
Homogenization of Very Thin Elastic 
Reticulated Structures 

J. Casado-Diaz, M. Luna-Laynez1 , J.D. Martin 

Departamento de Ecuaciones Diferenciales y Analisis Numerico, 
Universidad de Sevilla, c/Tarfia sin, 41012-Sevilla, Espana 

'mllaynez@us.es 

1. SUMMARY 

This work is devoted to the homogenization of the anisotropic, linearized elasticity system posed on thin 

reticulated structures involving several parameters. We show that the result depends on the relative size of 

the parameters. In every case, we obtain a limit problem where both the microscopic and macroscopic scales 

appear together. From this problem, we get an asymptotic development which gives an approximation in L2 

of the displacements and the linearized strain tensor. 

2. INTRODUCTION 

In 15/ and /13/, using an original adaptation of the Arbogast et al. method 111, we studied the asymptotic 

behavior of the solutions of diffusion problems posed on thin reticulated structures involving several small 

parameters. In this work we consider the linearized elasticity system. To simplify the exposition, we deal 

with a particular structure, Ω £ , shaped by the union of orthogonal beams, with thickness εάε, disposed 

periodically, along all directions, with period ε (ε and de are two positive parameters devoted to tend to 

zero). We show that the limit behavior of the solutions depends on the limit, Θ, of ε I de. Our method permits 

us to study all the cases simultaneously. For every value of #we obtain an homogenized problem where both 

the macroscopic and microscopic scale appear together. From this problem, we get a strong approximation 

(corrector) in L (ΩΡ ) of the displacements and the linearized strain tensor. Any isotropic hypothesis is 

assumed, indeed the unique hypothesis we make on the symmetry of the elasticity tensor is that it transforms 

the space of symmetric matrices onto itself. The method can also be applied to nonlinear equations and more 

general structures (bars not crossing completely the structure, plates instead of beams, tall structures, 

gridworks, etc.), see /7,13/. 

We finish this section with some bibliographic notes. The more classical method in our knowledge of 
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how to deal with reticulated structures involving several small parameters consists in passing to the limit first 

in a parameter, then in another one, and so on (/2, 9-11, 14,15/). Note that this procedure implicitly assumes 

that the first parameter we pass to the limit is much smaller than the second one and so on. It has been 

successfully applied to diffusion problems where error estimates have been proved. These estimates show 

that the solution of the limit problem, obtained by passing to the limit in the different parameters successively 

gives a good approximation of the solutions corresponding to the problems posed on the reticulated structures 

when the parameters are small enough, but non zero. However, as far as we know, this method has not 

provided such good results when it has been applied to the elasticity problem, because there are no 

convergence results proving that if f a n d de are small, then the solution of the elasticity problem is close, in 

some sense, to the solution of the limit problem obtained by reiteration. Also there are no corrector results. In 

fact since the limit behavior depends on the ratio of ε to de , the reiterated limit is different according to the 

chosen order in the parameters (this was proved using the reiterated method in /12/). 

Another approach to this problem is based on the two-scale method with respect to measures (/3-4, 16-

18/). So in /4/, the case ^ J i i n ( f / d E ) 0 c o n s j ( j e r e ( j > w h ü e j n / j g / the cases 9=0 and θ = +oo are 

considered (in the last work an additional term is added in the equation which simplifies the problem because 

it avoids to estimate the Korn constant in Ω.ε). In these articles, the case θ arbitrary is explicitly mentioned 

as an open problem. Moreover, these papers do not provide a corrector result, i.e., an approximation of the 

displacements and the linearized strain tensor in the strong topology of L 2 as we get in this paper. 

3. STATEMENT OF THE PROBLEM. NOTATION AND DEFINITIONS 

For ie{l,...,N} and ς = (g]t...,gN)e R ^ , we denote ς[ = <rmem , where {e\,...,eN} is the usual 

basis in R ^ . 

We set Y = ( - 1 / 2 , 1 / 2 ) and for every i e { l N) we decompose the cube YN = J' +S', with J' the 

projection of YN onto the direction e i . e . , J' :y( e 7 } , and S' the projection of YN onto the 

orthogonal space to e ( , i.e., Sl = {y e YN : y, = 0 } . 

For g >0 and de e (0,1) converging to zero, we define the open reticulated structure V£ (see Figures 1 

and 2 for the two dimensional case) by 

Ν r . -ι 
^ = ( J \xeRN : \ x j - e k j \ < — i e { l , . . . , N ) , ε>0. 

