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ABSTRACT

The notion of "self-consistent" boundary conditions in gradient elasticity is explored. They are introduced
in the place of the "standard" boundary conditions commonly used in the formulation of gradient elasticity
problems derived through corresponding variational principles. The case of a perforated membrane under
biaxial tension is solved, as an example. The predicted hole size-effect is then compared with the solutions of
classical and gradient elasticity and with that obtained by a "quantized elasticity" approach. Only self-
consistent gradient elasticity and the quantized approach seem to provide, in a convenient way, fully realistic
results in the asymptotic regime.

1. INTRODUCTION

Generalized theories of linear elasticity involving higher-order strain gradients have been revived recently
starting with the early work of Aifantis and co-workers /1-5/ which continues up to the present time 16-91
with significant contributions by many researchers including Vardoulakis et al /10/, Exadaktylos et al /I I/,
Polizotto et al /12/, Aravas et al /13/, Beskos et al /14/, Georgiadis et al /15/, Giannakopoulos et al /16/, and
others (e.g./17-21/).

All of the above works are essentially based on the simple model of gradient elasticity advocated by
Aifantis III involving only one extra constant, commonly known as gradient coefficient, the square root of
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which may be physically identified with the dominant internal length defining the extent of nonlocality in the

material system under consideration. This model, which was also used to interpret size effects in torsion and

bending of elastic materials with microstructure and compare them with predictions of Cosserat elasticity
1221, could be directly obtained from a nonlinear gradient elasticity theory advocated by Triantafyllidis and

Aifantis 7237 through a direct analogy to the gradient plasticity theory previously introduced by Aifantis 724-

257. This theory is based on a correction of the strain energy function by one gradient term only in analogy to

van der Waals thermodynamic theory of liquid-vapor transition, as discussed in the mechanical theory of

fluid interfaces of Aifantis and Serrin 7267. It thus enjoys a different physical motivation than, for example,

Toupin's 7277 and Mindlin's 7287 celebrated works on generalized elasticity theories which involve many

constants and were mainly applied to wave propagation studies. In this connection, it is pointed out that

several of the above gradient elasticity papers refer only to Mindlin's works without citing Aifantis' model
which is exactly what they eventually use in their analyses (see, for example, the works by Georgiadis et al

7157). A slightly more general model including both stress and strain gradients was outlined by Aifantis 7297

in a review on applications of gradient theory to "ill-posed" problems of elasticity, plasticity and dislocation
dynamics, with emphasis, respectively, on eliminating elastic singularities from dislocation lines and crack

tips, on obtaining shear band widths and spacings in plasticity on the micron scale along with a

corresponding interpretation of size effects and, finally, on interpreting dislocation patterning phenomena at

the mesoscale.

Various types of boundary conditions have been used in the aforementioned works to solve corresponding

boundary value problems. They involve the usual boundary conditions of classical elasticity, as well as

additional boundary conditions required as a result of the introduction of gradient terms. These extra

boundary conditions are usually obtained in connection with the well-posedeness and uniqueness of related

boundary value problems or through appropriate variational principles. Their physical meaning and

experimental realization is usually difficult to implement. Thus, a different procedure is explored here by

associating the necessary extra boundary conditions with the specific problem at hand and choosing them in a

"self-consistent" manner, in accordance with a more physical perspective.

The corresponding "self-consistent" boundary conditions are able to remove the paradoxes associated

with classical elasticity, that may only partially be removed if standard "extra boundary conditions" are used.

An example is provided in this paper, where the elastic problem is solved within a self-consistent gradient
elasticity framework, for a perforated membrane under biaxial tension. The hole size-effect is then compared

with the solutions of classical elasticity, gradient elasticity with non self-consistent extra boundary

conditions, and with that obtained by Novozhilov's approach 730/, that is the stress-analogue of the energy

based quantized fracture mechanics 7317. Only the self-consistent gradient elasticity and quantized

approaches 730-317 seem to provide fully realistic asymptotic matching results.
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2. THEORY

The simple version of gradient elasticity theory to be used here is of the form

, (1)

where (EJJ, a;j) denote the stress and strain tensors, (ν, Ε) are the usual elastic moduli and c is the gradient

coefficient having dimensions of length square (c = t2; £ is an internal length associated with the

underlying microstructure of the gradient elastic medium). This simplified model was used in 1321 and it is a

special case of the gradient elasticity model used in 1291. It suggests that hydrostatic pressure gradients are

directly influencing the stress-strain relation and a simple physical basis for it may be obtained as follows.
Let us start with a standard elastic medium for which the strain is determined by the stress as in Hooke's

law and also, in addition, by a scalar internal variable φ, representing a microscopic porosity/void variable or

another degree of freedom. Then we may write

1 + ν ν
EJJ = —£- ay - — "kk 5jj + k<t>8,j , (2)

where k is a constant. The internal variable is assumed to obey a "complete balance law" containing both a

rate and a flux term /33/, i.e.

