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ABSTRACT

The present paper includes new results in the following scopes: development of thermodynamically
correct mathematical models of damageable thermoclastoviscoplastic medium (microfracture); development
of methods for determination of “nonstandard” constants of medium models, connected with microfracture of

material; numerical investigation of hydraulic fracturing of petroleum layers.

1. INTRODUCTION

Thermomechanical processes, which proceed in deformable solids under intensive dynamic loading,
consist of mechanical, thermal and structural ones, which are linked. The structural processes involve
formation, motion and interaction of defects in metallic crystals, phasc transitions, breaking of bonds
between molecules in polymers, accumulation of micro structural damages (pores, cracks), etc. Irreversible
deformations, zones of adiabatic shear microfractures are caused by these processes. Dynamic fracture is a
complicated multistage process, which includes appearance, evolution and confluence of microdefects and
formation of embryonic microcracks, pores that can grow to the break-up of bodies with formation of free
surfaces.

This paper presents a 2D problem of dynamical deforming and destruction of an oil-holding layer in
hydraulic fracturing. The governing equations of the state of the layer were taken from the model of
thermoviscoelastoplastic media with micro-defects (micro-pores) /1/, filled with another phase: liquid or gas.
The micropores can change their size in the process of dynamical deforming. They can expand or collapse.
The model was created using the main thermodynamic principles and therefore it conforms to all the basic
laws of mechanics and thermodynamics. All the processes — deformation, microdamaging, heating — are

linked with each other. The criterion of destruction is based on critical level of specific dissipated energy and
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the numerical method for the Lagrangean approach to hydraulic fracturing problem using explicit
distinguishing of the fracture slopes and adaptive grid. The similar type models and methods were also

presented in /2-7/.

2. STATEMENT OF HYDRAULIC FRACTURING PROBLEM

One of the most effective methods for enhancing oil recovery is hydraulic fracturing. Hydraulic
fracturing is a complex scientific and technological problem. The major part of the scientific component of
the problem relates to continua mechanics.

The hydraulic fracturing problem is very close to the problem of low velocity penetration of a jet
into a dense medium from the point of view of physical and geometrical statement of the problem. At present
the problems of penetration are among the best developed. The recent book on the problem [8] published in
Russia contains an extensive bibliography. Thus, hydraulic fracturing problems can be solved using
mathematical models and numerical methods developed in mechanics of penetration and fracture.

Let us consider the following 2D test problem of an oil layer hydraulic fracturing. There is a

rectangular region ABCD sized
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Fig. 1: Scheme for a two-dimensional fracturing problem

Lx X Ly , and the Descartes coordinates system (x,y); the ordinates axis is directed upwards along the

well, the abscises axis is horizontal (Figure 1). The parameters do not depend on the third co-ordinate Z
orthogonal to the XY -plane. The region KFN (fig. 1) is a hollow originated after perforation of the layer, e.g.

by means of a cumulative explosive device. The line AD is the external boundary of the well area.
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At the first instance £ = () the fracturing liquid starts to be pumped into KFN from the well stem. The Fig. 1
shows the region KLPMN filled with the liquid pumped by some moment of time f = ;. The region LFMP

is a hollow situated between the pumped liquid and the broken layer.

3. MODELS OF MECHANICS OF CONTINUAL FRACTURE

Mathematically the problem is formulated as follows. The equations of mass, momentum and energy
balance in the layer region ABCDNMFIKA take the form:

) do. oo, 0o,
Pog g pi=202y 2%, g %0 00y, 0
p ox oy ox oy
pe,T+a,6T =8,& +8,6h +25 éb +5_é0 + Add® 2

The equations describing damageable (porous) thermoelastoplastic media are the following:

6= Ko(éxx +é, —a,,T—%(bgg) 3)

(S5 )" +ASy=2u,8r €= 55~ Y 61480 8o =—(Sic S ) 8583 (2/3)-Y20(0):
Y(o)=ac+p. S;= ,-j/(l—a)),a =o/(l-w)

Here, the superscript V denotes Yaomann’s temporal derivative applied to tensor components /8/.

