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1. ABSTRACT 

We consider first-order phase transitions of finite, one-dimensional, nonlinear, elastic solids undergoing a 

change of volume and present a method for finding the critical nucleus of the system. In order to do that we 

represent the nonclassical strain critical nucleus profile by a function, which is a Gaussian probability 

distribution multiplied by a suitable parameter. So, the Landau-Ginzburg total potential energy of the system 

is written as a function of two variables, which are the maximum value of the function and the rms-deviation. 

We find that for a given undercooling, the total potential energy of the system has a saddle-point which 

separates one local and one global minimum. The saddle-point corresponds to the critical nucleus of the 

system, the local minimum to the metastable unstrained parent phase, and the global minimum to the stable 

fully developed product phase. Comparing the results of our method with the results from the nonlinear 

differential equation for the critical nucleus, we find that outside the region of equilibrium, where the 

nucleation behavior is nonclassical, the agreement between the two approaches is very good. In the vicinity 

of equilibrium, where the nucleation behavior tends to be classical and the strain critical nucleus profile has 

not a Gaussian form, a disagreement occurs. 
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2. INTRODUCTION 

First-order phase transitions of nonlinear elastic solids have been studied within the framework of the 

time-dependent, nonlinear, nonlocal, Landau-Ginzburg theory /1 -6/. It is known that, in contrast with the 
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classical nucleation theory /7-10/, this theory describes well the nonclassical nucleation behavior, which 

appears outside the region of equilibrium /11/. The nonclassical nucleation behavior includes the divergence 

of the size and the vanishing of the nucleation energy barrier of the critical nucleus at lattice instability, 

where the free energy density barrier vanishes. Also, the strain within the critical nucleus is not constant and 

the interface between the critical nucleus and the parent phase is diffuse. However, the Landau-Ginzburg 

theory does not favor closed-form analytical solutions even in one-dimensional systems, and the use of 

complicated numerical techniques is therefore unavoidable /11,12/. 

Motivated by this, we present a simple method for finding the critical nucleus of a system described by 

the t ime-dependent Landau-Ginzburg theory, using the fact that the critical nucleus is a saddle-point 

configuration of the system /13,14/. We consider the simplest kind of elastic phase transitions, namely first-

order phase transitions of finite, one-dimensional, elastic solids undergoing a change of volume. The order 

parameter of the system is the dilatational strain and the driving force for nucleation is the difference in free-

energy densities of the unstrained parent phase and the strained fully developed product phase. This kind of 

elastic phase transitions has been described by the time-dependent, nonlinear, nonlocal, Landau-Ginzburg 

theory, which states that the critical nucleus of the system is the lowest energy, saddle-point solution of the 

time-independent (static), nonlinear differential equation of motion /4/. Within the f ramework of our method 

it is not necessary to find and solve the time-independent, nonlinear, equation of motion in order to determine 

the critical nucleus of the system. We use the nonlinear Landau-Ginzburg potential and assume that the 

nonclassical strain critical nucleus profile can be represented by a function which is a Gaussian probability 

distribution multiplied by a suitable parameter. So, the total Landau-Ginzburg potential energy of the system 

is written as a function of two variables, which are the maximum value of the function and the rms-deviation. 

For a given undercooling, we find that the total potential energy of the system has a saddle-point, which 

separates two minima. One local which corresponds to the metastable unstrained parent phase and one global 

which corresponds to the stable fully developed product phase of constant strain. The saddle-point 

corresponds to the critical nucleus of the system for the given undercooling. 

In section 3, we describe the method for finding the critical nucleus of the system and in section 4 we 

compare the results of our method with the results obtained by the t ime-independent, nonlinear differential 

equation, which describes the critical nucleus. Finally, in section 5 we present our conclusions. 

