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ABSTRACT

This short note addresses the following question: Can the same physical theory be successfully applied to
model phenomena and processes varying from the nano to the mega size-scale? And if so, what are the
necessary modifications that need to be introduced? A partial answer is given here within the framework of
continuum mechanics provided that a stress quantization procedure is considered. It has recently been shown
that such an approach may successfully be utilized to justify the discrepancies emerging from actual on-
silicon experiments in comparison with related model predictions based on standard continuum approaches.
Two examples, on the smallest and largest spherical object existing on our planet, i.e. a fullerene molecule
(having a radius of a few nanometers) and the Earth itself (having a radius of a few megameters), are

discussed spanning a length size spectrum of ~15 orders of magnitude.

1. INTRODUCTION

Continuum theories, such as classical elasticity, are not capable of treating objects spanning several
orders of magnitude in size, such as the long-known planet Earth and the recently discovered fullerene
molecule which span length scales differing by 15 orders of magnitude. The simplest indication in support of
this claim is to imagine a linear elastic plate containing a hole and subjected to a far field stress. Obviously,

the strength of the plate will depend on the size of the hole, thus a hole-size-effect on the plate strength is

31



vol. 15, No.1, cUY £ ransition jrom INQRO-TO-MELFU-NMECHUANICS. ROIE Uf OIFESS LJHariiiuion

expected. In passing, we note that “holes” are common both in geotechnical and mining engineering on the
Earth scale, as well as in MEMS/NEMS nanoengineering applications on the Fullerene scale. Since elasticity
does not possess an internal characteristic material length one can casily conclude, without making any
calculation, that this prediction for the plate strength will erroncously be hole-size independent, a fact only
recently attended by the experimental literature. In other words, the absence of an internal characteristic
length disables such a continuum theory from discriminating between “small” and “large™ holes. In fact, by
conventionally assuming that failure of the plate occurs when the maximum stress Gy, reaches the

theoretical material strength G, , the corresponding failure stress is predicted to be oy = oy, /S. , where S

>
is the stress-concentration factor at the hole perimeter (e.g., S,= 3 for uniaxial load, S.= 2 for uniform
biaxial load, S.= 4 for pure shear, see /1/).

Modifications of linear elasticity to allow for additional “stretching” and “rotational” degrees of freedom
for the material point “mimicking™ the translation and rotation of the atomic bonds have been proposed in the
literature starting with the works of Cauchy and Voigt in the 18™ century, continuing with the celebrated
work of brothers Cosserat in 1906, and concluding with the works of Truesdell, Toupin, Rivlin and Mindlin
(for a historical account one can consult, for example, the review by Altan and Aifantis /2/), among others,
half a century later. Despite their mathematical rigor and elegance these theories did not make it possible to
dispense with elastic singularities at crack tips, even though a large number of phenomenological constants
were used. Moreover, the complexity of the associated boundary conditions has prevented the derivation of
easy-to-use results to describe, for example, size effects. A simplified gradient clasticity theory was proposed
by the second author in 1992 /3/ involving only one extra coefficicnt (commonly known as gradient
cocfficient, the square root of which was identified with the dominant internal length of the underlying elastic
microstructure). Moreover, solutions of boundary value problems of this gradient elasticity model (departing
from the classical Hooke’s elastic model by only one term involving the Laplacian of the Hookean stress)
could be reduced to solutions of an inhomogencous Helmholtz equation with the source term being the
solution of the corresponding classical elasticity boundary value problem. Elastic singularities from
dislocation lines and crack tips were readily eliminated by this model and size eftects were conveniently
interpreted (see, for example /4,5/). In particular, size effects for hollowed specimens are discussed in two
accompanying papers contained in this Journal’s issue /6,7/. For this reason, we are not elaborating further on
gradient elasticity in this short note, but we describe briefly an alternative approach, namely, the so-called
“quantized elasticity” approach for discussing scale effects.

Quantized elasticity could simply be formulated from its classical continuum counterpart by substituting
the stress ¢ with its mean value on a quantum of volume a’ (or surface a2, or length a), i.e., c— G = (o)ag ,
recovering Classical Elasticity in the limit of a vanishing quantization (i.e. a - 0, correspondence principle).
The term “quantized” is here simply used as a synonym of “discrete”, for consistency with the literature /8,
9/. It is clear that such a simple extension automatically includes a characteristic length, i.e. a. Returning to

the example of the perforated plate, this extension allows us to discriminate between a small (radius smaller
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than a) or large (radius larger than a) hole. In addition, this new paramecter a is directly related to the discrete
internal structure of the material at small size-scales (e.g. atoms /9/) or, in general, to a characteristic length
defining the departure from homogeneity, at larger size-scales (c.g. grains, inclusions and so on). In the
fracture mechanics community this idea has already been successfully applied. In particular, Linear Elastic
Fracture Mechanics (LEFM /10/) has recently been extended by the first author by removing the hypothesis
of the continuous crack propagation, by using Quantized Fracture Mechanics (QFM /9/), as a generalization
of previous nonlocal approaches /8, 11/. According to this view, instead of the local stress the corresponding
force acting on a fracture quantum of length a, or equivalently the mean value of the stress o along it, has to
be considered in fracture phenomena, namely ¢ — o° = (c)a .

This stress quantization is the key for removing the discrepancies between classical elasticity-based
theory and actual on-silicon experiments, as we are going to demonstrate below for completely different size-

scales.

