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ABSTRACT

The notion of “self-consistent” boundary conditions in gradient elasticity is explored. They are introduced
in the place of the “standard” boundary conditions commonly used in the formulation of gradient elasticity
problems derived through corresponding variational principles. The case of a perforated membrane under
biaxial tension is solved, as an example. The predicted hole size-effect is then compared with the solutions of
classical and gradient elasticity and with that obtained by a “quantized elasticity” approach. Only self-
consistent gradient elasticity and the quantized approach seem to provide, in a convenient way, fully realistic

results in the asymptotic regime.

1. INTRODUCTION

Generalized theories of linear elasticity involving higher-order strain gradients have been revived recently
starting with the early work of Aifantis and co-workers /1-5/ which continues up to the present time /6-9/
with significant contributions by many researchers including Vardoulakis et al /10/, Exadaktylos et al /11/,
Polizotto et al /12/, Aravas et al /13/, Beskos et al /14/, Georgiadis et al /15/, Giannakopoulos et al /16/, and
others (e.g. /17-21/).

All of the above works are essentially based on the simple model of gradient elasticity advocated by
Aifantis /1/ involving only one extra constant, commonly known as gradient coefficient, the square root of
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which may be physically identified with the dominant internal length defining the extent of nonlocality in the
material system under consideration. This model, which was also used to interpret size effects in torsion and
bending of elastic materials with microstructure and compare them with predictions of Cosserat elasticity
122/, could be directly obtained from a nonlinear gradient elasticity thcory advocated by Triantafyllidis and
Aifantis /23/ through a direct analogy to the gradient plasticity theory previously introduced by Aifantis /24-
25/. This theory is based on a correction of the strain energy function by one gradient term only in analogy to
van der Waals thermodynamic theory of liquid-vapor transition, as discussed in the mechanical theory of
fluid interfaces of Aifantis and Serrin /26/. It thus enjoys a different physical motivation than, for example,
Toupin’s /27/ and Mindlin’s /28/ celebrated works on generalized elasticity theories which involve many
constants and were mainly applied to wave propagation studies. In this connection, it is pointed out that
several of the above gradient elasticity papers refer only to Mindlin’s works without citing Aifantis’ model
which is exactly what they eventually use in their analyses (see, for cxample, the works by Georgiadis et al
115/). A slightly more general model including both stress and strain gradients was outlined by Aifantis /29/
in a review on applications of gradient theory to “ill-posed” problems of elasticity, plasticity and dislocation
dynamics, with emphasis, respectively, on eliminating elastic singularities from dislocation lines and crack
tips, on obtaining shear band widths and spacings in plasticity on the micron scale along with a
corresponding interpretation of size effects and, finally, on interpreting dislocation patterning phenomena at
the mesoscale.

Various types of boundary conditions have been used in the aforementioned works to solve corresponding
boundary value problems. They involve the usual boundary conditions of classical elasticity, as well as
additional boundary conditions required as a result of the introduction of gradient terms. These extra
boundary conditions are usually obtained in connection with the well-posedeness and uniqueness of related
boundary value problems or through appropriate variational principles. Their physical meaning and
experimental realization is usually difficult to implement. Thus, a different procedure is explored here by
associating the necessary extra boundary conditions with the specific problem at hand and choosing them in a
“self-consistent” manner, in accordance with a more physical perspective.

The corresponding “self-consistent” boundary conditions are able to remove the paradoxes associated
with classical elasticity, that may only partially be removed if standard “extra boundary conditions” are used.
An example is provided in this paper, where the elastic problem is solved within a self-consistent gradient
elasticity framework, for a perforated membrane under biaxial tension. The hole size-effect is then compared
with the solutions of classical elasticity, gradient elasticity with non self-consistent extra boundary
conditions, and with that obtained by Novozhilov’s approach /30/, that is the stress-analogue of the energy
based quantized fracture mechanics /31/. Only the self-consistent gradient elasticity and quantized

approaches /30-31/ seem to provide fully realistic asymptotic matching results.
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2. THEORY

The simple version of gradient elasticity theory to be used here is of the form

1
& =~—::Xcij —%(ckk)sij —c%(v%kk)s,j , 1))

where (eij, oij) denote the stress and strain tensors, (v, E) are the usual elastic moduli and c is the gradient

coefficient having dimensions of length square (c= ¢2; ¢ is an internal length associated with the
underlying microstructure of the gradient elastic medium). This simplified model was used in /32/ and itis a
special case of the gradient elasticity model used in /29/. It suggests that hydrostatic pressure gradients are
directly influencing the stress-strain relation and a simple physical basis for it may be obtained as follows.