3. THE METHOD 

In this section we present the method for finding the critical nucleus of a finite, nonlinear, elastic solid of 

length L, undergoing a change of volume first-order phase transition. The method is based on the fact that the 

critical nucleus of the system is a saddle-point configuration separating the metastable unstrained parent 

phase and the stable fully developed product phase /13,14/. We assume that the nonclassical strain critical 
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nucleus profi le, wh ich is a state local ized at the edge χ = L o f the sys tem /4/ , can be represented by a function 

e c r(x) g iven by 

ecr(x) = P0P(x) ( 1 ) 

where 

exp 

/»(*) = -

(x-L)2 

2σί 

\]2πσ2 
(2) 

is the Gaussian probability distribution, σ is the rms-deviat ion and Pq a suitable parameter. Equation (1 ) is 

written as 

ea.(x) = M0 exp 

where 

( x - L f 

2 σ 2 
(3 ) 

V2/r 2 
(4 ) 

is the m a x i m u m value o f the funct ion e c r (x) ( edge critical strain). The corresponding critical d isplacement 

field ucr ( x ) = jecr ( x ) d x is g i v e n by 

ucr(x) = ^ M 0 a \ \ + E r f { ^ (5 ) 

where Erf(x) is the error function. W e def ine the s ize xcr o f the strain critical nucleus as the value o f χ for 

which Equation (3) falls o f to 1/e o f its m a x i m u m value /4/ . W e find that it is g iven by the s imple express ion 

. In terms o f the function e c r(x), the total scaled Landau-Ginzburg potential energy F o f the system 

/4/, is written as a function o f the two variables Mq and σ 

F(M0, σ ) = \ ( f L [ecr (x)] + f N L [ecr « ] ) dx 

ο 

where 

(6) 
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(7) 

is the scaled and dimensionless local elastic free energy density and δΤ = Τ - T c /4/. T c is the lattice 

instability temperature where the parent phase becomes unstable and T c < Τ < T ] where T j is the first-order 

transition temperature. The nonlocal term 

/NL [ecr ] = ^ 
( d e ^ 

dx 
(8) 

is the scaled and dimensionless gradient contribution to the energy density /4/. 

We find that for 0 < δΤ < 2/9 (in order for the parent phase to be metastable), the total potential energy 

F(Mo, σ) of the system has a saddle-point (Mo ;sp, σ 5 ρ) which separates two minima. One local at Mo = 0 

which corresponds to the zero energy unstrained parent phase, and one global at (M0,min, which 

corresponds to the fully developed product phase. The saddle-point corresponds to the critical nucleus of the 

system for the given undercooling and the nucleation energy barrier of the critical nucleus Fcr is given by Fcr 

= F i M ß ^ p . Osp)· The saddle-point and the global minimum are both depend on the specific value of δΤ. In 

Figure 1, a contour plot of F(Mo, σ) is plotted for δΤ = 0.18 and L = 100, where the saddle-point and the two 

minima are shown. 

0 0.2 0.4 0.6 0.8 1 
Μ 

Fig. 1: A contour plot of the total potential energy F(Mo,o) of the system for δΤ = 0.18. 

We find numerically a saddle-point at (M 0 j S p, o s p ) = (0.373, 4.371), separating a local minimum at Mo = 

0 and a global minimum at (M0,mjn, o m i n ) = (0.764, oo). It is easy to show that within the framework of the 

time-dependent Landau-Ginzburg theory /4/, the strain critical nucleus profile ec r(x) and the corresponding 

displacement field ucr (x) = fecr (x)dx are given by 
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eCr 0 0 = 
3ST 

1 + yjl-^δΐ cosh [ ( * - L) V i f ] 
(9) 

ucr(x) = J2 In 
i - i O T + f i + ^ r j J i ^ f i r ^ ) ^ 

1 - 2 ST+(, _ ^ p F ) J i l f t f T e t " - ^ 
(10) 

Comparison of the displacement profiles ucr(x) obtained by our method and by Equation (10) is shown in 

Figure 2, whereas in Figure 3 the corresponding strain critical nucleus ecr(x) are shown. The agreement 

between the two approaches is very good. 

