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1. SUMMARY 

The complete solution of the problem of the dynamical interaction of two parallel edge dislocations is 

obtained by a suitable transformation. Then we consider the influence of the stress field of a fixed dislocation 

dipole and external periodic forcing and study the generation of stable fixed points of the associated Poincar6 

map and the corresponding basins of attraction. 

2. INTRODUCTION 

Over the past decade several numerical investigations have been performed to study the dynamical 

properties of dislocation systems /1-8/. One of the most interesting questions stimulating these works is to 

understand the origin of dislocation patterning. Due to the long- range dislocation-dislocation interaction, 

however, the direct numerical integration of the equation of motion of a system large enough to produce 

patterning is extremely computation time consuming. It has recently been proposed by Bakö and Groma 191 

that the nearest neighbor dislocation interaction could be well approximated by an appropriate stochastic 

process. For systems containing several hundreds of dislocations it is proved numerically that the stochastic 

approach results in the same dynamical behavior as the "exact" integration. 

The motivation of the present work is to figure out what is the minimal dislocation number, which can be 

well described by the above-mentioned stochastic approximation. In order to achieve this goal we have 

investigated, as a first approach to the full problem, the dynamical behavior of two parallel edge dislocations 

in the stress field of a fixed dislocation dipole under the influence of a periodic external force. Some 
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preliminary results of this work have been published in reference /10/. 

3. INTERACTION OF TWO DISLOCATIONS 

First we consider the dynamical interaction of two parallel edge dislocations assuming overdamping, 

which is described by the system of equations 

^L = -F(X1-X2,2), ^W(*i-*2,2) (1) 

where 

" f c r t - f ^ . 
( χ + y ) 

is the interaction force acting between two parallel edge dislocations having the same Burgers vector and 
relative position x,y, while x\,x2 are the horizontal displacements of the dislocations from a point, arbitrarily 

defined as χ = 0 (see Figure 1). The constant vertical distance will be taken equal to y = 2 meaning that the 

distances are measured in unit half of the slip distance of the two dislocations. The dislocation mobility and 

the elastic constants are eliminated by introducing an appropriate unit of time. 

X2 

J L 
Xi 

y=2 

Fig. 1: Two interactive dislocations 

Equations (1) are invariant under the transformation xl -> -x2, x2-+-x\, so that the straight line 
x \ + x 2 = 0 is a n invariant axis of symmetry, as well as under the mutual translation 
X] -> + c, x2-> x2+c, for arbitrary constant c. We perform the transformation 

ξ\ =*1+*2. £> = ~*2 > 
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to equations (1), and they attain the separable form 

(2) 

Equation (2a) implies that the straight lines 

ξλ = X] + x 2 = const. (3) 

are invariant, while the solution of equation (2b) in implicit form is 

2 
(4) 

The integral in (4) can be evaluated as 

t = -y2 In \ξΙ -y21 + i n <f22 - Ä + C ( y ) , £ c 2 
4 " 4 

where C(y) is an arbitrary integration constant. By putting C(y) = 

form 

(5) 

y 
- — In C'(y), equation (5) attains the 

4 

-4f = / In 
c ' ( y ) ( g - y 2 f 

We may relate the constant C'(y) to the initial condition ξ20
 = £2 (0) > 

C \ y ) = . ,4 exp 

f 2 λ 

..2 

With this, the solution ξ2 = ζ2(ζ2ο>0 is finally expressed in the implicit form 

exp hi 

2y'J 

( A - y · ) ' exp 
( κ* Λ 

ζ20 
2 / 

exp 2 / 1 
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Equation (2b) possesses three equilibrium solutions, namely =0, ± y . The linearized equation with 

respect to the small variation ζ around these equilibria are, for y = 2 , respectively 

and 
dt 2 b dt 4 

so ξι = 0 is unstable while =±2 are asymptotically stable. The motion on each invariant line 
x\ + x2 ~ const, is shown in Figure 2. 