Let us start with a standard elastic medium for which the strain is determined by the stress as in Hooke’s
law and also, in addition, by a scalar internal variable ¢, representing a microscopic porosity/void variable or

another degree of freedom. Then we may write

I+v v

€jj =——Oj —— Ok Oji + kO, 2
ij E ij E kk 9ij ¢ 1] V)]
where k is a constant. The internal variable is assumed to obey a “complete balance law” containing both a

rate and a flux term /33/, i.e.
d+divi=g, A3)

where j is the flux of the internal variable within the elementary volume and g its production. In a simple
linear theory, the flux j may be taken to be proportional to the gradient V¢ of the internal variable, while the

source term g may be taken as a linear function of the hydrostatic stress ¢ and the internal variable itself, i.e.

ji=-DV$ and g=—-Ac-M¢, 4)

where (D, A, M) are positive constants. The plus sign in the last term of Eq. (2) indicates that extra strain is
produced as a result of the action of ¢, while the minus signs in Eq. (4) indicate that, in the case where the
microstructure is of the form of void space, damage “migrates” from “weak” to “strong” regions, while
“healing” takes place under the action of tensile stress and damage evolution proceeds in a stable manner. On

combining Egs. (3) and (4) and taking the Fourier transform, we have
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¢q =-Dq2dq —Acg —Mdg, 5)

where the subscript q denotes the Fourier transform of the respective variable where q is the corresponding
magnitude of the wave vector. By assuming that ¢ varies rapidly in comparison to the measured stress and
strain (i.e. the lifetime of structured defects represented by the variable ¢ is much smaller than the
corresponding time scales over which macroscopic variables evolve), the adiabatic elimination argument

((i)q O 0; see, for example, /34/) leads to the relation

A
9q =————73 Oq> ©)
M+Dq

which, by adopting a Taylor’s series expansion for the term A/ (M+Dq2) on the assumption that

(qu/M) <<1, gives,
A AD A AD
Pq =—Kd—0'q —qucq = (P=_ﬁ0—'l\?v20' » ™

where the hydrostatic stress variable ¢ may be replaced with the trace of the stress tensor oy . Then,

substitution of Eq. (7) into Eq. (2) yields

1+ kA kAD
Eij =Tv°ij “(%‘“ﬁ)(akk)sij -—M-;(Vzckk ) 8y 8)

which on setting ¢ = (kAD/ M2 )(E/ v) and assuming the factor (kA/M) can be neglected with respect to
(V/E), or that (cM/D) can be neglected with respect to unity, Eq. (1) can be obtained. [This assumption

could be lifted by considering more general evolution for the internal variable ¢, for example, by allowing a
stress gradient term to enter in Eq. (4),.]

It should be pointed out that the above microscopic substantiation of the gradient-dependent elastic
constitutive law given by Eq. (1), provides only one possible justification for the proposed modification of
Hooke’s law by the Laplacian Vzckk of the hydrostatic stress. Other types of mechanisms may be invoked

to obtain other types of gradient dependence as discussed by the last author in /34/ (see also /29/). Within a
more rigorous derivation, atomistic and molecular dynamics arguments may be used to substantiate the
constitutive assumptions embodied in Eqs. (2) and (4). On the other hand, such type of MD simulations may
be used directly in conjunction with Eq. (1), independently of the underlying physical mechanism leading to
the extra Laplacian term Vzckk , in order to provide the needed information on the gradient coefficient c.
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3. PERFORATED MEMBRANE IN BIAXIAL TENSION

Consider the case of an infinitely large membrane containing a hole of radius o, under biaxial remote

load o, for'which the following gradient constitutive equation holds

1
& =%oij —%;-(ckk)éiij -c-;é(Vzckk )Sij , ©9)

where (g;;, ojj) are the stress and strain tensors, v and E are the Poisson ratio and Young modulus, §;; is the

Kronecker delta and c is the gradient coefficient. Consider plane stress and polar coordinates. Combining the
constitutive law with the compatibility and equilibrium equations allows us to solve the problem for a
constitutive law given by Eq. (9) in the form /32/

r

C
o; =C; (1+2Inr)+2C, +r—23+rlf[l)‘l' (ﬁ)—DzKl [Trc__)] , (10)

09=C1(3+21nr)+2C2—C—23+
T
(11
1 [D, (;)_& (;) Dy (;) Dy [;)]
J‘[J_" =) N E ST T

where ¢'=cv, C;,D; are constants and I,,K,, are the modified Bessel functions of first and second kind
respectively. In order to have limited stresses for r=o — 0, the constant C; must vanish. The other four

constants C,,C3,D;,D, should be derived according to the relevant boundary conditions. Before we

proceed with their determination we outline first the derivation of the general solution for the stresses given
by Egs. (10) and (11), and the corresponding expressions for the strains.
The procedure for obtaining this solution is detailed in /32/ and is also summarized here. A stress function