(j»+divj = g, (3)

where j is the flux of the internal variable within the elementary volume and g its production. In a simple

linear theory, the flux j may be taken to be proportional to the gradient νψ of the internal variable, while the

source term g may be taken as a linear function of the hydrostatic stress σ and the internal variable itself, i.e.

j = -DV(|> and g = -Aa-M(|>, (4)

where (D, Λ, Μ) are positive constants. The plus sign in the last term of Eq. (2) indicates that extra strain is
produced as a result of the action of φ, while the minus signs in Eq. (4) indicate that, in the case where the

microstructure is of the form of void space, damage "migrates" from "weak" to "strong" regions, while
"healing" takes place under the action of tensile stress and damage evolution proceeds in a stable manner. On

combining Eqs. (3) and (4) and taking the Fourier transform, we have
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«J>q=-Dq24>q-Aaq-M<|>q, (5)

where the subscript q denotes the Fourier transform of the respective variable where q is the corresponding
magnitude of the wave vector. By assuming that (|>q varies rapidly in comparison to the measured stress and
strain (i.e. the lifetime of structured defects represented by the variable φ is much smaller than the
corresponding time scales over which macroscopic variables evolve), the adiabatic elimination argument
( (j>q D O ; see, for example, /34/) leads to the relation

<Pq =q M + Dq

which, by adopting a Taylor's series expansion for the term A/lM + Dq2) on the assumption that

(Dq2/M)«l, gives,

_ _ _ A AD 2 ___Λ_ _AD y 2

where the hydrostatic stress variable σ may be replaced with the trace of the stress tensor σ^. Then,

substitution of Eq. (7) into Eq. (2) yields

1 + v

which on setting c = (kAD/M2 )(E/v) and assuming the factor (kA/M) can be neglected with respect to

(v/E), or that (cM/D) can be neglected with respect to unity, Eq. (1) can be obtained. [This assumption

could be lifted by considering more general evolution for the internal variable φ, for example, by allowing a
stress gradient term to enter in Eq. (4)i.]

It should be pointed out that the above microscopic substantiation of the gradient-dependent elastic
constitutive law given by Eq. (1), provides only one possible justification for the proposed modification of
Hooke's law by the Laplacian V2ayc of the hydrostatic stress. Other types of mechanisms may be invoked

to obtain other types of gradient dependence as discussed by the last author in /34/ (see also /29/)· Within a
more rigorous derivation, atomistic and molecular dynamics arguments may be used to substantiate the
constitutive assumptions embodied in Eqs. (2) and (4). On the other hand, such type of MD simulations may
be used directly in conjunction with Eq. (1), independently of the underlying physical mechanism leading to
the extra Laplacian term V2a|dc, in order to provide the needed information on the gradient coefficient c.
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3. PERFORATED MEMBRANE IN BIAXIAL TENSION

Consider the case of an infinitely large membrane containing a hole of radius α , under biaxial remote

load σ, for which the following gradient constitutive equation holds

(9)

where (ey, ay) are the stress and strain tensors, ν and Ε are the Poisson ratio and Young modulus, 5y is the

Kronecker delta and c is the gradient coefficient. Consider plane stress and polar coordinates. Combining the
constitutive law with the compatibility and equilibrium equations allows us to solve the problem for a
constitutive law given by Eq. (9) in the form /32/

(10)

1 Γ°ΐ , f Ο D I I f r "L02* ( r L.D2v- ( r Yl+ ~^\ ~7=^*0 ~r= -- Μ ~!= \ + ~F=K-0\ ~F= \ + - Kl ~F= >

σθ = <
Γ*"

(Π)

where c' = c ν , C;, Dj are constants and In , Kn are the modified Bessel functions of first and second kind
respectively. In order to have limited stresses for r = α -> 0, the constant C\ must vanish. The other four
constants C2,C3,Di,D2 should be derived according to the relevant boundary conditions. Before we

proceed with their determination we outline first the derivation of the general solution for the stresses given
by Eqs. (10) and (11), and the corresponding expressions for the strains.

