
Boundary Value Problems in Orthotropic Micropolar 
Thermoelastic Medium with One Relaxation Time 

§ R a j n e e s h K u m a r and t R a j a n i Rani G u p t a 

Department of Mathematics, Kurukshetra University 
KURUKSHETRA, HARYANA, INDIA 

E-mail: §rajneesh kuk(a),rediffmail.com, traiani_gupta_83(a)lvahoomail.com 

ABSTRACT 

The present investigation is concerned with boundary value problems in orthotropic micropolar 

thermoelastic medium with one relaxation time as a result of inclined load. The inclined load is assumed to 

be a linear combination of a normal load and a tangential load. Laplace and Fourier's transform are used to 

solve the problem. Various types of sources have been taken to illustrate the utility of the approach. The 

transformed components of Normal force stress, Tangential force stress, Tangential couple stress and 

Temperature distribution are inverted using numerical inversion techniques. The effect of anisotropy has 

been shown on the resulting expressions graphically. 

K e y W o r d s : Orthotropic, Micropolar, Couple stress, Fourier transform, Laplace transform, Microrotation. 

1. INTRODUCTION 

Micropolar elasticity theory introduced by Eringen /4/ incorporates the local deformation and rotations of 

the material points of a body. The theory provides a model that can support body and surface couples and 

display a high frequency optical branch of the wave spectrum. For engineering applications, it can model 

composites with rigid chopped fibers, elastic solids with rigid granular inclusions, and other industrial 

materials such as liquid crystals /4, 6, 9/. Several investigations reveal an interesting phenomenon that 

characterizes the micropolar theory and some of its generalizations are contained in /7 ,8,12/ . 

The linear theory of micropolar thermoelasticity was developed by extending the theory of micropolar 

continua to include thermal effects by Nowacki /13/ and Eringen 151. Tauchert et al 1761 also derived the 

basic equations of linear theory of micropolar thermoelasticity. Dost and Tabarrok /3/ presented micropolar 

generalized thermo-elasticity by using the Green -Lindsay theory. One can refer to Dhaliwal and Singh 1251 
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for a review on micropolar thermoelasticity. Chandrasekhariah / l / formulated a theory of micropolar 

thermoelasticity which includes heat-flux among the constitutive variables. 

The dynamic response functions of elastically anisotropic solids are of interest in many fields including 

crystal acoustics, solid-state physics, non-destructive testing , material characterization, seismology, applied 

mechanics and mathematics. In recent years the elastodynamic response of anisotropic continuum has 

received the attention of several researchers. 

Iesan 111 investigated the static theory of anisotropic micropolar elastic solids and proved the positive 

definiteness of his operator for the first boundary value problem. Kumar et α/./14-21/ investigated boundary 

value problems in an orthotropic micropolar continua and micropolar thermoelastic medium possessing cubic 

symmetry 122-241. 

The present investigation seeks to determine the components of normal force stress, tangential couple 

stress and temperature distribution due to concentrated, distributed and moving forces in time domain, 

frequency domain and steady state due to the inclined load in an orthotropic micropolar thermoelastic 

medium with one relaxation. The solution is obtained after employing an integral transform technique. The 

integral transforms are inverted using a numerical method. 

We consider an orthotropic micropolar thermoelastic half-space with one relaxation time, having x2 -axis 

vertically downwards. Suppose that an inclined load F0, per unit length, is acting along the interface on the 

X3 -axis and its inclination with x2 -axis is θ. 

The basic equations in the dynamic theory of the plain strain of a homogeneous, orthotropic micropolar 

thermoelastic solid with one relaxation time in absence of body forces, body couples and heat sources can be 

recalled as: 

2. FORMULATION AND SOLUTION OF THE PROBLEM 

' j i j = Pui' (1) 

mi3,i+£ij3tij = PJ<h» i=l,2. 

and the heat conduction equation is given by, 

(2) 

(3) 

The constitutive relations are: 

<ll=A\\£\\+A\2£22-ß\T> '\2=ΑΠ£\2+ΑΊί£2\> WI3 = B66<h < 

hi = 42*11 + A22£22 ~ ßlT > h\ = Ali£\2 + ^88*21 - m2l = · (4) 
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where 

(5) 

Here, the relations between β , and the coefficients of thermal expansions a , are 

ß\ 

fa + 4>2«2-

In the above equations ( l ) - (5) , we have used the following notations: 

ty Components of the force stress tensor, my components of the couple stress tensor, ε^ and 

components of micropolar strain tensor, m, components of displacement vector, fa component of 

microrotation vector, permutation symbol, r 0 is the relaxation time, A\ [, A l 2 , A 22, 

Αηη , A7g , Agg, B44 , B66 are characteristic constants of the material, C* is the specif ic heat, K* and K.\ 

are the thermal conductivities. 

