Boundary Value Problems in Orthotropic Micropolar
Thermoelastic Medium with One Relaxation Time

§Rajneesh Kumar and tRajani Rani Gupta

Department of Mathematics, Kurukshetra University
KURUKSHETRA, HARYANA, INDIA
E-mail: §raineesh_kuk(@rediffmail.com, frajani_gupta_83(@yahoomail.com

ABSTRACT

The present investigation is concerned with boundary value problems in orthotropic micropolar
thermoelastic medium with one relaxation time as a result of inclined load. The inclined load is assumed to
be a linear combination of a normal load and a tangential load. Laplace and Fourier’s transform are used to
solve the problem. Various types of sources have been taken to illustrate the utility of the approach. The
transformed components of Normal force stress, Tangential force stress, Tangential couple stress and
Temperature distribution are inverted using numerical inversion techniques. The effect of anisotropy has

been shown on the resulting expressions graphically.
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1. INTRODUCTION

Micropolar elasticity theory introduced by Eringen /4/ incorporates the local deformation and rotations of
the material points of a body. The theory provides a model that can support body and surface couples and
display a high frequency optical branch of the wave spectrum. For engineering applications, it can model
composites with rigid chopped fibers, elastic solids with rigid granular inclusions, and other industrial
materials such as liquid crystals /4, 6, 9/. Several investigations reveal an interesting phenomenon that
characterizes the micropolar theory and some of its generalizations are contained in /7,8,12/ .

The linear theory of micropolar thermoelasticity was developed by extending the theory of micropolar
continua to include thermal effects by Nowacki /13/ and Eringen /5/. Tauchert er a/ /26/ also derived the
basic equations of linear theory of micropolar thermoelasticity. Dost and Tabarrok /3/ presented micropolar

generalized thermo-elasticity by using the Green -Lindsay theory. One can refer to Dhaliwal and Singh /25/
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for a review on micropolar thermoelasticity. Chandrasekhariah /1/ formulated a theory of micropolar
thermoelasticity which includes heat-flux among the constitutive variables.

The dynamic response functions of elastically anisotropic solids are of interest in many fields including
crystal acoustics, solid-state physics, non-destructive testing , material characterization, seismology, applied
mechanics and mathematics. In recent years the elastodynamic response of anisotropic continuum has
received the attention of several researchers.

Iesan /2/ investigated the static theory of anisotropic micropolar elastic solids and proved the positive
definiteness of his operator for the first boundary value problem. Kumar ef al./14-21/ investigated boundary
value problems in an orthotropic micropolar continua and micropolar thermoelastic medium possessing cubic
symmetry /22-24/.

The present investigation seeks to determine the components of normal force stress, tangential couple
stress and temperature distribution due to concentrated, distributed and moving forces in time domain,
frequency domain and steady state due to the inclined load in an orthotropic micropolar thermoelastic
medium with one relaxation. The solution is obtained after employing an integral transform technique. The

integral transforms are inverted using a numerical method.

2. FORMULATION AND SOLUTION OF THE PROBLEM

We consider an orthotropic micropolar thermoelastic half-space with one relaxation time, having x, -axis
vertically downwards. Suppose that an inclined load Fy, per unit length, is acting along the interface on the

x3 -axis and its inclination with x, -axis is .

The basic equations in the dynamic theory of the plain strain of a homogeneous, orthotropic micropolar

thermoelastic solid with one relaxation time in absence of body forces, body couples and heat sources can be

recalled as:
Jj T PU, 1))
mi3; + €3ty = pJdy, i=l,2. (2)

and the heat conduction equation is given by,

« O*T . O°T « 0T T d au, duy
K, ——'+K2 pC (— 70 —)+ To(— 70 —)(ﬁ| ) (3)
&tl 8x22 a"
The constitutive relations are:
Wy =Ané +Apen —BT, ty =Apen +Agey, m3 =Beds .
tyy = A +Anen —faT, by = Agey + Aggéy).  my3 = baanr s, )
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where
E;=u;; + 81,3¢3. %)
Here, the relations between f, and the coefficients of thermal expansions «, are

B = Ao + 4oy,
By = Ay + Apya; .

