say W, (u ,) . This classical definition is mathematically expressed z;s 4,

/81, 13/

IF, -du, =17, (u,). for a conservative internal force F;, 3)
0

where w, is the integrand variable for the displacement vector u, of the i mass point.

Similarly, the total of the internal forces F; of the system, and hence, their column matrix F, can be
classified as conservative, if the sum W of the works of all internal forces F, done along the displacement
matrix U of the system (i.e. the displacements of the mass points of the system) is a single valued function
of only the displacement matrix U 710/, /13/. This classical definition is mathematically expressed as fol-

lows

u
j F'-dU=w (U) Jfor a conservative column matrix ¥ of int ernal forces, 4
0

where F is the column matrix of the internal forces acting on the mass points, U is the column matrix of
the displacements u;.u,....,uy of the mass points, U is the integrand variable for the displacement vector
u,w ( U) represents the sum of the works of the internal forces F; as a single-valued function of only the
displacement matrix U, T as an upper index denotes the transpose of the matrix indexed.

Within the frame of classical theory, by analogy with the conservative total of the internal forces /13/, the

total of the internal stresses in a continuum can be classified as conservative, if and only if their total work is
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a single-valued function of only the displacement distribution in the continuum. This latter condition means
that the balanced stress components Oxx10yy 022, Ty, Ty Ty, AL (x, y,:), which define the stress tensor

o(x.y.z:1), and the stress derivatives o, [0, Oty / dy, 9r_/0z...., which result from the unbal-
anced stress components (9o, /3x)dx, (ar}._t / ay)dy, (87 /0z)dz,... and define the internal body
forces at (x, y,:), perform works whose sum all over the continuum is a single-valued function of only the

displacement distribution in the continuum.

4. EQUALITY OF THE TOTAL WORK OF INTERNAL STRESSES
WITH THE WORK OF SURFACE TRACTIONS

By Newton’s third axiom of action and reaction, the internal stresses of two adjacent infinitesimal ele-
ments acting on their common boundary are equal with opposite directions, thereby performing zero total
work. And hence, the total work of the internal stresses all over the body equals the total work of the internal
stresses acting on the body’s boundary surface, which is not common boundary of adjacent clements /6/.
Thus, by virtue of the classical boundary stress conditions, i.e. equality of the internal stresses on a body’s
boundary surface with the surface tractions (that is to say, the external stresses) /5/, the total work of the in-
ternal stresses all over a body must equal the work of the surface tractions.

On this base therefore, the internal stresses developed all over a continuum can be classified as conserva-
tive if and only if the work of the surface tractions is a single-valued function of only the displacement distri-

bution in the continuum.

5. MATHEMATICAL PROOF OF THE NONCONSERVATIVE
NATURE OF THE INTERNAL STRESSES

As exposed in par. 3, for conservative internal stresses in a continuum, the sum of the works performed
by the balanced stress components 0,,,0,,,0..,Ty),,T);,T,. and the stress  derivatives

do,, /0, 01, [dy, Or., [0z,... all over the continuum should be a single valued function of only the dis-
placement distribution in the continuum. However, the above single-valuedness cannot actually be satisfied,

which proves that the internal stresses are nonconservative, thereby including damping components.

Indeed, according to the classical model of internal stresses exposed in section 2, the displacement at each
point of a continuum depends only on the history of the external body forces X, Y, Z and the stress deriva-

tives 00, /0x, 1,y [y, 1., [0z,... acting at the point and governing the motion of the point via Eqs.

(1), and not on the balanced stress components Oxx 1031022, Txy, Ty, Ty At the point. After all, the balanced
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stresses acting on the boundary of the infinitesimal element surrounding the point build up a zero resultant
force, which cannot influence the motion (and hence, the displacement) of the point.

Let us now consider a continuum subjected to a given history of surface tractions T,,T,, T, and external
body forces X, Y. Z , which, owing to the linearity of the differential equations of motion (1) and the bound-

ary stress conditions, implies a unique history of internal stresses o,,,0.,,,0 /7/, and hence, a

»w? :z'txy’ry:'rxz
unique history of stress derivatives do__/0x, or,, /0y, Or. /0z,..., all over the continuum. The histories
q xx yx [ O =x

of the external body forces X,Y,Z and the stress derivatives 0o, [0x, Ot,, [0y, Or_, [0z,... by virtue
of Egs. (1) imply a unique history of accelerations (iiJr Wy, iiz) , thereby implying a unique history of dis-
placements (ux, u,. u:) , all over the continuum.