For the two dimensional problem, we take the components of the displacement and microrotation vector 

in an orthotropic micropolar generalized thermoelastic solid of the form 

« = ( « , , 1 / 2 , 0 ) , φ = ( 0 , 0 , f c ) . (6) 

We define the dimensionless variables by the expressions: 

(*l ',*2 ') = — (^1,^2). ("1 '»u2 ') = 
c l 

ω pC\(ü 

ßJo 

t' = co*t, τ0' = ω*τ0, ω 
ω 

ω 
(7) 

where 

With the help of equations (4)-(7), equations ( l ) - (3) take the form (on suppressing the prime): 

(8) 
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d4 dx, dx2 dx2 dx2 dA dx, dx2 dt2 

dx2
2 dx2 dx2 dx, dt2 

where 

4 i _ t S- II c Λ A78 Λ "1 = ι "4 
_ Α22 

A22 ' 4 8 
J Λ ' ** A88 

t ' "CQ
 * II J·
3
*

 

β?τ0 
ε = . . · 

β\ pK\ ω 

Ληη Ai%C2 pjc2 

A ' ' r, *? ' ο r, ^88 Β^ω Δ Ο44 

(10) 

( A + * = ( £ + r 0 4 ) 7 + e ( f + «oro 4 ) ( | l + A , (11) 
dx,2 dx2 dt dt2 dt dt2 dx, dx2 

We define the Laplace and Fourier transforms as follows: 

00 

7(x, ,x2,p)= \ /(*,, x2, t)e~P' dt, (12) 
0 

00 

Ηξ,*ι,P)= \f(xi,x2,t)e^dxx . (13) 

3 BOUNDARY CONDITIONS 

The boundary conditions on the surface x2 = 0 are given by 

(i) t22 = -Ρ,ψ,(χ,)η(ΐ), 

0 0 '21 =-Ρ2Ψ2(Χ\ΜΟ, 
(iii) m2 J = 0 , 

(iv) T=0, (14) 

where Ρ, and P2 are the magnitudes of force and ψ, (x ( ) , ψ2 ( ^ ) are defined later in this paper and η(ί) 

take the different values in time domain and frequency domain. 
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Case I- Concentrated Force 

To determine the normal force stress, tangential force stress, tangential couple stress and temperature 

distribution due to concentrated force described by Dirac delta function 

Ψΐ(Χ\)\ 

which must be used with 

ψΛξ)\ = 1 

Ψ2(ξ)\ ' (15) 

Case II- Distributed Force 

The solution due to force distributed over a strip of width 2a, applied on the half space is obtained by 

setting 

^ ( X l Η = / y ( * , + « ) - / / ( * , - a ) , 
ψ2{χ\)\ (16> 

in equation (14). Using equation (7) and then applying Fourier t ransforms defined by equation (13) on 

equation (16) we obtain, 

Ψ\ ( * l ) l 0 · , i C | f l . . „ = , 2 s i n ( - ^ - ) / £ . 

Ψι{χ\)) ω 

Case III- Moving Force 

The solution due to an impulsive force, moving along the x\ -axis with uniform speed V at =0 is 

obtained by setting 
ψ\(χ\)η(ι) 1 

ψι (*ι )η( 0 J 
= y ( * ! , ' ) = <?(*! -Vt), (18) 

in equation (14). Using equation (7) and then applying Laplace and Fourier t rans form's defined by equation 

(12) and (13) on the equation (18) we obtain, 

ψ\(ξ)η{ρ)\ , I 

Ψι{ξ)η{ρ) \ ρ-'ξ^ν 
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3.1 Time Domain 

Applying the Laplace and Fourier transform's defined by equations (12) and (13) on equations (8) - ( l l ) , 

we obtain 

- (ξ2 + Ρ2 )d\ d4 )*, - ίξ^2 + d 3 ) ^ - ( d 3 - l ) ^ - + i4did4f = 0, (20) 
dx2 0X2 

j M + d t ) ^ * ? * ^ + w 5 - d 3 ) i _ M d i = 0 (21) 

d4 dx 2 dx2 d4 d4 dx 2 

dn{d3-\)^—άΊϊξ{ά5-d3)ü2 + (~~r"- ζ2 d(,-d^d5-2d3+\)-diP
2)h = 0, (22) 

dx2 dx2
2 

ίξε(ρ + η0τ0ρ2) εβίρ + ηρΤρρ2) dü2 , , d2 ξ2 + ρ + τ0ρ2^~ 
; «ι ; -— + (—ϊ ί ;/ =0. (23) 

Κ Κ dx2 dx2
2 Κ 

Equations (20)-(23) after some algebraic calculation yield: 

(υ8 - Αυ6 + Βυ*-Cu2 + D)(m, j ) = 0 , (24) 

where 

A = - f - a - a u + β*2g-h + b+d-je2 , 

B = f[a + <j| ι +/i-0-^7e2]+g[-y3*2(a+ h + d7 ee2 ) - εξ2 ß'(2d2 + </3 )] 