In the above equations (1)-(5), we have used the following notations:

t, Components of the force stress tensor, mj; components of the couple stress tensor, &; and

components of micropolar strain tensor, u#, components of displacement vector, @¢; component of
microrotation vector, &;; permutation symbol, 7y is the relaxation time, A, A2, 4xn,

Ayy, Ang . Agg, Bas , Beg are characteristic constants of the material, C* is the specific heat, K| and K

are the thermal conductivities.

For the two dimensional problem, we take the components of the displacement and microrotation vector

in an orthotropic micropolar generalized thermoelastic solid of the form
i =(u,u,0), ¢=(0,0,8). (6)

We define the dimensionless variables by the expressions:

o pa pet Lij
ij
(0 ) =2, %), ()=, 1), &'=gy, 1;'=——,
q ATy ATy Y
* T )
* *
m'y; = my, T'=—, t'=0't, 15'=071), 0=—F, @)
abTy Ty o'
where

I

Ki P

Pl pC'q o _ Al

With the help of equations (4)-(7), equations (1)-(3) take the form (on suppressing the prime):

2 2 2 2
(aa —+dydy %)u. () ey =) 2B - iy £ =iy L ®)
X, : 10x2 2 I

319



Vol. 18, Nos. 5-6, 2007 Boundary Value Problems in Orthotropic Micropolar
Thermoelastic Medium with One Relaxation Time

2 2 2 _ _ 2
(d2+d3) aul +(6‘+d__58 )“2_(d5 d3)%——ﬂﬂ':27;=d|au2, ©)
dy dx;  oxyt  dy ox? dy oxy or?
2 2 2
&, &, —2d, <Ny 4 e, N PR . S - N (10)
xy? ox 2} Ox) or?
2 _ A2 2 % ou Ou
AN, I e e ) ()
ox?  oxp? o o ot at oy Ox
where
Aooc? =
Ay A2 A1s ) 4n 88C, . _PJS
dl=_', 2=_, d3=—9 d4=—y dS:_s =7 .21 ',!B_ )
Ay Agg Agg Agg Agg By Byy
* n 2T
K*=£E‘, ﬂ,.,:/"_l’ &= ﬂlnoa‘
K, B prKio

We define the Laplace and Fourier transforms as follows:

.7(xlsx2’p)= If(X],Xz,t)e_ptd[ ’ (12)
0
f(&xy,p)= J.f(xl,xzvt)ei‘f’dxl : (13)

3 BOUNDARY CONDITIONS

The boundary conditions on the surface x, =0 are given by

() 2 =-Ry(x)n(),

(iiy 1y ==Pyy (x)n(0),

(iii) my3 =0,

(iv) T=0, (14)

where A and P, are the magnitudes of force and w;(x,),,(x;) are defined later in this paper and 7(¢)

take the different values in time domain and frequency domain.
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Case I- Concentrated Force
To determine the normal force stress, tangential force stress, tangential couple stress and temperature

distribution due to concentrated force described by Dirac delta function

Wl(xl)l
=6(x),
wa(x)) ()

which must be used with

w1($) }
v2(8) (15)
Case II- Distributed Force

The solution due to force distributed over a strip of width 2a, applied on the half space is obtained by

setting

W|(X1)1=

H — H(xy —a),
oo (xy +a)— H(x —a)

(16)

in equation (14). Using equation (7) and then applying Fourier transforms defined by equation (13) on
equation (16) we obtain,

Wl(xl)1= .2 sin( 5010)/5.
w

wa(x)) )

(17)

Case III- Moving Force
The solution due to an impulsive force, moving along the x-axis with uniform speed V at x» =0 is

obtained by setting

w1 (xq)n(1) ]\=V/(xl”)=5(x‘ i OF o

w2 (x)n() |
in equation (14). Using equation (7) and then applying Laplace and Fourier transform’s defined by equation

(12) and (13) on the equation (18) we obtain,

v _, ., |

' ' 19
vaOn(p)) T p-iéqV (19)
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3.1 Time Domain