2. NANOSCALE

Consider a fullerene /12/, of radius R and thickness & (~0.34 nm for carbon) subjected to an internal
pressure p; such a pressure will cause a stretching on its wall equal to o = pR/(23), as concluded from the

equilibrium requirements imposed on half of this spherical shell structure. Assume the presence on the wall
of a nano-hole of radius r << R (e.g. an atomic vacancy cluster). According to classical elasticity theory, the
circumferential stress field around the hole is o =<)'(l+r2 / x2) /1/, where x 2r is the radial coordinate

starting from the hole center. Setting Oypmay =0y (x=1)=20=0y, the failure stress is predicted to be
of =0y, /S With S =2, that is the related stress-concentration in the vicinity of the hole. On the other
hand, by applying a quantized fracture criterion /8/, i.e., by setting cr;, =(1/a) Ir”a oy (x)dx =oy, , we

deduce the following failure stress oy (or failure pressure pr ~ 20¢8/R ):

c S._Scr/a+l

7 rfa+l

of (r/a) = Q)]

th .
Se
with S.= 2. Eq. (1) implies of /oy, —1/S; only for r/a — w, i.e. vanishing quantization or large holes.
[Note that Eq. (1) does not consider defect self-interactions, i.e. r << R)]. On the other hand, for r/fa >0,
o¢/om — 1, i.e. holes with vanishing size do not affect the structural strength, as expected. Computational
researchers /13, 14/ performed quantum mechanical calculations using density functional theory,
semiempirical methods and molecular mechanics to explore the role of vacancy defects on the fracture of

carbon fullerene nanotubes /12/ under tension. Their simulations can be compared with Eq. (1) by
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considering S.= 3 (uniaxial tension, for which the exact solution is reported in /9/), since we have assumed R

>> r, thus neglecting the elastic energy associated to the curvature for both cases. Eq. (1) closely describes
their strength predictions, computed for (50,0) (100,0) and (29,29) carbon nanotubes containing nano-holes

of six different sizes. In fact, Eq. (1) with a = 0.25 nm or a = | nm corresponds to two curves basically

capable of enveloping all their results based on the above mentioned atomistic simulations (see Figure 1).

Note that such fracture quanta are comparable with the distance between two adjacent chemical bonds

(broken during carbon fracture), confirming a relation between a and the internal structure of the material.

Thus, the agreement between the quantized approach and the on-silicon experiments is remarkable,

justifying, at the same time, the deviation from the standard prediction (1/3) of continuum classical elasticity.
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Fig. 1: Atomistic simulations [13, 14] interpreted here by assuming a stress quantization (Eq. (1) with a =
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0.25 nm and a = 1 nm, respectively). Note that classical elasticity (i.e. the continuum counterpart of
the “quantized” approach) would trivially yield a straight horizontal line at 1/3, independently of the

hole-size. Thus, the role of the stress quantization is crucial.



3. MEGASCALE

Next, let us abandon fracture mechanics to consider the coefficient of geostatic stress kg, i.e. the ratio

between the horizontal and vertical geostatic stresses; a geophysical parameter fundamental in the tunnelling
design /15/. This problem has recently been considered by Efremidis and Aifantis /16/ through the use of
gradient elasticity to explain the departure of this ratio from classical elasticity predictions, but in accordance
with existing, even though scattered, experimental measurements. The vertical pressure at a depth z is given
by yz , where y is the specific weight of the Earth’s crust. Thus, the horizontal stress is given, according to

linear elastic isotropic laws of continuum elasticity (see, for example, /1/) by oy = v/ ((1 —v)yz) , where v
is the Poisson’s ratio. Consequently the geostatic ratio kg = oy /(y2) = v/(l —v) is in the range 0.3-0.5 for

rocks. In contrast to this straightforward prediction, and as a consequence of extensive experimental work
/15/, the coefficient of geostatic stress was observed to obey an empirical law of the form k ~kg + ¢/z, in

which ¢ represented an empirical correction term. In fact, by considering the two sets of parameters
(kg =0.3, ¢ = 0.1 km) and (ko =0.5 , ¢ = 1.5 km) all the collated worldwide in situ stress data can be

enveloped, as shown in Figure 2 /15/. By considering instead of op its quantized version

0';{ =(]/a) I :+a oydz, as a method to include the effect of the layered crust structure of the Earth, we

immediately deduce
*
k
k=2H gy +-02 @
Yz 2z

which is identical to the observed experimental relationship, with c=k0a/ 2. Thus, for the above

mentioned two envelope curves, we set a = 0.7 km and a = 6 km. Accordingly, the agreement between the
quantized approach and the large scale experiments is remarkable, justifying, at the same time, the deviation
from the standard prediction (~0.4) of continuum classical elasticity. As already mentioned, a result similar to
that reported in Eq. (2) can be derived by using gradient elasticity /16/, even though the calculation is not as

simple in that case.
4. CONCLUSIONS
We have shown that for the two extreme cases discussed here, the same physical theory /9,17,17/ can be
applied to objects spanning sizes within ~15 orders of magnitude, by simply modifying the extension of the

stress quantization domain. At the nanoscale a is found to be of the order of the Angstrém, whereas at the

megascale a is of the order of the kilometer. It would be of interest to further substantiate such conclusions by
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considering other examples at the nanoscale (fracture of protein chains and NEMS) and the megascale
(earthquakes and tectonic fractures). It is difficult to envision methods of analysis enabling conclusions on
phenomena with so huge differences in their size-scale range, suggesting that this method may be an
interesting candidate to explore for further multiscale applications, all the way from the nano- to the mega-

regime.
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Fig.2: Large-scale experiments /15/ interpreted by assuming a stress quantization (Eq. (2) with a=0.7 km
and a = 6 km). Note that classical elasticity (i.e. the continuum counterpart of the “quantized”
approach) would trivially yield a vertical straight line at ~0.4, independently of the depth below the

Earth’s surface. Thus, the role of the stress quantization is crucial.
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