+a(au+h-b)-a'+P
2hd,-audie

2- Μ ^ - d4)(d5 ~ d3) 

d4 

C = f{aud7e2 +[-au -h + 2b-2hdlP
2 - £ 2 ( 2 r f 2 + d3 + d4)]} + g{ahß'2 

+ξ2αεβ\ά4 - d3)-2ß* εξ2 -ά3) + εξ2ά4αη} + (α + Κ)α\ 
0 = {Αι-ξ2ξά4ε\αηα + α'), a = ξ2d6 +d1(d5-2d3 +\) + d,p2, ό = ξ2 (d2 + d3 )(d2 + d4 ) ^ 

d4 

e = d3 — 1, f J 2 + P + y , g = (1 + η p)di ( Z l ^ o f o f l ) ) A = ( i 2 + p 2 m ) ^ β<ήρ2 ^ 
Κ Κ d4 

a ι _ d-j(d$ — d3 )2 

and υ = 
dx 2 

d4 

d 
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To solve this equation, we use Descar te 's algorithm outlined below: 

Shifting the roots of secular equation (24) by a factor of A/4 to eliminate the second term, we obtain 

ζ* +Ηζ2 +ϋζ + Ι = 0. (25) 

where 

A „ _ 3A2 _ AB Λ3 A2B 2 A4 AC 
ζ = υ , H = B , G = C, I = D + . 

4 8 2 8 16 256 4 

Factoring Equation (25) into two quadratic factors, we have 

ζ4 + Η ζ2 + ΰζ +1 = (ς2 +1ς + η)(ς2 -Ις + η'). (26) 

Comparing the coefficients of various powers of ς in (26) on both sides, we get 

n + n ' = l 2 + Η , n - n ' = j , n n ' = / . (27) 

Eliminating η and η ' f rom (27), we obtain 

Ζ 3 +2HZ2 +(H2 -4I)Z-G2 = 0 , (28) 

where Ζ = l 2 . Being cubic with complex coefficients, equation (28) can be solved by using the irreducible 

case of Cardon ' s method with the help of De Moivre ' s theorem. We again shift the roots of (28) by a factor 
—2 Η 

of in order to obtain the standard cubic as 
3 

Χ3 -3H*Y-G* = 0 . (29) 

where 

Y = Z + — , H* = + 1 2 / ) + 

3 9 3 27 

Let the roots of equation (29) be of the type Y=U+V 

so that 

ί / 3 + K 3 = G*, i / 3 K 3 = / / * 3 . 
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W e may find the cube roots wi th the he lp of De M o i v r e ' s t heorem, as shown be low: 

Let U3 = — — = L + iM, L,M e R. (31) 

Then the va lues o f U are g iven by 

~ , 2&7Γ + Φ . 2£;τ + Φ χ , „ , „ 
Uk = r 3 ( c o s + iS in - ), k = 0 , 1 , 2 , (J2) 

where r + M2 and Φ = tan 1 ( — ) . Hav ing de te rmined U, the va lues o f V can be obta ined f rom the 

relation UV - H* w h i c h fu r the r leads to the required va lues o f Y and hence to the values of 

I2 = Ζ = Y -2H / 3 . O n e o f the va lues o f / so obta ined is then used to eva lua te m and η by equat ion (27) . 

Us ing the va lues o f m, η and / , the reduced secular equat ion (25) is fac tored into two quadra t i c factors of the 

type (26) , which a re fu r the r solved to obta in the fou r roots ς·, , / = 1 , 2 , 3 , 4 . T h e c o m p l e x roots of secular 

equat ion (24) are ob ta ined f rom the re la t ion = ς, + A / 4, for i = 1 , 2 , 3 , 4 . 

T h e solut ion of equa t ion (24) sa t i s fy ing the radiat ion condi t ion that i / j , ü2,<fo, Τ —> 0 as X-, —>00 is 

~ ^ 4 
( u ] , u 2 , f a , T ) = YjAl(l,rl,si,t,)e~''·''2 , (33) 

1=1 

where 

a\<lj + <*2qf + aw -axq] +n(axoqf-αη) + α9ς, β 
η = — 2 2 ' Si = 2 ' α> = T T ' 

α4<7, +a5q/ +a6 a1qi - a% ιζα4 

if (d3 -1) - q2 + h + ΐ ξ η ι ( d 2 +d}) -ß*h+ ξ2 (d2 + d} ) - aß* + dne2 

'/ = > a2 = ' 
ϊξά\ dA i£dj 

α{β*ϊ-ξ2{ά2 +di)-42d7e(d, - d } ) ) ß t ( d 2 + d i ) 
a } = — , 04 = ' < «6 = 1 - a , 

/?*e(</5-rf3)</7 β \ ;ξ(ά5 - d j ) ß*h-42(d2+d,) 
a5 = -α, | -aa4 , αΊ = —— , fl8 = , ac, = — , aw = o4 . 