/=ι kez" 1 2 J 

For a smooth bounded open set ficR"we define Ω ε = Q n \ V e , Γ ε = Ω,, η 0 Ω and 

= Ω η V'E , is{\,...,N}. 

W e denote by //ρ ( Q e ) the space of functions in H \ Q C ) which vanish on Γ ε . 
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Figure 1. 
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Figure 2. 

On Ω ε we pose the elasticity problem 

j-div(Ae(ue)) = F in Ωε 

| m c = 0 on r e , (Ae(u£))ye= 0 ο κ θ Ω ε \ Γ ε 

where νε is the unit outward normal to Q f , F e C°(Q)'V and A is a definite positive linear operator from 

the space of iV-dimensional symmetric matrices onto itself (more general problems are studied in 111 and 

/13/; see also /6/ for the two-dimensional case). Under these assumptions, (1) admits an unique solution uE 

in Η[ε (Ωε)Ν . Our goal in the present paper is to study the asymptotic behavior of uE . 

To express our result we need some notation and definitions. For a sequence : Vc —• R V and 

i e {Ι,.,.,Ν} , we define N xYN -> R N by 

"e(*>y)= Σ us(*(* + y&+</syi))z(gk+gy»)(*)' 
keZN 

This function will be used to describe the behavior of ue in . Observe that in 

keZN , ε>0, ΰ'ε(χ,γ) does not depend on the macroscopic variable x, and as a furtction of the 
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microscopic variable y it is obtained from ue by the change of variables 

i / \ ~ ε^ί X, ~ ski 
yeM = Le, + ' ' , ε εάε 

which transforms V'e n(ek + εΥΝ) (see Figure 2) into YN . 

Denoting by ν the unit outward normal to Ω , we define the functional spaces E' =Eq χ E{ χ E'2 χ E^, 
ie{ 1 N}, by 

E'0 = {ü'0 e Ζ,2(Ω): dxu'0 e Ι2(Ω), üfa = 0 on 5Ω}, 

E{ ={u{ εΙ}(Ω;Η1(ΥΝ))Ν :u[ is yt -periodic, U{M = 0 in Ζ,2 (Ω χ 5 ' ) , 

ey(ä{)in = ey(u{)mn =0, Vm.ne 

E\ = {Ύ'2 e L2(QxYn)n : u'2J e L2(Qxj',HL(S')), e Ι?(Ω;Ηι(ΥΝ)), ^„is>v-periodic, 

^ « 2 , ^ = 0 in Ι 2 (Ωχ7 ' ) , Vm,«e {l,...,W}\{i}}, 

= { « j e i 2 ( f i x J i ^ 1 ( S / ) ) A r : «3,, =0}. 

For («ο,"ι,«2>"3)e >w e define ^({^.u^ü^u^eL2^ xYN\SN) by 

4("0,«ί,"2»"3)« = δ*,«0 + > 24("0>"ί·"2>"3)/η = «2,* + δ>-Β«2,1 

2 ^ ( 4 . «ι. «2. «3 U «3, »+^„«3,« ' Vm,Me{l,...TV}\{i}. 

4. ASYMPTOTIC RESULT 

The following theorem provides the asymptotic behavior of the solution of (1). 

THEOREM - Let ue be the sequence of solutions o/( 1) and set 
1 

We suppose there exists lim γΕ-γ (this always holds for a subsequence). We consider a solution 
ε-*0 

(u0,u(,u2,uj)e Ε', ie{l,...,N), of the variational problem 
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Ν Ν 

i=1 i=1 

+ ( W ) £ Σ L v * Fmvlmdydx, 

(2) 

i=l m*i 

Then, assuming u0, «], eg(M0 ,«i ,«2 '"3) continuous in Ω χ Κ / o r i €{1,...,Ν}, the sequences 

Υε 

dE 
, V/n * i , 

give fAe following approximations to uE and e(ue) 

-A- L (\"£,i(x)-gUx) I2 + ΐ Φ , χ * ) - < 4 ( * ) ΐ 2 λ * * - χ > . 
IΩΓ I 

See 111 for the case where the continuity hypotheses on «0, ,e'0(u'0,u\,ύ'2,ύ^) does not hold. The 

proof of the result uses some estimates of Kom's type for the structure considered and a compactness result 

giving the asymptotic behavior of a sequence ue which satisfies 

\e(us)\2dx<C , Ve > 0 , 

but which is not necessarily the solution of a partial differential problem. 