Applying the Laplace and Fourier transform’s defined by equations (12) and (13) on equations (8)-(11),

we obtain
d? . dii dé _
(—‘—(.f2 + p2 Ydydy)uy —ié(d, +d3)—2—(d3 —l)ﬁﬁ-nfdldﬂ" =0, (20)
dxy* dxy dx;
iE(dy +d3) diy | d®  £%d . iE(ds-d3) ; =, dT
_ig(dy 3)_1+( 2_5 5—d|p2)u2+§(5 3)¢3—ﬂd|-—=0, Q1)
dy dx, dx, dy dy dx;
duy - » ) 1%
dy(dy —1)——-dyig(ds —d3 )ity +(—5 —&"dg —d7(ds —2d3 +1)-dg p° )¢ =0, (22)
de de
- ) = g 2 g2 2
ige(p+mtop”) . ef(p+mrop”) diy d° S +p+rop” -
- - u - = +( 7~ = )y =0. (23)
K K d;  dx, K

Equations (20)-(23) after some algebraic calculation yield:

(% - 4v® + Bv* —Cv? + D)y, ity 43, T) =0, (24)

where

A=-f-a-ay +B g-h+b+dye?,
B=fla+a +h-b-dye?1+g[-B'2(a+ h+dyce?)-e£2 B (2d, + d3)]
_gedy(dy —dy )ds - d3)

d, ’
C = f{a) dre* +[~ay| —h+2b-2hd| p* - £ (2dy + dy + dy )]} + g{ahB™?
+E2aef’ (dy - dy) - 2" e£2 dr ol ds — dy) + ££2dyay } + (a+ h)a,

+a(a) + h-b)—a'+ p’hd, - a| d7€®

b= g2 (dy +d3)(d +d4),

D =(fh-&rgdye)aya+a'), a=Erdg +dy(ds -2dy +1)+dg p?, g
4

2 2 2 2
+p+T + Myt ) d
Syl I i PRI g B e

K K dy

dy

and u=—d-—.
2
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To solve this equation, we use Descarte’s algorithm outlined below:

Shifting the roots of secular equation (24) by a factor of A/4 to eliminate the second term, we obtain

CH+HEE+GE+1=0. (25)
where
2 3 2 4
fooA gop 3 G 4B A& . AB 24' AC
4 8 2 8 16 256 4

Factoring Equation (25) into two quadratic factors, we have

CHHHEE +GE+ 1= (6t +Ig+n)(g? —Ig+n). (26)

Comparing the coefficients of various powers of ¢ in (26) on both sides, we get

n+n'=12+H, n-n'== nn'=1. 27
Eliminating » and n’ from (27), we obtain

Z3 +2HZ? +(H?* -4Z-G* =0 , (28)

where Z =/?. Being cubic with complex coefficients, equation (28) can be solved by using the irreducible

case of Cardon’s method with the help of De Moivre’s theorem. We again shift the roots of (28) by a factor

of % in order to obtain the standard cubic as

Y3 -30'Y-G" =0. (29)
where
) 3
y=z+ZTH,H‘=———‘” 12D G'=GZ-8—§£+—22"; . (30)

Let the roots of equation (29) be of the type Y=U+V
so that

vS+v3=G", Ui =n".

323



Vol. 18, Nos. 5-6, 2007 Boundary Value Problems in Orthotropic Micropolar
Thermoelastic Medium with One Relaxation Time

We may find the cube roots with the help of De Moivre’s theorem, as shown below:

_G +VG —4H"

2

Let U3 =L+iM, LMeR. 3D

Then the values of U are given by

2kn+® . 2kn+®
+1S8In

Uy = r3 (cos ), k=012, (2)

where r=vr* + M2 and ®= tan_l(%). Having determined U, the values of V can be obtained from the

relation UV — H  which further leads to the required values of Y and hence to the values of
> =Z=Y-2H /3. One of the values of / so obtained is then used to evaluate m and n by equation (27).

Using the values of m, n and /, the reduced secular equation (25) is factored into two quadratic factors of the
type (26), which are further solved to obtain the four roots ¢, , i=1,2,3,4. The complex roots of secular

equation (24) are obtained from the relation v; =¢, + 4/4, fori=1,2,3,4.