"4 'S "4 "4 ' s "4 

Using equa t ions (4), (6) , (7) in the bounda ry cond i t ions (14) and then app ly ing Laplace and Fourier 

t r ans fo rms def ined by equa t ions (12) - (13) with the help of (33) , we get the t r an s fo rmed normal force stress, 

tangential fo rce s t ress , t angent ia l coup le s tress and t empera tu re d is t r ibut ion as: 
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<22 = - ( A , c * e " ? l * 2 + A ^ e ' ^ + A j C j V ^ J + A4cJe~<? ' 'Jt2 , (34) 
Δ 

t2\ + A2a2e~q^ + A3a3e~q^ + A4a4e'q^ )η(ρ), (35) 
Δ 

m23 +A2£e-W- + A3b^e~q^ + A4b*4e~q^- )rj(p), (36) 
Δ 

f = -{Α\Ι\β-^- +A2t2e-W- +A}tie-Hxi + A4t4e~q*xi )rj{p), (37) 
Δ 

where 

• -dj'4n -q, -es, * q,s, . -ά2ίξη-qir,d4 - ßt,dxd4 a, = , b, = , c, = ,1-1,2,3,4. 

d\d4 d\d4d-\ d\d4 

A = (c*a*2 - c2a\)(th>s4 -.V3Λ4 ) + (c*a* -qa*)(t>2S4 -s2b*4) + {c\a*4 - c*4a\){t^s3 - 63 ) + 

(1c2a3 -C3a2)(.t^s4 -s\b*4) + (c4a2-c2a4)(t}[s3 - ί ι ^ ) + (θ3«4 -c\a4){t^s2 

Δ| =-ΡιΨι(ξ)[α\(^^4 - . s ' 3 b 4 ) ~ a l ( b ^ s 4 -s2b4) + a * 4 ( t ^ s 3 + 

~sib4 )-C3*(^.y4 -s2b*4) + c4(ty,s3-s2b$)], 

A2 = Ρ\ψ\(ξ)[α\{^χ4 -sib*4)-a*i(bls4 -s{b*4) +a'4(b\ s} -i,^*)]-

-Sib*4)-c]{l\S4 — £4 ) + i'4 (k) .V3 -.S'l/>,*)], 

Δ3 = ~Ρ\ψ\(ξ)[α\ (t?ls4 -s2b4)-a2(t\ s4 -4,64) + a4 (f^s2 + 

~Ρ2Ψ2(£)[cl* (62 *4 — 5'2b4) — C2(b\ 44 -J, i>4) + C4(A|*S2 

Δ4 = ή V'l - s2bi ) - a2 (6l*i'3 - 63*) + «3 (61*52 - 6>)] + 

Ρ2Ψ2 (£)[-<·'!* (62*53 -.v2/>3 ) + C2(6,*i3
 — 5|63 ) — C3 4'2 )]· 

In the time domain, boundary conditions defined by equation (14) must be used with 

<S(/) for Concentrated and Distibuted Force, 

W(/) for M o v i n g Force. 

for Concentrated and Distributed Force, 

'7 (/>) = 
— for M o v i n g Force. 
Ρ 

(38) 

(39) 

The expressions for stresses and temperature distribution in time domain can be obtained for 

Concentrated, Distributed and M o v i n g Force by using the values of ψ\ ( ξ ) , ψ2 (ξ) from (15), (17) and (19) in 

equations (34)-(38) along with (39). 
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3.3 Frequency Domain 

In this case, we assume t ime harmonic behavior as 

( a , , «2, <h, 7 -χ* , , *2 · 0 = (« ι , «2. A . Π ( * ι . *2 y * - (40) 

In the frequency domain, boundary condition defined by equation (14) must be used with 

77(/) = β"* · (41) 

The expressions for normal force stress, tangential force stress, tangential couple stress and temperature 

distribution in frequency domain can be obtained by replacing ρ with ico and η(ρ) with 1 /(ρ-ίω) in the 

expressions of t ime domain. 

3.4 Steady State 

Following Fung /25/, the Galilean transformation 

x* =x, +U't, x2* =*2 · (42) 

is introduced, so that boundary conditions defined by equation (14) will take the form : 

(i) t22 =-Ρ\ψ\(*i*), 

(ii) t21 =~Ρ2Ψι{Χ\), 

(iii ) m 2 3 = 0 , 

(iv) T=0. (43) 

In this case 

^ O W o c . + " ' < ) · (44) 
Ψΐ{*\ )J 

Using boundary conditions given by (43) with the help of (42) and (44) and following the same procedure 

as in the case of t ime domain, we can obtain the expressions for Normal force stress, Tangential force stress, 
Tangential couple stress and Temperature distribution in steady state by replacing ρ with -ίαξ in the 

expressions of time domain, where a = —. 
ci 
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3.5 Inclined Load 

For an inclined load F 0 , per unit length, we have 

/>, = F0 cos<9 , P2 = FQ sin Θ. (45) 

Using equation (45) in equations (34)-(38), we obtain the corresponding expressions for displacement and 

stress components in case of inclined load applied on the surface of the half space. 