If we also applied to the continuum a parallel history of arbitrary additional surface tractions
AT, .AT,. AT, in combination with a parallel history of such additional external body forces AX,AY,AZ

that by means of Egs. (1) counterbalance any developing additional stress derivatives

A(do,, [3x). A(or,, [oy). A(dr,, [0z). ..., viz.

A(B0 [0x) + A (8r,, [3y) + A (01, /02) + AX =0

A(ory fox)+ A (00, /3y) +A(or,, jo-)+AY =0 ¢ (5)

A(or. [ox)+A (6r},_./8y) +A(0o_, [0z)+AZ =0

then, we could retain the same history of accelerations, thereby retaining the same history of displacements,
as without the parallel history of additional surface tractions and additional external body forces. This possi-
bility proves that the same history of displacements in a continuum can be related to different histories of sur-
face tractions, and hence, to different works of surface tractions. Thus, the work of the surface tractions of
the continuum, and hence, the total work of the internal stresses all over the continuum, is not a single-valued
function of only the displacement distribution in the continuum. On this basis therefore, the internal stresses

all over a continuum, whether elastic or not, must be nonconservative.

6. STATIC DEFORMATION AS A PREREQUISITE OF CONSERVATIVE INTERNAL STRESSES
Actually, there is a unique case where the above mathematical proof of nonconservative internal stresses

cannot apply, thereby allowing of conservative internal stresses: This case, which represents a necessary

condition for conservative internal stresses in a continuum, consists in restricting the differential equations of
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motion (1) to

or,,
00 , T P,y
ox dy oz
o, 0 or.,
LAk - (6)
Ox oy oz
or,.
O 2,992 L 70
Ox oy 0z )

which describe the static (i.e. motionless) deformation of a nonmassles (i.e. with p #0) continuum. As is

well known, any motionless deformation results in zero displacements within finite time and in finite dis-
placements only after infinite time. Besides, these finite displacements must be indefinite, which puts into
doubt that the same displacements may be derived from the same zero accelerations corresponding to differ-
ent loadings, as in section 5, thereby allowing the internal stresses to be conservative. On this basis therefore,
a necessary condition for a nonmassless continuum to develop conservative internal stresses is static defor-
mation.

By the necessary condition (6) for conservative internal stresses, the stress derivatives
00,y [0x, Ot [0y, Ot [Oz,... of a continuum exclusively subjected to surface tractions, and hence, to

zero external body forces X =} = Z =0, must obey the equations

oo or,, or.,

Xy ——+ =0

Ox Oy 0z
or,, 0o, Or.

Y=o (7
Ox dy 0z

or,. Oty Oo..
+ +—=
Ox oy oz

Equations (7) imply that the work of the stress derivatives 00, [0x, Ot,, [y, Ot [0z, ... all over the

continuum is zero, which, by virtue of Eq. (2), results in

Total work of conservative int ernal stresses = strain energy, for X=Y=7Z=0. 3)

It is noticed that Eqs. (7) and (8) are always valid for the massless springs that connect the rigid lumped
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masses of a discrete system, since these springs constitute continua with zero mass density p =0 and zero

external body forces X =Y =2Z2=0.

7. CRITICAL POINTS ON THE CLASSICAL VIEW OF ELASTIC STRESSES

For an elastic continuum obeying the generalized Hooke’s law, the internal stresses at a point are linear

functions of only the strains at the point /3/, /7/, which can be expressed in the matrix formulation /15/
o(x.y.z:t)=x(x,y.z)-e(x.y.2;1), )

where a(x, y,z,'t), s(x, y,z,'t) and K(x. y,z) stand for the stress tensor as the

column matrix of the balanced stress components o, 10500023 T Ty Ty the strain tensor as the column

J<

matrix of the strains ExvrEyyrEzz s Yayr Pz o Yz s and the square matrix of constant elastic coefficients, respec-
tively, at the point (x ¥, ") of the elastic continuum.

The strains ¢

xx€3y1€221 Yxy+Vyz Py At @ point are defined as the space derivatives of the displacement

distribution at the point, thereby being single-valued functions of the displacement distribution in the contin-

uum. By the generalized Hooke’s law (9), the same must hold true for the balanced stress components

