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1. SUMMARY

This work is devoted to the homogenization of the anisotropic, linearized elasticity system posed on thin
reticulated structures involving several parameters. We show that the result depends on the relative size of
the parameters. In every case, we obtain a limit problem where both the microscopic and macroscopic scales
appear together. From this problem, we get an asymptotic development which gives an approximation in £
of the displacements and the linearized strain tensor.

2. INTRODUCTION

In /5/ and /13/, using an original adaptation of the Arbogast et al. method /1/, we studied the asymptotic
behavior of the solutions of diffusion problems posed on thin reticulated structures involving several small
parameters. In this work we consider the linearized elasticity system. To simplify the exposition, we deal
with a particular structure, Q,, shaped by the union of orthogonal beams, with thickness £d, , disposed
periodically, along all directions, with period £ (& and d, are two positive parameters devoted to tend to
zero). We show that the limit behavior of the solutions depends on the limit, 8, of £/d,, . Our method permits
us to study all the cases simultaneously. For every value of 6 we obtain an homogenized problem where both
the macroscopic and microscopic scale appear together. From this problem, we get a strong approximation
(corrector) in I (©,) of the displacements and the linearized strain tensor. Any isotropic hypothesis is
assumed, indeed the unique hypothesis we make on the symmetry of the elasticity tensor is that it transforms
the space of symmetric matrices onto itself. The method can also be applied to nonlinear equations and more
general structures (bars not crossing completely the structure, plates instead of beams, tall structures,
gridworks, etc.), see /7, 13/.

We finish this section with some bibliographic notes. The more classical method in our knowledge of
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how to deal with reticulated structures involving several small parameters consists in passing to the limit first
in a parameter, then in another one, and so on (/2, 9-11, 14,15/). Note that this procedure implicitly assumes
that the first parameter we pass to the limit is much smaller than the second one and so on. It has been
successfully applied to diffusion problems where error estimates have been proved. These estimates show
that the solution of the limit problem, obtained by passing to the limit in the different parameters successively
gives a good approximation of the solutions corresponding to the problems posed on the reticulated structures
when the parameters are small enough, but non zero. However, as far as we know, this method has not
provided such good results when it has been applied to the elasticity problem, because there are no
convergence results proving that if £and d,; are small, then the solution of the elasticity problem is close, in
some sense, to the solution of the limit problem obtained by reiteration. Also there are no corrector results. In
fact since the limit behavior depends on the ratio of £to d, the reiterated limit is different according to the
chosen order in the parameters (this was proved using the reiterated method in /12/).

Another approach to this problem is based on the two-scale method with respect to measures (/3-4, 16-

18/). So in /4/, the case g= 51"_:'0(6/(1‘ UL is considered, while in /18/ the cases &= 0 and 6 = +o are

considered (in the last work an additional term is added in the equation which simplifies the problem because
it avoids to estimate the Korn constant in Q. ). In these articles, the case @ arbitrary is explicitly mentioned
as an open problem. Moreover, these papers do not provide a corrector result, i.e., an approximation of the

displacements and the linearized strain tensor in the strong topology of L? as we get in this paper.

3. STATEMENT OF THE PROBLEM. NOTATION AND DEFINITIONS

For ie{l,..,N} and ¢ =(g,...cy)€RY, we denote ¢} =Z...; Gpe, » Where {e,..,ey} is the usual
basis in RY .

We set ¥ =(~1/2,1/2) and for every i€ {l,..,N} we decompose the cube YV =J' +§', with J' the
projection of ¥ onto the direction e,, i.e., J' ={v.e::y; €Y}, and S’ the projection of ¥V onto the
orthogonal space to ¢, , i.e., S ={yeY" :y, =0}.

For £>0 and d, €(0,1) converging to zero, we define the open reticulated structure ¥, (see Figures 1

and 2 for the two dimensional case) by

N ) ( . 3
V, = Jv}, with V! = U {xe RY | xj - ek; |<"—;f—. _i;:iJL, ie{l,..,N}, £>0.
=l kezV

For a smooth bounded open set QCR"Ywe define Q,=QnV,, T,=Q,NQ and

Q. =QnV,, iefl,.,N}.
We denote by H P: (Q,) the space of functionsin H'(€2,) which vanishon T, .
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Figure 1. Figure 2.