4 INVERSION OF THE TRANSFORM 

The transformed stresses and temperature distribution are functions of ΧΊ, the parameters of Laplace and 

Fourier transforms ρ and ξ, respectively, and hence are of the form / ( £ , x2, p). To obtain the solution of the 

problem in the physical domain, we must invert the transform in (34)-(38) using 

1 
/ ( * i , * 2 . p ) = — f Ά ξ , χ ι , 

2π J 

/(χι ,X2 >P) = — f [fe x-1) - ifo s in( i , x2 )¥ξ , (46) 
2π J 

where fe and f0 are respectively even and odd parts of the function /(ξ,χ2, p). Thus, expressions (46) 

give us the transform / ( ξ , χ 2 , ρ ) of the function f{x\,x2,t). Now, for the fixed values of ξ, ,V| and ,v2 · 

the function f(x\,x2,p) in the expression (46) can be considered as the Laplace transformed function g(p) 

of some function g(t). Following Honig and Hirdes / I I / , the Laplace transformed function g(p) can be 

converted as given below. 

The function g (t) can be obtained by using 

j C + / ° o 

g ( 0 = — } eP'g(p)dp, (47) 
C - / 0 O 

where c is an arbitrary real number greater than all the real parts of the singularities of g(p). Taking 

p = c + ix2, we get 

ct 00 

g(0 = f e"Xl g(c + ix2 )dx2 • ( 4 8 ) 
2πι J 

- 0 0 

327 



V o l . 1 8 . N O S . 5 - 6 , 2 0 0 7 Boundary Value Problems in Orthotropic Micropolar 
Thermoelastic Medium with One Relaxation Time 

Now, taking e 01 g(t) as h (t) and expanding it as Fourier series in [0,2L], we obtain approximately the 

formula 

g(t) = ga0(t) + E'D, 

where 
00 η < k M 

g°o ( ' ) = + Σck . 0<t <2L , ck L K c + γ ) ] , (49) 
2 k=l L L 

ED is the discretization error and can be made arbitrarily small by choosing c large enough .The value of 

c and L are chosen according to the criteria outlined by Honig and Hirdes /11/. 

Since the infinite series in equation (48) can be summed up only to a finite number of Ν terms, the 

approximate value of g(t) becomes 

Q Ν 
= + ' 0 < r < 2 L . (50) 

2 *=i 

Now, we introduce a truncation error ET that must be added to the discretization error to produce the 

total approximation error in evaluating g(t) using the above formula. Two methods are used to reduce total 

error. The discretization error is reduced by using the 'Korrecktur' method, Honig and Hirdes /11/ and then ε-

algorithm' /25,26/ is used to reduce the truncation error and hence to accelerate the convergence. 

The 'Korrecktur ' method formula, to evaluate the function g(t) is 

g(t) = gx(t)-e-2cL
gao(2L + t)+ED· 

where \E'D \ « | £ D | . Thus the approximate value of g(t) becomes 

gNk<,t) = gN{t)-e-2cLgN.{2L + t), (51) 

where N' is an integer such that N' <N . 

We shall now describe the f-algorithm which is used to accelerate the convergence of the series in 
m 

equation (49). Let Ν be a natural number and Sm = V ck be the sequence of partial sums of equation (49). 
k=\ 

We define the f-sequence by 
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£0,m ~ 0 . £\,m ~ Sm > £n+l,m ~ £n-l,m+l + . η,ΓΠ,-1,2,3, 
£n,m+\ ~£n,m 

It can be shown by Honig and Hirdes / l l / that the sequence f j j , , ε j j \ converges to 

c 0 
g(t) + Ε ρ - — faster than the sequence of partial Sm, m=l ,2 ,3 The actual procedure to invert the 

Laplace Transform reduces to the study of equation (50) together with an^-algorithm. 

The last step in the inversion process is to evaluate the integral (46). This has been done using Romberg's 

integration with adaptive size. This method uses the results from successive ref inements of the extended 

trapezoidal rule fol lowed by extrapolation of the results to the limit when the step size tends to zero. The 

details can be found in /29/. 

5. N U M E R I C A L RESULTS A N D DISCUSSIONS: 

For numerical computat ions, we take the non dimensional values for orthotropic micropolar thermoelastic 

solid with one relaxation t ime as, 

d\ = 1 . 0 2 , d2 = 0 . 7 8 8 8 , d} = 1 . 9 8 2 8 , d4 = 6 . 0 2 2 4 , d5 = 1 . 3 2 , d6 = 1 . 5 3 , d-, = .00104 , d% = 1 . 6 5 4 3 . 

Following Gauthier /10/ we take, the non dimensional values for Aluminium Epoxy like composite as 

dx = 1 , d2 = 0.667 , d3 = .992 , d4 = 5.977 , d5 = 1 , dt = 1 , dn = .001167 , d% = .847 . 