@ is introduced such that in polar coordinates (r, 0) we have

o olde 2o
r rdr’ [¢) drz

, (12)

while the corresponding strains are given by

& =l(°'r —vce)—clvz(o'r +0g) ,
E E (13)

1 V o2
€g =—(-vo, +0g)—-c—V*(o, +0q) ,
) E( r +0g) = (o +04)
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which by using the compatibility equation

d’eg 245 1de;
dr2 r dr r dr

leads to the following sixth-order differential equation for ®(r)
vii-cvw2)o =0.

By setting

(1-c'V)Yd=0F; c'=cv, (c'>0)

Eq. (15) becomes

2 2 pE dd)E
VIQE =0; V4oF =v2(v2ef)=| 4, 1d IO 1 ,
dr? rdrjl d2 r dr

the solution of which for axial symmetric problems has the familiar from linear elasticity form
®F =Cir2 Inr+Cyr? +C3Inr+Cy.

By inserting Eq. (18) into Eq. (16) we have

2
Q+ld_¢._q) =—(C,r2 In r+C2r2 +C3Inr+Cy),
dxz x dx

where x =r/+/c’ . This is a standard differential equation of Bessel type with solution /35, 32/

@ =Dy, (LJ+D2K0 (—r—)+(Clr2 +C3)Inr+(Cyr® +Cy),

Je! Je!

14

(15)

(16)

an

(18)

(19)

(20)

where (D,, D,, C;, C,, C3, C4) are constants and (I, Ky) are modified Bessel functions of zero order of

the first and second kind, respectively. The C; =0 for the circular hole problem in order that the tangential

displacement to be single-valued (at 6 =0 and 6 =2=). It follows that the appropriate expressions for the

stresses and strains read /32/
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and

Di, (L)-.‘l; (LJ
N et vl I k) . 1+v[C_3 2(1—v)C]

8[ T + 2
EVc'| D, ( r ) D, ( r ) E [2 1+v
22k == -2 —
LW I W 2

TV LD x ) Dy ]],S_21-V)
RETE {\/E[r I‘(J&] r Kl(\/?]]+r2 1+v Cz} '

On returning to the determination of the constants (D, D,, C5, C3), we first use the standard boundary

conditions

6,=0 for r=aa; ©,=0C for T—>, 23)

and the extra boundary conditions used in previous works on gradient elasticity (e.g. /2-3/), i.e.
d*u/dr*=0 for r=a and T ®, (24)

where u denotes the radial component of the displacement field. From Eg. (22), we have

1(;) I(L) K (L} K (_’_)
du_de, _1+v|Di| 2\e) )| by | W), )| 26

=—L = R 25
o2 & E || r Ve |e| r o |2 @)
and, then, Egs. (21), and (25) can be combined with Egs. (23) and (24) to give
-2 Y r ’
D=0, D=2 =2, Cy=-ac o 2EKIE) | (26)
T 2 Ty,
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where the dimensionless quantities h' and T, are defined by the relation h'=a/Jc' and

Ty =h'Kj(h’)+Ky(h") . The final expressions for the stresses o, and cg are given by

20'\/_
r

G, =0 l-—ﬁ
T r2

2
F(), 09=c[l+~a—}

217
> @7

2c \/g . r
2 afz)

where r2 a and F'(r)=(a/r)K|(h')—Kl(r/\/<?).
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Fig. 1: Plots of (i) radial and tangential stresses, and (ii) radial and tangential strains, in classical (dotted
lines) and gradient (solid lines) elasticity for a=0.1m, o =40 MPa, v=0.4, E=8 GPa, Jc =86 mm,

h'=1.826.

The corresponding expressions for the strains (g, , £g) and the displacement (u) are given by

oo+ [1-v_a? 241 Ly - r
TE |14v 2 T |r J<;_ TN %)
. _o(1+v) I-v_a? 2‘/—1:()
"7 E l1av 2 r T,
and
o(1+v) [1-v  a? ZJ—
TTE {1+v r Ty } 9)
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The plots of Eqgs. (27) and (28) are given in Figure 1 for a set of arbitrarily chosen values of the material
parameters. It is seen from these plots that significant differences arise only in the neighborhood of the hole.
This motivates a more careful consideration of the stress concentration factor. In fact, the tangential stress at
the boundary of the hole is calculated form Eq. (27) as

20 .
oel._, = 20——17';-K0(h ). (30)

By assuming further that failure occurs when the tangential stress at the hole boundary attains a critical

value (maximum stress failure criterion of Rankine type), one may derive the following expressions for the
stress intensity factor S, (=g /0);—o and the dimensionless failure stress o (= 6/cg )r=a, failure

o1 Ko(") , _1(,, Ko(h)
S°_2(l h'K,(h')+Ko(h'))’ of 2(1+h'K,(h’)J’ @D

where it was assumed the at failure Gy atr = a attains a critical value o* which is a material constant. The

corresponding plots are given in Figure 2.