04,0430, Ty, Ty Ty . And besides, owing to the lincarity of the law, the work done by all balanced

stress components ¢,.,0,,,,0

200 Oy Oz, Ty Ty Ty of a point along its strains ¢, €335 €222Yxy 1 Vyz» Yz PIOVES 1O be

a single valued function of the strains /5/, and hence, of the displacement distribution. Consequently, the to-
tal work of the balanced stress components 0103300220y, Ty Ty for all infinitesimal elements of an
clastic continuum, i.e. the strain energy of the continuum, must be a single-valued function of the strains /5/,
and hence, of the displacement distribution in the continuum. Accordingly, in view of the notion of conser-
vative internal stresses discussed in section 3, the elastic balanced stress components
Ory 04300z Ty Ty, Ty MuSt be conservative. This latter, on account of the nonconservative nature of the
internal stresses shown in section 5, leads to the interesting conclusion that the stress derivatives
00, [0x, Oty [Oy. 0., [Oz,... of an elastic continuum obeying the generalized Hooke's law (9) must be

nonconservative.
Indeed. each of the stress derivatives 9o,y /0x, Oty [dy. 01, /0z,... at a point does work along any

displacement component of the point that cannot be expressed in terms of only the stress derivative or the

displacement component, because these two latter magnitudes at a point are not single-valued functions of
each other. Thus, the total work of the stress derivatives da,, /0x, 0t,, [dy, Or.,/0z,... all over an elas-

tic continuum cannot be a single-valued function of the displacement distribution in the continuum, which
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verifies that the stress derivatives o, /Ox, Oz, [dy, Or,, [0z, ... are nonconservative.

It is worth noting that the necessary condition (8) for conservative internal stresses in a continuum exclu-
sively subjected to surface tractions and the classical definition of conservative stresses [cf section 3/ require
that the strajn energy become a single-valued function of only the displacement distribution in the continuum.
This requirement, as shown above, is satisfied by the generalized Hooke’s law (9), which justifies why the

law leads to conservative internal stresses on the assumption of zero work of the stress derivatives
da,, [0x, Oty /ay, Ot [0,..., as expressed by either of Egs. (7) and (8). Only on this restricted as-

sumption can stand the validity of the classical view that the generalized Hooke’s law (9) leads to conserva-

tive internal stresses.

8. PRINCIPLE OF VIRTUAL WORK, ENERGY LOSSES AND
THE FIRST THERMODYNAMIC AXIOM

There is a widely-spread illusion that on account of the principle of virtual work (i.e. the work of external
body forces and surface tractions equals the sum of the corresponding strain energy and kinetic energy) the
deformation of a continuum is inconsistent with energy losses, and hence, with damping, which seems to
contradict our analysis. Actually, the forces and stresses in any continuum undergoing dynamic deformation,
whether elastic or not, are ruled by Newton’s second axiom irrespective of their conservative or nonconserva-
tive character. And the energy equivalent of Newton’s second axiom is the principle of virtual work ex-
pressed as below /15/

8W (t)=38U,, (1) + J]I p(x.y.2)-du” (x,y,2:0)-i(x,y,z1)-dV, 10)

where p(x, y,z) stands for the mass density at the point (x, y,::) of the system. ¥ stands for the total

volume of the system. T as an upper index stands for the operator of transposing a matrix. & stands for the
operator of virtual variations. W (t) , oU,, (t) and H-L p(x, y,z) -Su’” (x, y.:,'t) . ii(x, ¥, :,'t) -dV

stand for the virtual work of the external body forces and surface tractions, the virtual strain energy and the

virtual kinetic energy, respectively, all over the continuum.

By definition, the virtual strain energy 6U,, (t) equals /15/

8U,, ()= ﬂ.[/&:r (x.y.z:0)-0(x.y.z:0)-dV, an
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and the virtual work 81V (t) equals /15/
rYi4 (t) = H ,SuT (x,y, :;l) -X (x, ¥, :;t) -dV + IL-S“T (x,y, :,-r) . T(x,y, ::;t) -dS, (12)

with X(x, . :;t) and T (x. ¥, ::;t) denoting the column matrix of external body forces X, Y, Z ata point

of the continuum and the column matrix of surface tractions (i.c. external stresses) at a point of the boundary
surface S of the continuum, respectively, and u(x, y,::,'t), s(x,)',:;t) , c(x,y.::,'t) exclusive resulting
from these loads.

The principle of virtual work (10) applies to any continuum ruled by Newton’s second axiom and small
deformations and exclusively refers to the action of external body forces and surface tractions /3/. It can
serve as the complete energy balance underlying the dynamic behaviour of any continuum subjected to ex-
ternal body forces and surface tractions, on the assumption that no energy form other than that of the work of
external body forces and surface tractions can enter or escape from the continuum. Thus, the principle of vir-
tual work (10) allows the study of the dynamic behaviour of the continuum without any recourse to heat
losses of the continuum.