On Q, we pose the elasticity problem

—-div(Ae(u;))=F inQ, )
us =0 onTl',, (Ae(uy))v,=0 onoQ \I'y

where v, is the unit outward normal to Q., FeC o(ﬁ)N and A4 is a definite positive linear operator from
the space of N-dimensional symmetric matrices onto itself (more general problems are studied in /7/ and
/13/; see also /6/ for the two-dimensional case). Under these assumptions, (1) admits an unique solution u,
in H ,'-s (QE)N . Our goal in the present paper is to study the asymptotic behavior of u, .

To express our result we need some notation and definitions. For. a sequence u.:V, —> RY and

i€{L..,N}, we define &’ :RN xyN 5 RN by

kL (x,y)= > ug(e(k+y,-e,-+d£y{))z(€k+€},~)(x), Ve>0.
kezV

This function will be used to describe the behavior of u, in #. Observe that in (¢k +e¥NyxyVN |

kezV , €>0, u;(x,y) does not depend on the macroscopic variable x, and as a function of the
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microscopic variable y it is obtained from u, by the change of variables

; i —Ek; x; — k]
Yo(x)=t—Le+2—1,
£ &d,

which transforms ¥ ~(gk +£Y") (see Figure 2) into YV .
Denoting by v the unit outward normal to Q, we define the functional spaces E' = E)x E x Ey x E},
iefl,..,N},by
Ej = {iih € *(Q):0, i  2(Q), Gy, =0 on 50} ,
El =} e 2@ H (YN .4 is y;-periodic, & ,, = 0 in I(Qx "),
ey (i])in = €,(@)mn =0, Vm,nefl,..,N}\{i}},

By =i} e 2@xYV)V 14y, e 2@xJ HNSY), 5, € QG H'(YN)), i) pyis y;-periodic,
[giB2mdi =0in L2(QxJ"), ey()um =0, Ym,ne{l,...N\i}},

]

B} ={i4 e @xJ H' S i3, =0},

For (i}, 4{,44,u3) e £, we define e} (ih, i, u5,1) e Z(RV xYV;8V) by
oni 2 A A Y - joai o 2d oAt A . af
eo(tlg, gy , U3 );; = O thy + Oy Ui 4, 200U,y Uy, U3) = O, Uy py + Dy, Ul ;

i Al af af

260 (i, 8 8y 8y Yyuy = Oy_U3 y + 0y 8y, Ym,me {1, NI} .

4. ASYMPTOTIC RESULT

The following theorem provides the asymptotic behavior of the solution of (1).

THEOREM - Let u, be the sequence of solutions of (1) and set
1

el

d

€
We suppose there exists lim0 Ys — ¥ (this always holds for a subsequence). We consider a solution
£

i~

af af

(ug, i, uy,u3) € E', i €{l,..., N}, of the variational problem
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N . N X
ZIMN Ael (g, i, i, i ) € (%, ¥, v'z,vi)dydx=N7£ fnxyf« Fyvpdx +

= @
+(1- r)ZZ [y yn Fn¥imdydr, VGh,9,95,9) € E i e {l,... N).

=1 mzi

Then, assuming 12("), ﬁ{ , ef,(ﬁé,ﬁf ,ﬁ;,ﬁg) continuous in QxY" for ie{l,...,N}, the sequences
i 1 . E i .
8e,i = 7—140(') ’ ga,m() = 7_[“0 ()+—u| nC Ve ())]a Vm=i,

£ £
. 1 n ~T ’
Ge ()= },—eo(“('),“f i, 83 )0, e ()5
£

guve the following approximations to u, and e(u,)

2 -
| ; | [ (g () - gLsOF +72 3 b, () - ek )P +]eu Xx) - GL(x) )dx — 0.

m#i

Y

See /7/ for the case where the continuity hypotheses on g, 1 ,eq (i, u;,u3,i3) does not hold. The
proof of the result uses some estimates of Korn’s type for the structure considered and a compactness result
giving the asymptotic behavior of a sequence u, which satisfies

1
mjn |e(ue)|2dx<C, Ve>0,
£ &

but which is not necessarily the solution of a partial differential problem.