Fig. 2: The corresponding displacement profiles for Fig. 3: The corresponding strain critical nucleus 

δΤ = 0.18. The solid line for the method and profiles for δΤ = 0.18. The solid line for the 

the dashed line for Equation (10). method and the dashed line for Equation (9). 

4. COMPARISON OF THE TWO APPROACHES 

We find that within the framework of the time-dependent Landau-Ginzburg theory /4/, the edge strain 

ecr(L), the size xcr and the nucleation energy barrier Fcr of the critical nucleus, are given by the equations (in 

terms of the scaled and dimensionless constants and variables) 

e c r ( V = 7 = = (11) 
1 + J l - f ST 
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xrr 

( ι+τ/ ι - f t f r je- i 
Arc cosh 

( ι+τ/ ι - f t f r je- i 
Arc cosh 

slsr 
(12) 

For = \ { / L [ECr(XJ\ + FNL KR (*)])<& (13) 

where the strain critical nucleus profile ecr(x) is given by Equation (9). As in the previous section, we define 

the size xcr of the critical nucleus as the value of χ for which Equation (9) falls of to 1/e of its maximum 

value. 

In order to illustrate the capability of our method, we determine numerically for a system of length L = 

100, the dependence of the edge strain ec r(L), the size χ „ and the nucleation energy barrier Fcr of the critical 

nucleus on δΤ, and compare it with that obtained by Equations (11)-(13) respectively. This is shown in 

Figures 4 through 6 respectively. In Figure 7, the strain of the fully developed product phase, M 0 , m j n is plotted 

as a function of δΤ, and compared with the value 

1 + Vl - 4<5T 
(14) 

obtained by the t ime-dependent Landau-Ginzburg theory [4], 

nil 

Fig. 4: The edge strain of the critical nucleus as a Fig. 5: The size of the critical nucleus as a function 

function of δΤ. The symbols for the new of δΤ. The symbols for the new method and 

method and the solid line for Equation (11). the solid line for Equation (12). 

312 



G. Petsos and H.M. Polatoglou Journal of the Mechanical Behavior of Materials 

0.16 —Ι-

ΟΙ* 

0.12 

Ol 

F« OOS 

0.06 

oot 

o.oe 

0.05 0.1 0.15 0.2 mi 

Fig. 6: The nucleation energy barrier of the critical Fig. 7: The strain of the fully developed product 

nucleus as a function of δΤ. The symbols phase as a function of δΤ. The symbols for 

for the new method and the solid line for the new method and the solid line for 

Equation (13). Equation (14). 

As seen in Figure 4, within the f ramework of our method and outside the region of equilibrium (at 

equilibrium δΤ = 2/9), the edge strain of the critical nucleus decreases as δΤ decreases and tends to zero as 

the condition for lattice instability (where the parent phase becomes unstable) δΤ = 0 is approached. The 

agreement with Equation (11) is very good. In the vicinity of equilibrium where the nucleation behavior is 

classical, there is a disagreement between the two approaches. 

In Figure 5 it is seen that according to our method, as the condition for lattice instability is approached the 

size of the critical nucleus diverges, in very good agreement with Equation (12). As δΤ increases, the critical 

size decreases initially to a minimum, and then increases to a finite value at equilibrium, in difference with 

Equation (12) according to which the size of the critical nucleus is infinite at equilibrium. The t w o " 

approaches match very well outside the region of equilibrium. 

As seen in Figure 6, according to our method, as δΤ decreases the nucleation energy barrier of the critical 

nucleus decreases and vanishes at lattice instability where δΤ = 0. The agreement between the two 

approaches outside the region of equilibrium is very good, whereas in the vicinity of equilibrium our method 

predicts a significant bigger nucleation energy barrier. 