The comparison of normal force stress, tangential couple stress and temperature distribution for 

orthotropic micropolar thermoelastic solid with one relaxation time (OMST) and isotropic micropolar 

generalized thermoelastic solid (1MST) have been shown in Figures 1-21. The computat ions were carried out 

at x 2 =0.1 within the range 0 < < 10 . The curves represented by solid line with or without centre symbol 

correspond to the case of M O S whereas the curves represented by dotted lines with or without centre symbol 
* 

correspond to the case of MIS. All the results are shown for one value of dimensionless width a 0 = = 1 
c \ 

V _ 
and three values of dimensionless speed 

V0 - — = 5, 10, 15 . In Figures 1-18 solid and dotted line without 
cl 

center symbol represents the variations for 0 = 0° (initial angle), solid and dotted lines with center symbol 

( - 0 - 0 - ) represent the variations for θ = 45°( intermediate angle) and solid and dotted line with center 

symbol ( - x - x - ) represents the variations for 0 = 90° (extreme angle). In Figures 19-21 solid and dotted 
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lines without center symbol represent the variations for dimensionless speed V=5, whereas solid and dotted 

line with center symbol ( - 0 - 0 - ) represent the variations for dimensionless speed V=10, and solid and 

dotted line with center symbol ( - x - x - ) represent the variations for dimensionless speed V=15. 
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5.1 Concentrated Force 

Figures 1-3, 7-9, 13-15 depict the variations due to concentrated force. 
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5.1.1 Time Domain 

Figurel shows the variations of normal force stress t22 with distance x. The values of normal force stress 

t22 , at initial angle of inclination initially decreases then attains a constant value for both MOS and MIS and 

as the angle of inclination increases ( θ = 45°, 90°) for MOS its values oscillate an simultaneously deceases 

with an increase in x, whereas for MIS its values increase with an increase in distance x. The values of t22 

are greater for MOS as compared to that of MIS. 

It is evident from Figure 2 that for MOS the values of tangential couple stress m23 initially deceases then 

increases and then oscillates with very small magnitude for all values of θ . However for MIS and at initial 

inclination angle and for MIS, it has same variations as that of MOS, while for remaining angles its value 

oscillates with increasing magnitude. In this case the values for MOS are less as compared to that of MIS. 

Figure 3 shows the variations of temperature distribution Τ with distance x. The values of Τ for MOS and 

when θ = 45°, 90° oscillates with increasing magnitude, while for MIS exactly the opposite behavior is 

observed. At initial angle of inclination its value starts with initial increase and then tends to attain a constant 

value for both MIS and MOS. 
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distributed source in time domain. distributed source in time domain. 

5.1.2 Frequency Domain 

Figures 7-9 shows the variations with distance χ in frequency domain. It is observed from Figure 7 that 

for MOS and at intermediate and extreme angle, the values of t22 start with small initial increase then de-

crease sharply in the range 1 < χ < 4.5 ; with further increase in distance χ its value oscillates with decreasing 

magnitude, while for MIS its values start with sharp initial increase in the range 0 < x < 2 then alternately 

increase and decrease with distance x. When 0 = 0° and for both MOS, MIS its values are distributed in 

large range but with very small magnitude. The values of t22 for MOS are smaller than those of MIS. 
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Figure8 shows the variations of m23 with distance x. For MOS and at θ = 45°, 90° its values oscillate 

with very small magnitude. However at intermediate angle its value alternately increases or decreases with 

increase in distance χ whereas for MIS its behavior is opposite as compared to that of MOS. The values of 

m23 for MIS and when θ = 45°, 90° have been shown in the figure by multiplying its original value by 100. 

It is observed f rom Figure 9 that the value of Τ for both MOS and MIS when θ = 0° oscillates in very 

large range but with very small magnitude. While when θ = 45°, 90° for MOS its value starts with initial 

decrease and then increases sharply in the range 1 < χ < 5 ; after that its value alternately increases or 

decreases with further increase in distance x. However for MIS and both intermediate and extreme angle of 

inclination its values start with sharp decrease and then oscillates with increase in distance x. 
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5.1.3 Steady State 
Figuresl3-15 show the variations with distance χ in steady state. In Figure 13 it is observed that for both 

MOS and MIS and all values of Θ, the value of t22 oscillates with decreasing magnitude. 

Figure 14 shows that at an initial angle of inclination for MOS the values of m23 initially increase then 

decreases with increase in x, while for MIS its values oscillate with small magnitude. At intermediate angle 

of inclination its values initially increases and then decreases with increase in distance χ for both MOS and 

MIS .While at extreme inclination for MOS its values initially decreases and then increases sharply in the 

range 0.2 < χ < 4 and then remains constant for remaining value of x, while for MIS its values oscillates 

with increase in x. 

Figure 15 shows that for M O S and intermediate and extreme angle of inclination the value of Τ initially 

decreases, then oscillates with increasing magnitude and at an initial angle it oscillates with increasing 

magnitude, while for MIS and all angles of inclination its value initially increases and then decreases with 

distance x. 

5.2 Distributed Force 

5.2.1 Time Domain 

Figure 4 shows that for MOS when θ = 45°, 90° the value of /22 oscillates with decreasing magnitude 

with increase in distance x, while for MIS its values increases with increase in distance x. However for MOS 

and for initial angle of inclination its value initially decreases then appears to be steady for all values of x. 

while for MIS its value oscillates with increasing magnitude. 
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F igure 5 s h o w s tha t the v a l u e s of /m23 fo r M O S and at all ang le s ini t ial ly d e c r e a s e and then at tain a 

constant va lue wi th inc rease in x, wh i l e for M I S its va lues initially d e c r e a s e and then osci l la te wi th large 

magni tude . 