5. REMARKS AND CONCLUSIONS 

Assuming sufficient smoothness, our result shows that the behavior of ue in Ω^ is similar to that of the 

sequence ζ'ε defined by 

Υεζε,ί =ü'0+süli(-,y'e) + ed£ 
ηΦί 

Υε4,rn ="0 +^im(-,yi
e) + eüim(-,yi

e) + e d £ \ ü ^ y ^ - ^ d ^ y ^ n 
ηΦι ηϊι 

in the following sense 

ή 

I n i l 
TT ΙΩ, (I "ε,ϊ - 4 , ί I2 +Υε Σ I Me,m " 4,m f +1 Φ £ " 4 ) I V 0 . 

Thus, our method does not only give the "limit" of ue but it also gives an asymptotic expansion of it. 
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If θ= l i m ( £ R / I / F . ) = 0 ( i . e . , ^ = l ) t h e n w0 defined b y u 0 = ( Ü Q , . . . , Ü Q ) is the " l i m i t " o f uE in the sense 
f - > 0 

| Ω * Ι 
ί Ω \uE(x)-ü0(x)\2 dx^O. 

W e point out that the m o r e usual w a y to s tudy the p r o b l e m considered here ( s e e 12, 1 1 / ) is by pass ing to 

the limit first in ε and then in dE , so it is a s s u m e d that ε is m u c h smaller than dE . T h e " l i m i t " obtained by 

this reiterated p r o c e d u r e c o i n c i d e s with our function UQ . 

If θ e ( 0 , + o o ) ( i .e . , γ e ( 0 , 1 ) ) , then the function m0 = ( U 0 , . . . , Ü Q ) is no longer the limit o f uE . In fact if 

w e look for a " w e a k l imit" u o f uE defined by ( s e e / 4 , 1 8 / w h e r e this type o f limit is c o n s i d e r e d ) 

J i J r uE(x)<p(x)dx - > y l j J f i u{x)cp{x)dx, Vcp e CQ (Ω)^ , ( 3 ) 

our result s h o w s that this limit u o f ue is g iven by 

1 1 -γ N 

u(x) = -"o(x) + γ Σ Σ )YNu"j(x,y)dyej , a.e. χ ε Ω . 
? ΝΥ j=\ m* j 

Finally, if ^ = +oo ( i .e . , ^ = 0 ) the d e f o r m a t i o n s uE and the linearized strain tensor e(uE) tend to 

infinity ( then the l inearized elastici ty m o d e l , w h i c h a s s u m e s small deformat ions , c a n be inadequate if dE is 

m u c h s m a l l e r than ε). In this c a s e what w e h a v e is that γEuE c o n v e r g e s in the sense ( 3 ) to w defined by 

w(x) = lim rluE = Χ Σ JK /v « ν J y ) d y eJ ' a e · x e Ω ' 
j=\m*j 

Ν 

O b s e r v e that iv d o e s not depend on M0 ; it o n l y d e p e n d s on the functions ü™j . J ' 

In the c a s e w h e r e A is given by AE = Atrace(E)I +2μΕ , for e v e r y s y m m e t r i c matr ix E, with λ >0, 

μ > 0 ( i s o t r o p i c mater ia l ) , w e d e d u c e f r o m ( 2 ) that M0 = ( U 1 q , . . . , U Q ) ( w h i c h as w e said a b o v e is the " l i m i t " 

o f uE when ε / dE t ends to z e r o ) satisfies the d e g e n e r a t e d p r o b l e m 

-\d\ uj, = NyF: in Ω , ie{\,...,N}, with Λ = 2 μ ( λ Ν + 2 μ ) . 

T o obtain an el l iptic p r o b l e m , s o m e authors ( s e e 121, / 8 / ) p r o p o s e introducing addit ional bars in the 

s t ructure ( r e i n f o r c e d structures) . Pass ing to the limit first in ε and then in dE ( w h i c h implies ε is much 

smal ler than dE, o r cquivalent ly 0 = 0 ) they obtain a non-degenerated p r o b l e m for the limit MQ o f uE. 
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However, our method applied to these structures with additional bars (see 111, /13/) shows that the limit 

behavior of ue still depends on the limit θ of ε / de. Although we prove that the corresponding function w0 

we obtain in this case satisfies a non-degenerated problem for any value of Θ, we emphasize that m0 is not in 

general the limit of ue. It only gives the limit of u£ when θ = 0, which corresponds in fact with the case 

studied in the mentioned papers 121, /8/. Even adding additional bars, we prove in Π/ that the problem 

satisfied for the limit of ue in the sense (3) is degenerated when 0 * 0 . 
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