The procedure for obtaining this solution is detailed in /32/ and is also summarized here. A stress function
Φ is introduced such that in polar coordinates (r, Θ) we have

1 d<D d2<D
°Γ=--Γ. σ θ=—r-, (12)

r dr dr2

while the corresponding strains are given by

1 ν ιer =-^(°T -vae)-c-V^(ar +σθ) ,

l v °3)

ΕΘ =—(-wf +σβ)-ε^·ν2(σΓ +σθ) ,JD L·
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which by using the compatibility equation

d2ee | 2 ds0 1 cter = Q ^14j
dr2 r dr r dr

leads to the following sixth-order differential equation for Φ(Γ)

V4(l-cvV2)O = 0. (15)

By setting

(l-c'V2)0 = <£E; c' = cv, (c'>0) (16)

Eq. (15) becomes

ν<φΒ=0; ν<φΗ=ν2(ν2φΗ)444ΑΥ^^1 (17)
l^dr2 r d r j l ^ dr2 r dr J

the solution of which for axial symmetric problems has the familiar from linear elasticity form

0E=C 1 r 2 lnr+C 2 r 2+C 3 lnr+C 4 . (18)

By inserting Eq. (18) into Eq. (16) we have

(19)
dx2 x dx

where χ = r/vc^ . This is a standard differential equation of Bessel type with solution 735, 327

(20)

where (Dj, D2, C\, C2, C3, C4 ) are constants and (I0, K0) are modified Bessel functions of zero order of
the first and second kind, respectively. The Cj = 0 for the circular hole problem in order that the tangential

displacement to be single-valued (at 9 = 0 and θ = 2π ). It follows that the appropriate expressions for the
stresses and strains read 7327
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^-T + 2C2 ,

D, r Ϊ D, r (21)

and

1 + v

_^1κ ί-ϋ_2?_κ fj_' (22)

τ'Ί^-τ1 *-3 •'V1 ~ v; /-.
"^"ΊΓ+ν02

On returning to the determination of the constants (Dj, D2, C2, C3 ), we first use the standard boundary

conditions

σΓ = 0 for r = α ; σΓ = σ for r -> oo ,

and the extra boundary conditions used in previous works on gradient elasticity (e.g. /2-3/), i.e.

d2u/dr2=0 for r = a and r-»°o ,

where u denotes the radial component of the displacement field. From Eq. (22) ι we have

1 + v
E

D,
c'

f12^) »(*}]
r Λ/c7

,D 2

c'

κ f r 1 κ ί r V
Κ2Ν,ΚΐΝ

r Vc7
2C3

r3dr2 ~ dr

and, then, Eqs. (21)i and (25) can be combined with Eqs. (23) and (24) to give

-2oc' „ σ „ Γ . 2v^K,(h')l~D,=0, D2 =I ' ^

^, C2= — ,
rpf ' ί ~ *Th 2

,
rpf 'Th J

(23)

(24)

(25)

(26)
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where the dimensionless quantities h' and T£ are defined by the relation h' = cc/Vc^
T|i = h'Ki(h') + Ko(h'). The final expressions for the stresses σΓ and ag are given by

and

T t ι
j, r ^Jr (27)

where r Sa and F'(r) = (a/r)K,(h')-K,(r/Vc7).

0.012

0.2 0.4 0.6 0.8 1.0
Radial distance r fm]

0.2 0.4 0.6 0.8
Radial distance r \m\

1.0

Fig. 1: Plots of (i) radial and tangential stresses, and (ii) radial and tangential strains, in classical (dotted
lines) and gradient (solid lines) elasticity for α =0. l m, σ =40 MPa, ν =0.4, E=8 GPa, -Je = 86 mm,

h'=1.826.

The corresponding expressions for the strains ( εΓ, ΕΘ ) and the displacement (u) are given by

εΓ =-
(28)

and

u =-
E l+v r

+
ν (29)
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The plots of Eqs. (27) and (28) are given in Figure 1 for a set of arbitrarily chosen values of the material
parameters. It is seen from these plots that significant differences arise only in the neighborhood of the hole.
This motivates a more careful consideration of the stress concentration factor. In fact, the tangential stress at
the boundary of the hole is calculated form Eq. (27) as

2σ
'ΤΗ

(30)

By assuming further that failure occurs when the tangential stress at the hole boundary attains a critical
value (maximum stress failure criterion of Rankine type), one may derive the following expressions for the
stress intensity factor Sc (=σ$/σ\=ο and the dimensionless failure stress af (= σ/ag )r=at

Κο(1° hKjOOj '
(31)

where it was assumed the at failure GQ at r = α attains a critical value σ* which is a material constant. The

corresponding plots are given in Figure 2.