The solution of equation (24) satisfying the radiation condition that 1, 172,453 T—>0as X, > is

4
(171’172’¢3’T) = ZAI(I’ rl’sl’t; )e_%x2 ) (33)
1=1
where
_ag; +ayq) +a3q; _—ayq; +ri(apg] - an) +agg; A
i = 4 2 D ) i 5 ) 1 _';,é_a7— 3
ayq, +asq, +ag arqg;, —ag 4
, 151 (dy —1)-g? +h+ifrq,(dy +dy) e B h+EX(dy +d3)—af’ + dpe?
: iEd,d, » 2 1Ed, ‘
_a(B h-&%(dy +dy)-&Pdye(ds —dy))  _ f(dy+dy) .
g = = , a4 =l-——=——= aq =uay; —a ,
Igd.‘ (14
3 e(ds —dy )d “e i&(ds —d "h—&%(dy +d
a5=—a1|—aa4—’l e(t5, 3)(7.07:,€'c’(18:'§( ] 3)’a9=ﬂ "_(,2“3).010:(14.
uy lguy uy Iquy

Using equations (4), (6), (7) in the boundary conditions (14) and then applying Laplace and Fourier
transforms defined by equations (12)-(13) with the help of (33), we get the transformed normal force stress.

tangential force stress, tangential couple stress and temperature distribution as:
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fy = %(A]C_'e—q.xz +8y026792%2 4 Aycyem B2 + Agcye 2 )(p)
b = i(m aje 7+ Ayaye 2 + Ayaze” 2 + Agaye )i (p),
my3 = i(ﬂlbl‘e T 4 Ay by e 9272 4 Asbye P2 + Agbye 9472 ) (p),
T= i(AI’I e N2 £ Ay by ™22 4 Aty B2 + Aytye” 2 (p),

where

ST g es, . G —diEr—qindy - Bt,dyds
i dydy T didyd, ! dydy

A =(c_*a; —c;af )(b;s4 —s'3b,;)+(c;a_' —c,‘a;)(b;s“ —s2b2)+(c|'a; —c;af)(b2s3 —s:bi )+

(cra3 ~c3a )by s4 — siby ) +(caay —caaq )by 53— 183 ) +(c3ay — c3a3 )by 52 - ,53),

Ay =Ry (&)@ (bysq —s3bs) — a3 (bys4 —s3b4) +ag (bys3 — 5763 )]+

Py (E)cs (b3 54 = 53b3) =3 (b sq = 53b3) +ca (bys3 =533 )]s

Ay = Ry (&)ay (bysq — s3b3) — a3 (B sq —siby)+ ag (by s3 - 5163)]—

Py (E)lef (354 —s3b3) =3 (B 54 =516y ) + ¢4 (by 53 —5163)],

Ay = —Ry(E)ay (bysq —s2b3 ) - a5 (B sq —31b3) + ay (by 53 — 167 )]+

Py (el (bysq —s2b3) = c3 (By 54 = s1b3) + ca (B 53 = 5153)),

Ay = ByyiGiim (inssy —saby) - ay(by s3 —sib3 )+ a3 (B 53 — 5162)] +

Py (E)—ci (bysy =523 )+ 3 (B 53 - 51b3 ) — €30y 53 = 516)).

,1-1,2,3,4.

[n the time domain, boundary conditions defined by equation (14) must be used with

o) = {5(1) for Concentrated and Distibuted Force,
H(t) for Moving Force.
1 for Concentrated and Distributed Force,
npy=41

— for Moving Force.
p

(34)

(3%)

(36)

37

(38)

(39)

The expressions for stresses and temperature distribution in time domain can be obtained for
Concentrated, Distributed and Moving Force by using the values of (&), ¥, (&) from (15), (17) and (19) in

equations (34)-(38) along with (39).
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3.3 Frequency Domain

In this case, we assume time harmonic behavior as

(uy, 1y, 83, TXx, X3, 0) = (), 4z, 83, TNy, X3 )™, (40)
In the frequency domain, boundary condition defined by equation (14) must be used with

n(t) = e . @1

The expressions for normal force stress, tangential force stress, tangential couple stress and temperature
distribution in frequency domain can be obtained by replacing p with i@ and 7(p) with 1/(p—iw) in the

expressions of time domain.

3.4 Steady State

Following Fung /25/, the Galilean transformation

x"=x+U't, %" =x,, t =t, (42)

is introduced, so that boundary conditions defined by equation (14) will take the form :

(i) y =-Rwi(x"),
(i) &) = =Py (x),

(III) mjy3 =0,

(iv) T=0. (43)
In this case

'//l(xl.)1=5(xl +U'D). (a4

wa(x )

Using boundary conditions given by (43) with the help of (42) and (44) and following the same procedure

as in the case of time domain, we can obtain the expressions for Normal force stress, Tangential force stress,
Tangential couple stress and Temperature distribution in steady state by replacing p with —iaZ in the

expressions of time domain, where a=—.
A
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3.5 Inclined Load

For an inclined load Fy, per unit length, we have
R =Fcosf, P =Fsing. 45)

Using equation (45) in equations (34)-(38), we obtain the corresponding expressions for displacement and

stress components in case of inclined load applied on the surface of the half space.