F igure 6 s h o w s the va r i a t ions of t empe ra tu r e dis t r ibut ion Τ wi th d i s t ance x. T h e va lue o f Τ for M O S and 

when θ = 45° , 90° osc i l l a tes wi th increas ing magn i tude , whi le for M I S its va lues dec rease wi th increase in x. 

W h e n θ = 0° and for M O S its va lues start wi th initial increase and then at tain a cons t an t va lue , whi le for M I S 

its values osci l la te wi th d e c r e a s i n g magn i tude . 

5.2.2 Frequency Domain 
Figs 10-12 s h o w the va r i a t ions o f no rmal fo rce stress, t angent ia l c o u p l e s t ress and t empe ra tu r e 

distr ibut ion in f r e q u e n c y d o m a i n . In this case the va lues of no rmal f o r c e s t ress , t angent ia l coup le stress and 

t empera tu re d is t r ibu t ion va ry in a s imi lar w a y to that of concen t ra ted fo rce but wi th d i f f e r e n c e in magn i tude . 

5.2.3 Steady State 
Figures 16-18 dep ic t the var ia t ions d u e to d is t r ibuted fo rce in the case o f s t eady state. F rom Figure 16 it is 

observed that, as w e fix the po in t o f obse rva t ion , i.e., the va lue o f d i s t ance 'x', the no rma l d i sp l acemen t t22 

for M O S increases or d e c r e a s e s wi th c h a n g e in ang le of incl inat ion. Wi th fu r the r increase in incl inat ion 

angle, it is revea led tha t s t ress f o l l o w s an osc i l la tory pat tern abou t ze ro va lue , u l t imate ly b e c o m i n g zero , 

whi le for M I S its va lue osc i l l a tes wi th dec rea s ing m a g n i t u d e with c h a n g e in d i s t ance 'x'. 

F igure 17 s h o w s that fo r M O S and at initial and in te rmedia te ang le o f incl inat ion the va lues of m 2 3 

initially increases and then d e c r e a s e s wi th fu r the r increase in x, wh i l e w h e n θ = 9 0 ° its va lues increase wi th 

increase in x. For M I S the m a g n i t u d e o f m 2 3 increases or dec reases a l o n g an osc i l la tory path wi th increase in 
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distance x. It is revealed that with an increase in distance each curve fol lows an oscillatory pattern. 

It is observed from Figure 18 that the value of Τ in the case of MOS increases or decreases with an angle 

of inclination, with further increase in inclination it is observed that Τ follows an oscillatory pattern about 

zero value which becomes zero ultimately. For MIS and all values of Θ, the values of Τ initially decrease and 

then increase sharply in the range 1 < χ < 3 , then decrease with further increase in x. 
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Figures 19-21 depict the variations of ί ι ι , Μ - χ , Τ due t 0 moving force in the time domain. It is 

observed from Figure 19 that for MOS the maximum (absolute) normal stress t22 occurs corresponding to 

the maximum velocity (V=15), i.e., impact of moving force is larger for large velocities. Further it is 

observed that for MIS, when V=10, 15 the value of t22 initially decreases and then increases with further 

increase in x, while it oscillates with large magnitude for V=5. 

Figure 20 shows that the values of m 2 i f ° r MOS and for all values of V initially increase and then 

oscillates with increase in x. However its behavior is opposite in nature for MIS when V=10,15 but the same 

for V=5 as compared to that of MOS. The values of m23 for MIT have been shown in the figure by dividing 

its original value by 100. 

It is observed from Figure 21 that the variations in the values of Τ are opposite to that of t22 . 

6. OBSERVATIONS 

It is observed from the above discussion that, due to the effect of anisotropy, the values of normal force 

stress t22 are increased with the application of both concentrated and distributed source, while its value 

decreased when moving source is applied. However the values of tangential couple stress mi.s and 

temperature distribution Τ get decreased with increase in anisotropy. A significant effect of change in angle 

of inclination is also observed on the values of t22 , W23 and T. On the application of concentrated source, as 

the angle of inclination increases, the value of t22 increases while that of m2 i and Τ decreases. Similar 

behavior is observed on the application of distributed and moving sources. In frequency domain, the values 

of t22 and W23 are decreased with increase in anisotropy while reverse behavior is observed in the values of 

temperature distribution T. Also, as the angle of inclination increases, the values of t22 are increased while 

reverse behavior is observed in the values of m2y and T. For steady state, anisotropy tend to increase the value 

of normal force stress t22 whereas the values of mis and Τ are decreased. With increase in the angle of 

inclination the value of t22 and Τ is increased for both MOS and MIS, whereas exactly opposite behavior is 

observed in the values of m2y. 

7. REFERENCES 

1. Chandershekharia, D.S, 1986, Heat flux dependent micropolar thermoelasticity. International Journal 

of Engineering Science, 24, 1389-1395. 