0.0 \ 2.0 4.0 6.0 8.0 10.0
«0.6 Dimensionless hole radius h'

0.0\ 2.0 4.0 6.0 8.0 10.0
«0.6 Dimensionless hole radius h'

Fig. 2: Variation of (i) the stress concentration factor Sc, and (ii) the normalized failure stress a'f as a

function of the dimensionless hole radius h'.
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4. SELF-CONSISTENT BOUNDARY CONDITIONS

In this final section we introduce the notion of self-consistent boundary conditions in the following sense.
Instead of adopting the displacement extra boundary conditions employed earlier, i.e.

0(r = a) = 0, 0(r->«) = 0 , (32)

by requiring the solution to obey the following constraint

σβ(α-»0) = σ , (33)

from which we derive D2 (a -> 0) = ac'/ln ( a/Vc7 j and since we need a limited value for D2 ία -» vcj

we fix D2 = ac'U-a/>/cM/lnfa/Vc'), introducing the screening function (of the natural logarithm)

Ι-α/Λ/c7 (tending to zero for α -> 0 as required). As for Cj, Dj =0 in order to have the stress limited.

From a r(r-»oo) = a, C2 = σ/2 , whereas from o r(r = a) = 0, C3 =-a2a+a/Vc7D2K1 ία/Vc7). Thus,

a new "self-consistent" solution may thus be obtained. In passing, we remark that the above "self-consistent"
method should be viewed only as an alternative in deducing the appropriate form of the extra boundary
conditions. From a "traditional mechanics" point of view the extra boundary conditions are obtained from
variational principles and this approach has let to complex boundary conditions (see, for example, Mindlin
/28/, Tsagrakis 7367, Aifantis and Askes 7217), the physical meaning of which and its experimental realization
may be difficult to implement. It is thus left up to the experiment and the particular problem at hand to
suggest the most convenient and physically meaningful way to introduce the appropriate form of the extra
boundary conditions. For example, looking at the stress concentration factor near the hole, defined by
Sc = σθ (r = α)/σ , we derive for the above self-consistent approach, in contrast to classical elasticity for

which

Sf =2 , (34)

and the gradient elasticity with the standard extra boundary conditions given by Eq. (32) for which S is

given by Eq. (31), the following expression:

.OH/SOSc -2+ · (35)
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Note that S^E/SC (a -> «>) = 2 as in classical elasticity, whereas S°E/SC (a -> 0) = 1 as required by the
self-consistent boundary condition.

By using non self-consistent boundary conditions, i.e. gradient elasticity with the more standard boundary
conditions given by Eq. (32), we have the result of Eq. (31)i which can be re-written as

(36)

In this case, it is noted that S^E (a -> 0) = 0. This result may be considered as not acceptable, as it

suggests a defect-free membrane of infinite strength; even though at the other limit at infinity, the behavior is
as in classical elasticity, i.e. S^E (a -> oo) = 2. In concluding, we remark that by applying the quantized

approach /30-31/ we derive the following stress concentration factor

SQFM _ 2 +a/a (37)
l+a/α

where a is the fracture quantum. Note that S^FM (a -> 0) = 1 and S^FM (a -> oo) = 2, i.e. the same realistic

limits as for s^E/sc are obtained. Furthermore, we note that since S^E/SC (a-> 0) = 1 + α/Λ/c7 and

§GE/SC ^a _^ Qj = i + a/a 5 it is evident that the connection between the two theories is established by the

relation a ~ Vc7, a quite interesting result suggesting that the fracture quantum equals to the internal length.
By considering the dimensionless hole size a* = a/a =a/vt = h', the four different solutions of Eqs. (34),

(35), (36) and (37) are compared in Figure 3. Thus, most reasonable solutions for the hole-size effect are
provided by the predictions of Eqs. (35) and (37).

2.5

2 2

c
•2 1.5
S
S£ ]ου

(Λ
0.5 /

Elasticity
Quantized approach
"Self-consistent" gradient elasticity

— "Standard" gradient elasticity

4 6
Dimensionless hole-size

8 10

Fig. 3: Comparison between predicted hole size-effects for various elasticity-based theories.
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5. CONCLUSIONS

The main thrust of this paper was a proposal for the formulation of a self-consistent gradient elasticity.

Standard "extra boundary conditions" are substituted by "self-consistent" boundary conditions. The case of a
perforated membrane under biaxial tension is treated as an example, but the proposed modification has

general validity.
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