Fig. 2: The flow on an invariant line ξ ]=const. 

The three equilibrium positions of the two dislocations, which correspond to the well known equilibrium 

dipole configurations, are shown in Figure 3. The value of the integral (3) is related to the absolute position 

of the pair, which is indifferent. 

± X 

(a) 6 = 2 &=-2 (b) 

Τ τ 

. . . L 

6 = 0 (c) 

τ 

Fig. 3: The stable (a-b) and unstable (c) configurations 

4. INTERACTION IN THE PRESENCE OF A FIXED DIPOLE AND EXTERNAL FORCING 

In order to study the influence of other dislocations existing in the system beside the two considered 

above, as a simplest possible generalization an additional narrow dipole is placed in between the two 

dislocations (see Figure 4). The presence of the dipole, as it is expected, destroys the translational symmetry 

since the absolute position of the dislocations with respect to the dipole is now essential. The equations of 
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motion are now the following 

= -x2,2) + mx{t)^-{xx,\) + m + ε G(t), 

2 d f * (6) 

at ax ' oy 

The parameters mx,my define the dipole strength and the term eG(t) is an external periodic forcing. As 

a first approximation it can be assumed that mx also varies periodically with time, since for small enough 

external force, mx ~G(t) . In this study we have selected G(t) = sin f , so that mx =mx0 + d c o s f , where 

mxQ,d and my are constants. Moreover, throughout this study we select mx(j = my = 0 . 1 while we consider 

several different values for ε, d. 

When ε is different from zero, the system is non-autonomous. Its state space is the three-dimensional 
extended phase space (x^,x2,t). In order to study the dynamical behavior of the system, we use the 

2π - Poincarö map G (see e.g. / I I / , p. 22; /12/, p. 64). Instead of following the phase orbit for all time in the 

three dimensional extended phase space, we consider only the sequence of the points (x\,x2) at the discrete 

time moments t = 2kn, ke. Λ . In this way, every orbit is displayed as a sequence of discrete points on the 

so called surface of section, which is the plane ( χ χ , χ 2 ) . The evolution of the system is represented by a 

discrete map from one point of the above sequence to the next, which is called the Poincar6 map. Since the 

system (6) is invariant to time translations of the form t —>t + 2kn, every point of the map corresponds to a 

unique state of the system. Α 2π -periodic orbit will be represented on the section by a fixed point of the 

map. Since the stable equilibria of the unperturbed system are hyperbolic, they are continued for ε Φ 0 to 

2π -periodic orbits (e.g. /11/, p. 186), which are fixed points of the Poincarö map G. 

± 
Xi 

τ * " 

— Γ 

Fig. 4: The pair of the dislocations and the constant dipole 

Since we will deal in the following with stable nodes, we give here the following definitions: The fixed 

point Q is attracting if there is an open neighborhood U of Q such that, for every point Pe U and for every 
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non-negative integer η all the images of Ρ under the map belong to the neighborhood U, i.e. G"(P) e U and, 

moreover, 
lim G"(P) = Q. 

«-> 00 

The domain B, defined by all the preimages of the neighborhood U, i.e. 

n>0 

is the basin of attraction of β. Let be the eigenvalues of the Jacobian of the map DG(Q), evaluated at 

the fixed point Q. The point Q is a stable node if are real and 

A stable node is an attracting fixed point. 