2. Iesan, D., 1974, On the positive definiteness of the operator of micro polar elasticity, J. Engg. Math., 

8,107-112. 

3. Dost, S.,and Tabarrak, B.,1978, Generalized micropolar thermoelasticity International Journal of 

Λ - 7 



Vol. 18, Nos. 5-6,2007 Boundary Value Problems in Orthotropic Micropolar 
Thermoelastic Medium with One Relaxation Time 

Engineering Science, 16,173-183. 

4. Eringen A.C, 1968, Theory of micropolar elasticity. In: Fracture, H. Liebowitz (Ed.), Vol. II. Academic 

Press, New York. 

5. Eringen A.C., 1970, Foundations of micropolar thermoelasticity. Course of lectures No.23,CSIM Udine 

Springer. 

6. Eringen A.C., 1992, Balance laws of micromorphic continua. I. International Journal of Engineering 

Science, 30, 805-810. 

7. Eringen A.C., 1999, Microcontinum Field Theories. I. Foundations and Solids, Springer-Verlag,New 

York. 

8. Eringen A.C., 2001, Microcontinum Field Theories. II. Fluent Media, Springer-Verlag, New York. 

9. Maugin, G.A.and Mild, 1986, A. Solitary waves in micropolar elastic crystals. International Journal of 

Engineering Science, 24, 1477-1499. 

10. Gauthier R.D., 1982, In: Experimental investigations on micropolar media, Mechanics of Micropolar 

Media. O. Brulin and RKT Hsieh (Eds). (Singapore: World Scientific). 

11. Honig, G., Hirdes, V., 1984, A method for the numerical inversion of the Laplace transform, 

J. Comput.Appl. Math. 10, 113-132. 

12. Janusz Dyszlewicz, 2003, Micropolar Theory of Elasticity, Lecture notes in applied and computational 

mechanics. 

13. Nowacki, W., 1966, Couple stress in the theory of thermoelasticity. Proc. ITU AM Symposia, Vienna, H. 

Parkus and L.I. Sedov (Eds.), Springer-Verlag, 259-278. 

14. R. Kumar, P. Aliwalia, 2005, Electrodynamics of inclined loads in a micropolar cubic crystal, Mech. 

and Mechanical Engg., 9(2), 57-75. 

15. R. Kumar, P. Aliwalia, 2005, Moving inclined load at boundary surface, Appl.Math. and Mech. (English 

Edition), 26(4), 476-485. 

16. R. Kumar, P. Aliwalia, 2005, Interactions due to inclined load at micropolar elastic half-space with 

voids, IJAME, 10(1), 109-122. 

17. R. Kumar, L. Rani, 2005, Response of thermoelastic half-space with voids due to inclined load, IJAME, 

10(2), 281-294. 

18. R. Kumar, L. Rani, 2005, Deformation due to inclined load in thermoelastic half space with voids, 

Arch.Mech, 57(1), 7-24. 

19. R. Kumar, S. Choudhary, 2003, Response of orthotropic micropolar medium under the influence of 

various sources, Mechanica 38,349-368. 

20. R. Kumar and S. Choudhary, 2004, Dynamical behavior of orthotropic micropolar elastic medium, 

J. Vibration.Control. 8:1053-1069. 

21. R. Kumar and P. Ailawalia, 2004, Effects of fluid layer at micropolar orthotropic boundary 

surface.,'"Sadhana" Part 6, 29, 605-616. 

338 



R Kumar and RR Gupta Journal of the Mechanical Behavior of Materials 

22. R. Kumar and P. Ailawalia, 2006, Interactions due to mechanical sources in micopolar cubic crystal, 

IJAME, 11(2),337-357. 

23. R. Kumar and P. Ailawalia, 2006b, Deformation due to time harmonic sources in micropolar 

thermoelastic medium possessing cubic symmetry with two relaxation times, Applied Mathematics and 

Mechanics (English Edition) 27(6), 781-792. 

24. R. Kumar and P. Ailawalia, 2007, Deformation due to moving load at boundary surface, Science and 

Engineering of Composite Materials, 14, 25-46. 

25. K.S. Crump, 1976, Numerical inversion of Laplace transforms using a Fourier series approximation, J. 

ACM, 23(1), 89-96. 

26. F. Vellion, Quelques methods nouvelles pour le calcul numerique de la transformer inverse de Laplace, 

Th. Univ. de Grenoble, 1972. 

27. R.S. Dhaliwal and A. Singh, 1987, Micropolar thermoelasticity, in: Thermal Stresses II, Mechanical and 

Mathematical Methods, Ser.2, R. Hetnarski (Ed.), North-Holland. 

28. T.R. Tauchert, W.D. Claus, and T. Ariman, 1968, The linear theory of micropolar thermoelasticity, 

International Journal of Engineering Science, 637-47. 

29. W.H. Press, S.A. Teukolshy, W.T. Vellering and B.P. Flannery, 1986, Numerical Recipes, Cambridge 

University Press, Cambridge. 

30. Y.C. Fung, 1968, Foundations of Solid Mechanics [M], Prentice Hall, New Delhi. 

339 