The kinetic equation describing the evolution of the damage parameter @ is the following:

o ot
—=———H(oc—-0 )+ H(a -0), @
©  4n 4770

ot =-(2/3)- Yy logw- po(w,/w)t, o™ =(2/3)-¥y logw— po(w, /)"

Here, YO is the plasticity limit under material stretching, @, is the initial porosity, P, is the initial

pressure in pores (“rock layer pressure), k is the adiabatic exponent of the media filling the pores, 77, is

the dynamic viscosity of material.
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The criterion of the destruction beginning (that is appearance of new free surfaces within the material)
uses the principle of critical value of specific dissipated energy, which has for considered problem following
form /2/:

D= :j%(s;g'; +Ad®)dt =D, (5)

Thus, the model (2) - (4) is similar to the model of porous thermoviscoelastoplastic medium which was
worked out for mathematical describing of dynamic deformation and fracture of solid fuel under impact
loading /1/.

To determine the direction of a crack, we use the following procedure.

We seek the direction of extreme normal and tangential stresses in the cell, where the criterion of limited
specific dissipation energy (5) took place: [ > D, . The stress vector for the given square with normal unit

— 2 2
vector n(nx,ny) (ny + nj, = )

On(OnesOny) (Opx = Oxely +Oxylyy, Opy = Oxylly + 043,11, )
is split into normal O, and tangential 0", components. It is obvious that

— 2 2 - 2
o,=6,i=0.n,+20, nn +0,n,, Or =y0,6,~0p.

Denoting 77, = COS 0, n,= sin @, we can write 0, and O . as following:

0',,=0'xxcosz0+0'xysin29+0'yysin20,a,=|0.5-(axx— xy) SIN20 + 0y, cos20}.

Then, the components of normal dircction 7 (nx,ny) are found, where maximums of O°, and O, take

place, and the corresponding maximal values are obtained: O :,n Mand O tm ™ . After that, the Davidenkov —

Friedman criterion is applied /8/:

max

1. If o, /O'B > G,‘,n ax / Tp , then the “ separation” damage took place, and the direction of the

separation fracture is determined by the normal direction to the square where O :ln ™ took place.

max

2. If o, / op <o‘,',n ax /TB , then the “shear” damage took place and the direction of the shear

fracture is determined by the normal direction to the square where 0';“ X took place.

Reconstruction of a grid is described in /8/.
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max

1. I o, / op > 0':,“ ax / Tp, then the “ separation” damage took place, and the direction of the

separation fracture is determined by the normal direction to the square where O :,n ™ took place.
ax N
2. If cr,r,n / opg < o_'rln ax / Tp, then the “shear” damage took place and the direction of the shear

fracture is determined by the normal direction to the square where O';n X took place.

Reconstruction of a grid is described in /8/.

The initial conditions at moment £ = 0 are: =v =0, P =Py S,-j =0, 0=—p,, T=];).

The boundary conditions are the following.

At the boundaries AB and CD: 80',]/6)1:0, a%yzO, a%y:()'

At the boundary BC: 00 ;; Gx:O, oo, =0, or/ =().
y Oox ox

At the boundary AK and ND: % > 0, p¥ =72/ + aa/_, T=T,.

To simplify the test problem, it is assumed, that the pumped liquid front LPM is flat and moves at a given
speed V' =V (t); the pressure at the boundaries KL and MN is also assumed to be P = P(t). The

simplest case is P= PO =const, V = V(t ) , where the velocity has a linear decrease.

4. METHODS FOR DETERMINATION OF MATERIAL CONSTANTS OF DAMAGEABLE
MEDIA

Models for damageable media contain some “nonstandard™ constants, connected with damage parameters
and subjected to determination. For example, the models with damage parameters /6/ contain seven such
constants. To determine these constants under dynamical loading we use a method, based on comparing of
the results of physical and numerical experiments of the problem of flat collision of two plates with spallation
destruction in a plate-target /9/. Note, that nowadays, experiments with spallation destruction are the most
informative and detailed for constructing dynamic constitutive equations for materials under high parameters.

For determining these “nonstandard” constants under quasidynamical deforming we use the method,
based on numerical and physical modeling of processes of quasidynamical twisting and tension of thin-

walled tubular samples with destruction and with following mathematical data handing /5/.
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For the model of porous medium /1/ intended for describing behavior of solid fuels and explosive under
impact loading, we uscd the problem of compression of a spherical microscopical pore filled with gas
medium /10/.