4 INVERSION OF THE TRANSFORM

The transformed stresses and temperature distribution are functions of X, , the parameters of Laplace and

Fourier transforms p and &, respectively, and hence are of the form ](5, X, p). To obtain the solution of the

problem in the physical domain, we must invert the transform in (34)-(38) using

7(xl’x2’p)=§L I 7(§,X2‘ p)e—h:xl g ,
e

Fnux2,p) =5 [ (e cosigng) = sin(G.x)1de (46)

where f, and f, are respectively even and odd parts of the function f({.xz, p) . Thus, expressions (46)
give us the transform f({,xz, p) of the function f(x,x;,t). Now, for the fixed values of &, xjand x,,
the function f(x;,x,, p) in the expression (46) can be considered as the Laplace transformed function g(p)
of some function g(t). Following Honig and Hirdes /11/, the Laplace transformed function g(p) can be
converted as given below.

The function g (t) can be obtained by using
C+io

g)=— [ #'2(p)dp. (47)
i

C—iao

where ¢ is an arbitrary real number greater than all the real parts of the singularities of g(p). Taking

p=c+ixy, we get

@)
[ >4 i —

g)==— [ ™ g(c+ixy)dr . (48)
2ri e

327



Vol. 18, Nos. 5-6, 2007 Boundary Value Problems in Orthotropic Micropolar
Thermoelastic Medium with One Relaxation Time

Now, taking e ' g(¢) as h (t) and expanding it as Fourier series in [0,2L], we obtain approximately the

formula
g(t) . goo(t)+ E‘D 3

where

- tkmt

© " Ledd .
2a=2+F ¢, , 0<1<2L , o =—e L glc+ 2Ty, (49)
- L L

Ep is the discretization error and can be made arbitrarily small by choosing c large enough .The value of

c and L are chosen according to the criteria outlined by Honig and Hirdes /11/.
Since the infinite series in equation (48) can be summed up only to a finite number of N terms, the

approximate value of g(t) becomes

+

I™>i=

¢, 0<¢<2L. (50)

N |(§

gn(t)=

==
n

Now, we introduce a truncation error Er that must be added to the discretization error to produce the

total approximation error in evaluating g(t) using the above formula. Two methods are used to reduce total
error. The discretization error is reduced by using the ‘Korrecktur' method, Honig and Hirdes /11/ and then &-
algorithm' /25,26/ is used to reduce the truncation error and hence to accelerate the convergence.

The ‘Korrecktur’ method formula, to evaluate the function g(t) is
8(t) = g (N - ¥ g 2L +0) + Ep:

where |E'p|<<|Ep|. Thus the approximate value of g(t) becomes
gn, (N =gn (0= gL+, (s1)

where N'is an integer such that N'< N .

We shall now describe the g-algorithm which is used to accelerate the convergence of the series in

m
equation (49). Let N be a natural number and S, = z ¢, be the sequence of partial sums of equation (49).
k=1

We define the e-sequence by
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1
6‘0,,,, -0 ,6‘],,,, - S,,, 5 8,,_,_1,,” - 6‘,,_1’,,,_,,1 N n,m,—1,2,3, .............
nm+l ~€nm

It can be shown by Honig and Hirdes /11/ that the sequence &;1,&3],...cccovnmnnne £ N converges to
g+ Ep —%0 faster than the sequence of partial S,,, m=1,23..... The actual procedure to invert the

Laplace Transform reduces to the study of equation (50) together with ang-algorithm.

The last step in the inversion process is to evaluate the integral (46). This has been done using Romberg's
integration with adaptive size. This method uses the results from successive refinements of the extended
trapezoidal rule followed by extrapolation of the results to the limit when the step size tends to zero. The

details can be found in /29/.

5. NUMERICAL RESULTS AND DISCUSSIONS:

For numerical computations, we take the non dimensional values for orthotropic micropolar thermoelastic

solid with one relaxation time as,

dy =102, dy =0.7888, d3 = 19828, d, =6.0224, ds =132, dg =1.53, d7 =.00104, dg =1.6543 .