5. NUMERICAL RESULTS 

In the following we will study the system of equations (6), for d = 0.01 and values of ε in the interval 
0.5 < ε < 1.3 . We will use the Poincare map and study the attracting sets of the map, which evidently prove 
to be only stable nodes, and their basins of attraction. The reason for that is that the system will 
asymptotically approach one of these sets, depending on the basin of attraction, where the initial state belongs 
to and, after some transient behavior, the system, for all practical purposes, will lie on that state for ever. 
Moreover, we will examine the domain of values | x, |< 10, i.e. the maximal horizontal distance of the 

dislocations from the dipole will be less than 5 times the vertical distance between them. 
In Figure 5, some invariant curves of the system, which support orbits of the map that end up in the four 

stable nodes, which are the main attracting sets of the system, are shown for d = 0.01 and ε = 0.5 . These 
nodes are located at A: jc, = -1.0214, x2 = -2.3896, B: jq = -0.5784, x2 = 2.7430, C: x, =1.5835, 
x2 = 0.6961 and D: x, = 0.8596, x2 = 4.0557 respectively. 

We may get, however, a more descriptive picture of the long-term behaviour of the system by exploring 
the basins of attraction of the stable nodes. In Figure 6a all four stable nodes and their basins of attraction are 
shown for ε = 0.5 . The dark area on the upper right side of the figure corresponds presumably to the basin of 
attraction of infinity. For all orbits initially starting from this domain, both x\ and x2 monotonically increase 
and apparently tend to infinity. On the other hand, the dark area in the lower left side is the basin of attraction 
of another stable node E: X\ = -11.7687, x2 = -8.70386, which is not shown in the figure since we want to 
concentrate in the central area of the section. In this and the following figures, the various tones of gray in a 
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basin of attraction visualize the rate of convergence to the corresponding node. Between two consecutive 

tones of gray there is a time difference of 1000 periods for convergence to the fixed point of the 

corresponding basin of attraction with an accuracy of 10"4. 

Fig. 5: Some invariant lines of the Poincarö map for d = 0.01 and ε = 0.5 . 

For ε = 0.6 we observe in Figure 6b that the stable node C has disappeared, presumably by colliding with 

a saddle point and performing an inverse saddle-node bifurcation, while its basin of attractions unites with 
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this of point A. Another stable node appears however for ε = 0.7 (Figure 6c), which also disappears for 

ε = 0 . 8 (Figure 6d), but this time its basin of attraction unites with the one of point B. At the same time, the 

basin of attraction of oo considerably shrinks. In these two last figures it is worth noting the invasion of the 

basin of point A between those of point Β and oo. 

For still larger values of ε = 0.85 to 1.3, there is a multitude of bifurcations, as can be seen in Figures 6e-

f and 7a-d. New stable nodes appear and disappear, while the basins of co and Ε have altogether 

disappeared from the domain shown in the figures. For still larger values of ε, the situation depicted in Figure 

7d seems to remain structurally stable and no more bifurcations occur up to ε ~ 2. 

Fig. 6: The stable nodes and their basins of attraction for d = 0.01 and (a) ε = 
0.5, (b) ε = 0.6, (c) ε = 0.7, (d) ε = 0.8, (e) ε = 0.85 and ( 0 ε = 0.9 

322 



V. Koukouloyannis et al. Journal of the Mechanical Behavior of Materials 

Note that in some of the figures there are narrow zones of a basin of attraction of some point, separating 

two other basins of different fixed points. This fact means that a slight variation of the initial conditions may 

result in a totally different asymptotic behavior of the system. Note that in the area of these zones, this 

sensitivity exists, although the system is not intrinsically chaotic. 

Fig. 7: Stable nodes and their basins of attraction for d = 0.01 and (a) ε = 1, 
( b ) e s 1.1, (c) c= 1.2, (d) c= 1.3. 

6. CONCLUSIONS 

The dynamical properties of a system of the two mobile dislocations and an immobile dislocation dipole 
are studied under periodic external force. With increasing external force amplitude the dislocation ensemble 
studied shows more and more complex behavior, signaled by the nucleation of new "dynamics" fixed points, 
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up to ε ~ 1. However, the system does not exhibit chaotic behavior. This can be attributed to the fact that all 

the stable fixed points are strongly attracting nodes, causing the asymptotic manifolds of the saddle points to 

bend and preventing them from intersecting. 
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