5. RESULTS OF CALCULATIONS

To solve the problem of hydraulic fracture development, we suggest the finite difference scheme with
Lagrangean approach. the method used by M. L. Wilkins /8/.

The numerical modelling of fracturing could be applied in several ways. Using the continuous approach
(which involves the model of damaged media with pores presented above). we calculate its stressed and
deformed state assuming development microdamages and accumulation. All this results reducing the
durability of rock material.

In many practical cases, which scope the hydraulic problem, it is necessary to monitor the details of
origination of damage processes and monitor the development of explicit motion of breaches in continuity,
their interaction and joining. There are two approaches for this: cither explicit distinguishing the boundaries
of continuity violation, or using discrete particles instead of broken material. Each particle has its mass, finite
size, momentum. The particles interact with each other and with the continuous region in accordance with a
given rule /8/. It is worth to notice that the second approach is not an alternative to the first one but rather its
development.

The most effective method of explicit distinguishing the boundaries of continuity violation is based on
local reconstruction of the Lagrangean grid in the vicinity of the fracture origination /8/. If a fracture
originates in a given cell of the grid. then two banks of the fracture are built instead of it. Afterwards the cell
is excluded from calculations. Its mass, momentum and other characteristics are shared among the
neighbouring cells.

The boundary conditions of stress (free surface or contact surface) are set on the borders of the fracture
(depending on situation) /8/. If the borders of the fracture diverge. then the stress free conditions are set on, if
they collapse, then the algorithm describing the contact surface is applied similar to one described in /8/.

The results of numerical modelling of the layer using hydraulic fracturing were obtained for the following
governing parameters: L, =2.75m, L, =2.145m: Ly =0.55m. d =0.055m - the initial length
and height of the perforated arca: p, = 2000kg /m’; 1y =16.5GPa, E=429 GPa, v=0.3,
7, =100Pa-s. A=1500Pu-s. @a=-009, B=004GPa, k=14; D, =3334.J/kg:
Po=30MPu. p, =90MPu:p, = 1000kg/m’, v, =10m/s- density and initial velocity of the

pumped fluid. With time, this velocity decreases.
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T -

Fig. 2: Dependence of the hydraulic fracture length Fig. 3: Deformed mesh and distribution of damage
X/ Xyontimet parameter @ (porosity)

Figures 4, 5 show the hydraulic fracture propagation and the region of plasticity (horizontal case) at the
different moment of time. Near the tip of the crack the region of plasticity looks like the “rabbit’s ears”.

EE - Plasticity [ - fluid B - Plasticity

Figs. 4: Regions with active plastic deformations Figs. 5: Regions with active plastic deformations

Figures 6, 7, 8 show the hydraulic fracture propagation and distribution of damage parameter @ in the

following cases. The Figures 6, 7 describe the hydraulic fracture propagation and distribution of damage
parameter @ with the initial damage parameter @ =0.1. Besides, in this case we first set some direction

where the damage parameter @ =0.4 .

) S A N o ke e e e 1

@,=0.1 M -
Fig. 6: The beginning configuration and the Fig. 7: Deformed mesh and distribution of damage
beginning distribution of damage parameter parameter @ (porosity)
@ (porosity)
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Figure 8 describes the hydraulic fracture propagation and distribution of damage parameter @ too but with
the initial damage parameter @ =0.05. Besides, in this case we first set some direction where the damage

parameter @ =0.4 .

Ll e S A R N o
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Fig. 8: Deformed mesh and distribution of damage parameter @ (porosity)

6. CONCLUSIONS

The following conclusions could be derived from those results:

1. For the expanding fracture, there are vivid regions of high plastic deformations near its pit (so-called
“rabbit’s ears™). Significant growth of the damage paramcter @ takes place within those regions.

2. The level of the critical dissipation D, influences very much on the fracture expansion. Therefore, it

is significant to make special experiments to determine this parameter value for various materials,

which could be present in an oil or gas host rock layer.

The following aspects of hydraulic fracturing problem are being studied:
1. Dynamical behavior of the tip of a hydraulic fracture in an elastoplastic material.

2. The influence of the pre-existing fracture network on hydraulic fracture propagation.

3. Investigation of curved hydraulic fracture propagation.
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