Following Gauthier /10/ we take, the non dimensional values for Aluminium Epoxy like composite as

di=1,dy=0667, dy=992,dy=5977 ,ds=1,dg =1, dy =.001167, dg =.847.

The comparison of normal force stress, tangential couple stress and temperature distribution for
orthotropic micropolar thermoelastic solid with one relaxation time (OMST) and isotropic micropolar
generalized thermoelastic solid (IMST) have been shown in Figures 1-21. The computations were carried out

at x, =0.1 within the range 0 <, <10. The curves represented by solid line with or without centre symbol

correspond to the case of MOS whereas the curves represented by dotted lines with or without centre symbol

*
w a

1

correspond to the case of MIS. All the results are shown for one value of dimensionless width «y =
4]

14
and three values of dimensionless speed Vo = _c— =35, 10, 15 In Figures 1-18 solid and dotted line without
!

center symbol represents the variations for 8 = 0° (initial angle). solid and dotted lines with center symbol
(—0-0-) represent the variations for 8= 459 (intermediate angle) and solid and dotted line with center

symbol (—x—x—) represents the variations for 6 = 90% (extreme angle). In Figures 19-21 solid and dotted
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lines without center symbol represent the variations for dimensionless speed V=5, whereas solid and dotted

line with center symbol (—0—0-) represent the variations for dimensionless speed V=10, and solid and

Boundary Value Problems in Orthotropic Micropolar
Thermoelastic Medium with One Relaxation Time

dotted line with center symbol (—x—x— ) represent the variations for dimensionless speed V=15.

20 j
s E |
5 0 —fF=
: 3 A
x -10 — AT St X
N e g
-° 2 o Wecsa
20 entil e | == e
> — 0 = MISCLME
_/ — — RS Y
B A I P P
0 2 4 6 8 10
distance x
Fig. I: Variation of t», with distance x due to
concentrated source in time domain
25 _"‘-!‘
i | o e
- 20 —b-o ) ——s—— wOSC(N 8
SR X ==t
g 15 c— \ . ’\ —_—— mscm:"a )
2 3l AR X
g 10 | \o y\"* ’/' -~
5 |
s . %
.5 —
B BN L B B
0 2 4 6 8 10
distance x
Fig. 3: Variation of T with distance x due to Fig. 4:

concentrated source in time domain

5.1 Concentrated Force

Targential Couple Str 285 myq X 102

3 -
ey
2.4 S
E= N
1.8 Iy ¢
Y e ¥
0.6 s V)
0 —
‘0.6 vy - — MISC(EO]
— —— 0= MISC{BP)
F1R2 S| N | B e
B B e | IR\
- N~
| I | I | I | I | |
0 2 4 6 8 10
distance x
Fig. 2: Variation of m,; with distance x due to
concentrated source in time domain
1
¥ 0.5
g 0
g -0.5
g -1
- 4
-1.5
-2

0

2 4 6

distance x

8 10

Variations of t», with distance x due to

distributed source in time domain

Figures 1-3, 7-9, 13-15 depict the variations due to concentrated force.
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5.1.1 Time Domain

Figurel shows the variations of normal force stress ¢, with distance x. The values of normal force stress
15, , at initial angle of inclination initially decreases then attains a constant value for both MOS and MIS and
as the angle of inclination increases (8= 45°, 90°) for MOS its values oscillate an simultaneously deceases
with an increase in x, whereas for MIS its values increase with an increase in distance x. The values of ¢,
are greater for MOS as compared to that of MIS.

It is evident from Figure 2 that for MOS the values of tangential couple stress m,3 initially deceases then
increases and then oscillates with very small magnitude for all values of 8 . However for MIS and at initial
inclination angle and for MIS, it has same variations as that of MOS, while for remaining angles its value
oscillates with increasing magnitude. In this case the values for MOS are less as compared to that of MIS.

Figure 3 shows the variations of temperature distribution T with distance x. The values of T for MOS and
when 6 = 45°, 90° oscillates with increasing magnitude, while for MIS exactly the opposite behavior is
observed. At initial angle of inclination its value starts with initial increase and then tends to attain a constant
value for both MIS and MOS.