5. REMARKS AND CONCLUSIONS

Assuming sufficient smoothness, our result shows that the behavior of u, in Q. is similar to that of the

sequence z; defined by

YeZei =g + &l ;(, yg) + dg (“2,;'(" Ye) = 2 By, iy + 05,180 )V, ] ~8° 2 3 ii1n (> Ye)Ven »

n#i n#i

’ - . N 2 i o
7sz£m _"0 + ulm( y£)+£ 2m('9yz')+£d£ “5,»:(3)’2)-23::,,“6"}'2,")*5 Zax_“;,m(")'.::)yz',nv

\ n¥t n#t

in the following sense

2
= [y Quei= 2 i P 7e Y g = 2o P+l ey - 25) P)dx — 0.
|n ot

Thus, our method does not only give the “limit” of u, but it also gives an asymptotic expansion of it.
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If 6= Iimo(f:/d,;) =0(i.e., y =1) then %, defined by uy = (ﬁ(]),...,ﬁ(l)v) is the “limit” of u, in the sense
&>

157 Jo. 4 ~i0@P de—0.

We point out that the more usual way to study the problem considered here (see /2, 11/) is by passing to
the limit first in £ and then in d_, so it is assumed that & is much smaller than d,.. The “limit” obtained by

this reiterated procedure coincides with our function # .
If 8 €(0,+0) (i.e., ¥ € (0,1)), then the function & =(12('),...,126") is no longer the limit of «, . In fact if

we look for a “weak limit” u of u, defined by (see /4, 18/ where this type of limit is considered)

1
12 |

L),, u, (x)p(x)dx —> |-(lﬂ IQ u(x)p(x)dx, Vo e C‘:)J(Q)N , 3)

our result shows that this limit « of u_ is given by

1. =y - .
u(x)=;u0(x)+———2—z > Iy ulj(xy)dye;,ae xeQ.

j=lm=j

Finally, if @=+0 (i.e., y =0) the deformations u, and the linearized strain tensor e(u,) tend to

infinity (then the linearized elasticity model, which assumes small deformations, can be inadequate if d, is

much smaller than &). In this case what we have is that 7§a€ converges in the sense (3) to w defined by

Z

iv

w(x) = lim y2u, ==3> J'y,,, uri(x,y)dye;j,ae xeQ.
S j=imsj

Observe that w does not depend on i ; it only depends on the functions a[", .
In the case where A4 is given by AE = Atrace(E)l +2uE , for every symmetric matrix E, with 1>0,
# >0 (isotropic material), we deduce from (2) that uy = (12(1),...,12()'V ) (which as we said above is the “limit”

of u, when £/d, tends to zero) satisfies the degenerated problem

2u(AN +24)

AP 4l =NyF. inQ, iefl,..., N}, with A= .
x:x: 40 VF: t { } w1 1(N—1)+2ﬂ

To obtain an elliptic problem, some authors (see /2/, /8/) propose introducing additional bars in the
structure (reinforced structures). Passing to the limit first in £ and then in d, (which implies € is much

smaller than d,, or cquivalently 6 =0) they obtain a non-degenerated problem for the limit #y of u,.
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However, our method applied to these structures with additional bars (see /7/, /13/) shows that the limit
behavior of u, still depends on the limit @of £/d,. . Although we prove that the corresponding function #
we obtain in this case satisfies a non-degenerated problem for any value of 6, we emphasize that % is not in
general the limit of u, . It only gives the limit of #, when & =0, which corresponds in fact with the case
studied in the mentioned papers /2/, /8/. Even adding additional bars, we prove in /7/ that the problem

satisfied for the limit of %, in the sense (3) is degenerated when 6+ 0.
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