Fig. 2: Variation of (i) the stress concentration factor S, and (ii) the normalized failure stress G"f as a

function of the dimensionless hole radius h’.
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4. SELF-CONSISTENT BOUNDARY CONDITIONS

In this final section we introduce the notion of self-consistent boundary conditions in the following sense.

Instead of adopting the displacement extra boundary conditions employed earlier, i.e.

o%u
a2

%

EZ—I':(X):O, (r—)w)=0 ’ (32)

by requiring the solution to obey the following constraint

op(a—>0)=0c , 33)

from which we derive D; (o —0)= cc'/ln (a/ Je! ) and since we need a limited value for D, (a A )
we fix Dy =cc'(l—a/ Je' ) / In (a/ Je ), introducing the screening function (of the natural logarithm)

l—a/ Je' (tending to zero for oo — 0 as required). As for C;, D; =0 in order to have the stress limited.
From o; (r > ®)=0, C; =0/2, whereas from o, (r=a)=0, C3 = —a2<5+(x/\/? DK, (a/\/?) . Thus,

a new “self-consistent” solution may thus be obtained. In passing, we remark that the above “self-consistent”
method should be viewed only as an alternative in deducing the appropriate form of the extra boundary
conditions. From a “traditional mechanics” point of view the extra boundary conditions are obtained from
variational principles and this approach has let to complex boundary conditions (see, for example, Mindlin
128/, Tsagrakis /36/, Aifantis and Askes /21/), the physical meaning of which and its experimental realization
may be difficult to implement. It is thus left up to the experiment and the particular problem at hand to
suggest the most convenient and physically meaningful way to introduce the appropriate form of the extra
boundary conditions. For example, looking at the stress concentration factor near the hole, defined by

S =og(r= a)/c , we derive for the above self-consistent approach, in contrast to classical elasticity for

which
sE=2, (34)

and the gradient elasticity with the standard extra boundary conditions given by Eq. (32) for which SSE is
given by Eq. (31), the following expression:

Ko (o/¥57)(1-a/¥E)
In (a/\/?) .

SGE/SC g4

(3%
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Note that SJE/SC (o — @) =2 as in classical elasticity, whereas SSE/SC (0. 0) =1 as required by the
self-consistent boundary condition.
By using non self-consistent boundary conditions, i.e. gradient elasticity with the more standard boundary

conditions given by Eq. (32), we have the result of Eq. (31), which can be re-written as
Ko (0./ \/‘7 )
a/\/?Kl (a/\/::T)+K0 (a/\/g) .

SGE —2]1- (36)
In this case, it is noted that SCGE (a - 0)= 0. This result may be considered as not acceptable, as it

suggests a defect-free membrane of infinite strength; even though at the other limit at infinity, the behavior is
as in classical elasticity, i.e. S?E (a - oo)=2 . In concluding, we remark that by applying the quantized

approach /30-31/ we derive the following stress concentration factor

QFM 2+a/a

3 1+a/a 6N

where a is the fracture quantum. Note that SZFM (a—>0)=1 and SM (o > ) =2, i.e. the same realistic
limits as for SSE/SC are obtained. Furthermore, we note that since SGE/SC (x> 0)=1+ a/ Je' and
SCE/SC (a—> 0)=1+0/a, it is evident that the connection between the two theories is established by the

relationa ~vJc' , a quite interesting result suggesting that the fracture quantum equals to the internal length,
By considering the dimensionless hole size o’ =a/a =a/ Je' =h', the four different solutions of Eqs. (34),

(35), (36) and (37) are compared in Figure 3. Thus, most reasonable solutions for the hole-size effect are
provided by the predictions of Egs. (35) and (37).
25
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5. CONCLUSIONS

The main thrust of this paper was a proposal for the formulation of a self-consistent gradient elasticity.
Standard “extra boundary conditions” are substituted by “self-consistent” boundary conditions. The case of a
perforated membrane under biaxial tension is treated as an example, but the proposed modification has

general validity.
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