N 0.2 — — e
: &
o N N\ t [
EN 01 _\\ ‘ ° ~ g
& 1\ /\‘ /J/A\\ A 2
‘}-s ° 0 ¥ \ ™ X‘ I %
o 0 — ] o
2 I\ - £
é 7] \\ 7 \ e \/ ®
© -4
E 01/ =@y . - 5
.3 ——— MOSD(M60) il '2
8 1 [ = =
-0.2 4
1 I | I | I | , I ] 2 | I I I | I | [ T—I
0 2 4 6 8 10 0 2 4 6 8 10
distance x distance x

Fig. 5: Variation of m,; with distance x due to Fig. 6: Variations of T with distance x due to

distributed source in time domain. distributed source in time domain.

5.1.2 Frequency Domain

Figures 7-9 shows the variations with distance x in frequency domain. It is observed from Figure 7 that
for MOS and at intermediate and extreme angle, the values of ¢,, start with small initial increase then de-
crease sharply in the range 1 <x <4.5; with further increase in distance x its value oscillates with decreasing
magnitude, while for MIS its values start with sharp initial increase in the range 0 < x <2 then alternately
increase and decrease with distance x. When =00 and for both MOS, MIS its values are distributed in
large range but with very small magnitude. The values of ¢;; for MOS are smaller than those of MIS.
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Figure8 shows the variations of m,; with distance x. For MOS and at = 45°, 90° its values oscillate
with very small magnitude. However at intermediate angle its value alternately increases or decreases with
increase in distance x whereas for MIS its behavior is opposite as compared to that of MOS. The values of
my3 for MIS and when 8= 45°, 90° have been shown in the figure by multiplying its original value by 100.

It is observed from Figure 9 that the value of T for both MOS and MIS when 8 = 0° oscillates in very
large range but with very small magnitude. While when 8 = 45°, 90° for MOS its value starts with initial
decrease and then increases sharply in the range 1<x<S$5; after that its value alternately increases or
decreases with further increase in distance x. However for MIS and both intermediate and extreme angle of

inclination its values start with sharp decrease and then oscillates with increase in distance x.
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concentrated source in frequency domain. concentrated source in frequency domain.

1 2 021 - e MOSC( "1

0.8 S \‘ o oS
. 04 g 0.14 — M2 S e
92 Vot = | \) — %—  MISCW
g 0 ; N 8 7 _|
$ 04 \:w . 2 s 00
= A \§ 7/ 5 7]
g -0.8 \ ¥ w 0 —
s 1.2 £ E
a =] s
E’ '16 :o:::::?:_:- _0.07 —

-2 = —
-2.4

F - T

IR

O ' 2 4 6 8 1 0 distance x

distance x
Fig. 9: Variation of T with distance x due to Fig. 10: Variation of t., with distance x due to

concentrated source in frequency domain distributed source in frequency domain.

332



R. Kumar and R.R. Gupta Journal of the Mechanical Behavior of Materials

o
—
|

o
o
o w
L
IO e =
-
N\
Z
e —

\ — MOSCI2
% J —— MOSCINE
o J —— MOSC(M
— \ e ws::.x'c‘
e = / x [/ R A i

Tangential Couple Stress my3 X 102
1
o
(=)
o
| 4
B:‘S‘.R‘
r |
= e
o
s 5 S e
]
Temperature distribution T
=

2 [ e IR R T R U
0 2 4 6 8 10 0 2 4 6 8 10
distance x distance x
Fig. 11: Variation of m,; with distance x due to Fig. 12: Variation of T with distance x due to

distributed source in frequency domain distributed source in frequency domain

5.1.3 Steady State

Figures13-15 show the variations with distance x in steady state. In Figure 13 it is observed that for both
MOS and MIS and all values of 6, the value of #,5 oscillates with decreasing magnitude.

Figurel4 shows that at an initial angle of inclination for MOS the values of m,3 initially increase then

decreases with increase in x, while for MIS its values oscillate with small magnitude. At intermediate angle
of inclination its values initially increases and then decreases with increase in distance x for both MOS and
MIS .While at extreme inclination for MOS its values initially decreases and then increases sharply in the
range 0.2 <x <4 and then remains constant for remaining value of x, while for MIS its values oscillates
with increase in x.

Figure 15 shows that for MOS and intermediate and extreme angle of inclination the value of T initially
decreases, then oscillates with increasing magnitude and at an initial angle it oscillates with increasing
magnitude, while for MIS and all angles of inclination its value initially increases and then decreases with

distance x.