Finally, in Figure 7 it is seen that at lattice instability, M0 m in
 = 1 and as the undercooling decreases the 

value of M 0 . m i n decreases to the value 2/3 at equilibrium. The agreement between the two approaches is 

extremely good in the whole range ο ί δ Τ . This justifies the capability of our method to determine the uniform 

fully developed product phase. 

0.05 0.1 0.15 0.2 0.25 
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5. CONCLUSIONS 

We have developed a method for finding the critical nucleus of a finite, one-dimensional, nonlinear, 

nonlocal, elastic solid undergoing a change of volume first-order phase transition. The method is based on the 

fact that the critical nucleus of the system is a saddle-point configuration, which separates the metastable 

unstrained parent phase and the stable fully developed product phase. In order to illustrate the capability of 

our method, we have compared it with the results obtained by the nonlinear differential equation for the 

critical nucleus, and we have found that outside the region of equilibrium, the agreement between the two 

approaches is very good. On the other hand, in the vicinity of equilibrium where the nucleation behavior 

tends to be classical, the Gaussian profile of the function ecr(x) given by Equation (3) is not appropriate to 

represent the strain critical nucleus profile and there is a difference between the two approaches. Although 

we have restricted to one-dimensional systems, the method we propose is quite general and simple, and it 

could be applied to more complex systems, where analytical progress is not possible and the existing 

numerical techniques are complicated and computationally intensive. 

6. REFERENCES 

1. Bales, G.S., and Gooding, R.J., Interfacial dynamics at a first-order phase transition involving strain : 

dynamical twin formation, Phys. Rev. Lett. 67, 3412-3415, 1991. 

2. Reid, A.C.E., and Gooding, R.J., Elastic hydrodynamics and dynamical nucleation in first-order strain 

transitions, Physica D 66, 180-186, 1993. 

3. Reid, A. C. E., and Gooding, R.J., Hydrodynamic description of elastic solids with open boundary 

conditions undergoing a phase transition, Phys. Rev. Β 50, 3588-3602, 1994. 

4. van Zyl, B.P. and Gooding, R.J., Theory of nonclassical surface nucleation at change of volume 

transitions, Phys. Rev. Β 54, 15700-15707, 1996. 

5. van Zyl, B.P. and Gooding, R.J., A comprehensive dynamical study of nucleation and growth in a one-

dimensional shear martensitic transition, Metall. Mater. Trans. A 27, 1203-1216, 1996. 

6. Reid, A.C.E. and Gooding, R.J., Pattern formation in a 2D elastic solid, Physica A 239, 1-10, 1997. 

7. Christian, J.W., The Theory of Transformations in Metals and Alloys, 2nd edition, Pergamon, 1975. 

8. Rao, C.N.R., and Rao, K.J., Phase Transitions in Solids, McGraw-Hill, 1978. 

9. Gunton, J.D., Sahni, P.S., and Miguel, M.S., Phase Transitions and Critical Phenomena, Domb, C. and 

Lebowitz, J. (eds.), Academic Press, New York, 1983, Vol. 8. 

10. Porter, D.A. and Easterling, K.E., Phase Transformations in Metals and Alloys, 2nd edition, Chapman & 

Hall, 1992. 

314 



G. Petsos and Η. M. Polatoglou Journal of the Mechanical Behavior of Materials 

11. Chu, Y.A., Moran, B., Reid, A.C.E., and Olson, G.B., A model for nonclassical nucleation of solid-solid 

structural phase transformations, Metall. Mater. Trans. A 31, 1321-1331, 2000. 

12. Petsos, G. and Vargiamidis, V., Stochastic nucleation and growth of islands on surfaces with the theory 

of non-classical nucleation, Comput. Mater. Sei. 17, 505-509, 2000. 

13. Langer, J.S., Statistical theory of the decay of metastable states, Ann. Phys. 54, 258-275, 1969. 

14. Moran, B., Chu, Y.A., and Olson, G.B., Homogeneous nucleation of solid-solid dilatational phase 

transformation, Int. J. Solid Structured, 1903-1919, 1996. 

315 