Surprisingly, the energy balance expressed by the principle of virtual work (10) is conventionally deemed
to be inconsistent with energy losses, and hence, with damping. This is due to the incorrect view of energy
losses as a difference between the left-hand and the right-hand members of the principle of virtual work (10),
despite that the equality of the two members results from Newton’s second axiom, which also holds true for
nonconservative forces and stresses. In fact, the energy losses represent but the differences between the val-
ues of the work done by the internal stresses, which, recalling par. 4, equal the differences between the values
of the work done by the surface tractions, along loading and unloading the continuum. The equality of dif-
ferences assures that the energy losses related to the work of internal stresses escape from the continuum in
the form of work of surface tractions. In short, the energy losses are due to the hysteresis loops caused by the
multi-valuedness of the work of internal stresses, and hence, recalling section 4, of the work of surface trac-
tions, for given strains or displacements. On this basis therefore, the principle of virtual work (10) can be
faced as a particular form of the first thermodynamic axiom whose both members can include energy losses
or gains in the form of work of stresses instead of heat losses or gains.

The first thermodynamic axiom introduces two additional classical magnitudes:

1. The heat Q(t) externally supplied to the natural state of the continuum until time t .

2. The internal energy @ (I) of the continuum, which is the work of all internal stresses due to the external

body forces, the surface tractions and the temperature differences imposed on the temperature of the natu-
ral state of the continuum by the supplied heat. Then, the first thermodynamic axiom can be expressed by

the formula /3/
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3W (£)+80(t)=80(1), (13)
which compared with the principle of virtual work (10) implies the equality

30 (1)=80(1)+8U,, (1) + HL p(x.y.z)-8u” (x,y,2:1)- ii(x,y.z;1)-dV . (14)

It is obvious that the first thermodynamic axiom (13) is but a superposition of the principle of virtual
work (10) and the equality (14).

Two interesting corollaries can be deduced from equations (10) and (14):

= 1. T odhd ‘U fodd .
when 52020 4 80(1)=8U,, (1) + [[[ p(x.7.2)-80" (x.3,5:0)-ii(x.y,5:1)-a¥
the first thermodynamic axiom (13) reduces to the principle of virtual work (10).

~1. T e -u o .
When 8Q(t)¢0,then 8@(t)=#8Um (t)+ HLp(x,y,-) Su (x,y,..,t) u(x,y,-,t) dv

, and

, which

means that the internal energy 8@(t) includes an equal to 30 (t) total of strain and kinetic energy done

by  thermal stresses and  strains, in addition to the mechanical energy

38U, (1)+ HJ; p(x.y,z)- su’ (x.y,z8)-ii(x,y,z;1)-dV

Hence, any heat exchanges between the

continuum and its external environment will have equal thermal effects on the internal energy @(t) of
the continuum, thereby resulting in thermal differences from the stresses and strains determined exclu-
sively within the frame of the principle of virtual work (10). In studying these thermal effects and the re-

sulting stress and strain differences of the continuum consists the role of the first thermodynamic axiom

(13).

All in all, the principle of virtual work (10) operates just like the first thermodynamic axiom (13) pro-
vided that energy losses or gains in the form of work of stresses will substitute for the heat losses or gains of

the first thermodynamic axiom (13). From this viewpoint, the principle of virtual work (10) is fully consis-

tent with damping.

9. CONCLUSIONS

The total work of the internal stresses developed in a continuum subjected to dynamic loading, whether

elastic or not, proves to be not a single-valued function of only the displacement distribution all over the con-

405



Pol. 19, No 6, 2009 Nonconservative Nature of the Stresses Developed in a Continuum

tinuum, which means that the internal stresses are nonconservative, thereby including damping components.
This indicatcs damping as an inherent effect in the continuum model of dynamics, whether elastic or not.
Actually, the total work of the internal stresses of a continuum does not coincide with the strain energy of

the continuum, but, instcad, cquals the sum of the strain energy of the continuum plus the work of the internal
body forces formed by the stress derivatives 00, [0x, Ot [y, Ot [0z...., with this latter work exclu-

sively contributing to the formation of the kinetic energy of the continuum. And what implies the noncon-

servative nature of the internal stresses of an elastic continuum undergoing a dynamical deformation is that,
in spitc of the strain cnergy, the total work of the stress derivatives 0o, /0x, Oty [dy, 1., [0z, ... cannot

be a single-valued function of only the displacement distribution all over the continuum.
Conservative internal stresses can only develop for static (i.e. motionless) deformation of a nonmassless
continuum. The static deformation for the case of a continuum exclusively subjected to surface tractions im-

plies zero work of stress derivatives.
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