5.2 Distributed Force

5.2.1 Time Domain

Figure 4 shows that for MOS when € = 45°, 90° the value of 55 oscillates with decreasing magnitude
with increase in distance x, while for MIS its values increases with increase in distance x. However for MOS
and for initial angle of inclination its value initially decreases then appears to be steady for all values of x.

while for MIS its value oscillates with increasing magnitude.
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Figure 5 shows that the values of m,3 for MOS and at all angles initially decrease and then attain a
constant value with increase in x, while for MIS its values initially decrease and then oscillate with large
magnitude.

Figure 6 shows the variations of temperature distribution T with distance x. The value of T for MOS and
when 8= 45°, 90° oscillates with increasing magnitude, while for MIS its values decrease with increase in x.
When 6= 0° and for MOS its values start with initial increase and then attain a constant value, while for MIS

its values oscillate with decreasing magnitude.

5.2.2 Frequency Domain
Figs 10-12 show the variations of normal force stress, tangential couple stress and temperature
distribution in frequency domain. In this case the values of normal force stress, tangential couple stress and

temperature distribution vary in a similar way to that of concentrated force but with difference in magnitude.

5.2.3 Steady State
Figures 16-18 depict the variations due to distributed force in the case of steady state. From Figure 16 it is

observed that, as we fix the point of observation, i.e., the value of distance 'x', the normal displacement #5;
for MOS increases or decreases with change in angle of inclination. With further increase in inclination
angle, it is revealed that stress follows an oscillatory pattern about zero value, ultimately becoming zero,
while for MIS its value oscillates with decreasing magnitude with change in distance 'x'.

Figure 17 shows that for MOS and at initial and intermediate angle of inclination the values of my3
initially increases and then decreases with further increase in x, while when 8= 90° its values increase with

increase in x. For MIS the magnitude of m,3 increases or decreases along an oscillatory path with increase in
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distance x. It is revealed that with an increase in distance each curve follows an oscillatory pattern.

It is observed from Figure 18 that the value of 'T' in the case of MOS increases or decreases with an angle
of inclination, with further increase in inclination it is observed that T follows an oscillatory pattern about
zero value which becomes zero ultimately. For MIS and all values of 8, the values of T initially decrease and

then increase sharply in the range 1 < x <3, then decrease with further increase in x.

5.3 Moving Force
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Figures 19-21 depict the variations of #y;,m,3,T due to the moving force in the time domain. It is
observed from Figure 19 that for MOS the maximum (absolute) normal stress t,5 occurs corresponding to
the maximum velocity (V=15), i.e., impact of moving force is larger for large velocities. Further it is
observed that for MIS, when V=10, 15 the value of f,, initially decreases and then increases with further
increase in x, while it oscillates with large magnitude for V=5.

Figure 20 shows that the values of m,3; for MOS and for all values of V initially increase and then
oscillates with increase in x. However its behavior is opposite in nature for MIS when V=10,15 but the same
for V=5 as compared to that of MOS. The values of m,3 for MIT have been shown in the figure by dividing
its original value by 100.

It is observed from Figure 21 that the variations in the values of T are opposite to that of ¢ .

6. OBSERVATIONS

It is observed from the above discussion that, due to the effect of anisotropy, the values of normal force
stress f,, are increased with the application of both concentrated and distributed source. while its value
decreased when moving source is applied. However the values of tangential couple stress m»; and
temperature distribution T get decreased with increase in anisotropy. A significant effect of change in angle
of inclination is also observed on the values of ¢, , my; and T. On the application of concentrated source, as
the angle of inclination increases, the value of t,, increases while that of m»; and T decreases. Similar
behavior is observed on the application of distributed and moving sources. In frequency domain. the values
of t,; and my3 are decreased with increase in anisotropy while reverse behavior is observed in the values of
temperature distribution T. Also, as the angle of inclination increases, the values of t,, are increased while
reverse behavior is observed in the values of m»3and T. For steady state, anisotropy tend to increase the value
of normal force stress ¢, whereas the values of m»; and T are decreased. With increase in the angle of
inclination the value of ¢, and T is increased for both MOS and MIS, whereas exactly opposite behavior is

observed in the values of m»s.
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