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1. SUMMARY 

The purpose of the work presented here is to propose a measurement method of the structural intensity in 
an arbitrary thin shell structure. Structural intensity is defined as a vector quantity representing a vibrational 
power flow in a structure. Since the energy source identification and the energy transmitting path detection 
can be possible using this method, it is a powerful way to investigate or control a vibrating structure. But 
various difficulties prevented this method from practical use. In this paper, we propose a new measurement 
theory based on FEM (Finite Element Method) and show a simulation result on a straight beam. 

2. INTRODUCTION 

The purpose of this paper is to develop a measurement theory of the structural intensity using FEM 
theory. Structural intensity technique is very useful because energy source identification and energy path 
finding can be achieved by this approach. Therefore, it will become a useful tool in a field such as structural 
design, vibration analysis and vibration testing. 

The concept of structural intensity and its measurement technique is presented by Noiseux III and Pavic 
121. In these papers, the structural intensity is defined as a vibrational power per unit width of cross-section of 
a uniform beam and plate. A more general formulation is developed by Romano et al. 131 using a Poynting 
vector approach and they formulated structural intensity in shells. 

Various measurement techniques have been tried by mainly finite difference method. But there are still 
many problems for practical use because of theoretical and measurement errors of the finite difference 
method. The complexity of structural intensity formulation and numerous points of measurement are also 
problems. 

Our approach was to measure the structural intensity started from the spatial Fourier transform method. 
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Some measurement methods using this idea have been presented /4,5/. Though this method is applicable to 

any shells, it is difficult to deal with the complex wavenumbers (evanescent mode). Furthermore, this method 

is under the free field (nearfield neglected) and free vibration assumptions. This restriction limits its range of 

application. Especially, if the applicable field is limited within farfield which is sufficiently far from physical 

discontinuities, energy source identification is impossible because the evanescent wave cannot be disregarded 

near the source/sink or boundary. This shows inconsistency between the purpose and the means. 

To resolve this problem, finite element method and Sommerfeld's condition is applied. In unbounded 

domain modeling, Sommerfeld's condition is applied to describe the infinite or semi-infinite region 161. 

Sommerfeld's condition is a non-reflecting condition in the acoustics. Its application to the elasticity is 

possible ΠI and the effect of Sommerfeld's condition is identical to that of an absorbing boundary or non-

reflecting boundary in FEM modeling. This condition is enforced on a boundary of some finite region and 

element characteristic equation is formulated. However, some parameters remain unknown. These parameters 

are determined by solving simultaneous equations substituting some values obtained by measurement. Only 

the out-of-plane displacement is needed for this procedure. The features of this method are that there is no 

necessity for whole structural modeling, the necessary value is easy to obtain by measurement, the analytical 

solution is not necessary, and it is possible to evaluate nearfield. 

In this paper, structural intensity in tensor form is stated first, and measurement procedure is presented. 

Finally, an example case is simulated and the result is shown. Though our final goal is an arbitrary shell, the 

objective of this paper is to show the concept. So simulation is performed with a beam model. 

3. STRUCTURAL INTENSITY 

Structural intensity is defined as the vibrational power per unit width of the cross-section of a uniform 

beam and plate. In early studies /1,2/, only flexural motion is focused because the flexural motion is superior 

to others in a straight beam or flat plate. In a shell structure, because of curvature, the in-plane motion is 

important and expressions of structural intensity are complicated. 

First, structural intensity density is defined as a three-dimensional Poynting's vector in an elastic body 

i = - σ · ν (1) 

where σ is the stress tensor and ν is the velocity vector. Structural intensity is a resultant of the vector i over a 

cross section. Therefore, it is a two-dimensional vector at the central surface of a structure. Its final 

expression is in tensor form 

/ = Iaaa = (-ÜpNa^ - θβΜ"Ρ - wQa)aa (2) 

where a a is base vector, (uß,w) is displacement component, θ β is rotation angle component and 
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0 N a ß , M a ß , Q a ) is membrane force, moment and shear force respectively. All components are tensor 

components, so if they are converted to physical components, Eq. (2) is identical to Romano's expression of 

intensity. To measure the structural intensity, the out-of-plane displacement and its derivative is needed in a 

beam or a plate, and both the out-of-plane displacement and the in-plane displacement (and its derivatives) 

are needed in shells. 

4. MEASUREMENT THEORY 

4-1. Element characteristic equation 

The characteristic equation of a element, the discretized equation of motion of an element, is 

Kq + M q = g (3) 

where Μ is the mass matrix, Κ is the stiffness matrix, q is the nodal displacement and g is the generalized 

loads. Generally, g consists of the load per unit length and the external loads at the boundary of the element 

and the reaction forces with adjacent elements. If there are no external loads, g is identical to the inter-

elemental forces. 

4-2. Sommerfe ld 's condition 

At the boundary of some domains, unknown inter-elemental forces will exist. On the other hand, this 

boundary is in the condition of impedance matching and a non-reflective wave situation is possible. This 

situation can be formulated by Sommerfeld's condition. The effect of Sommerfeld's condition is identical to 

that of an absorbing boundary or non-reflecting boundary 16,11. 

The boundary condition is that the artificial damping reaction force is enforced. This virtual force is 

described as 

t - -/<ycu (4) 

where t is the force vector, ω is the angular frequency, c represents the impedance matrix and u is the 

displacement vector. This is equivalent to the reaction force of the artificial damper installed in the boundary. 

Therefore, all the energy of the outgoing wave is absorbed by this boundary and reflection does not take 

place as a result. 

If the boundary of some finite element is in this condition, the unknown inter-elemental forces are 

replaced by this virtual force. This concept is shown in Figure 1. Thus, by determining the impedance matrix 

C only nodal displacement is needed to decide the infomation inside the element. 
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Outgoing wave 

Fig. 1: Concept of Sommerfeld's condition 

4-3. Impedance matrix 

In a beam, for example, the shear force and the bending moment act on a cross-section. Therefore, two 

impedance parameters are required to express Sommerfeld's condition: namely, the shear force impedance C/. 

and the moment impedance cM. Using these parameters, boundary conditions 

F = i ω c/. w (5) 

M=icocMe (6) 

s - b W ' ^ i α) 

are enforced at the end of the element. With these parameters, the external force vector 

[M n) \i°>CMen 

is obtained (η is the nodal number). 

The shear force impedance and the moment impedance can be assumed to have a proportional relation, 

presuming from their characteristic impedances. This is expressed as follows 

cF = α cM (8) 

where α means proportional parameter. Therefore the external force vector is rewritten 

iF„ 1 (ίωacM iv_ ] 
W Η (9) Μ n J [ i ( O c M 0 n 

With this expression, only proportional parameter α and the moment impedance C M remain unknown. 

Then, it is described in matrix form 
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(10) 

Finally, the characteristic equation of an element in a harmonic vibration is 

( K - ß > 2 M - / © s ) q = Dq = 0 (11) 

4-4. Measurement procedure 

Measurement procedure is an iteration process described as follows. Initially, the proportional parameter 

α is assumed. Since the remaining parameter is only cM, the coefficient matrix of the characteristic equation 

of an element contains only cM as unknown. Solving the determinant equation of this coefficient matrix, 

eigenvalues are obtained. 

Next, using these assumed parameters α and cM, the component of the matrix is determined for each cM. 

For each matrix, the relationships of components of displacement vector is obtained in the form 

because all unknowns are assumed and displacement components are still variables. From these simultaneous 

equations, by substituting some measurement values into the nodal displacement vector q, the remaining 

unknown values can be assumed. Notice that these assumed displacements are not exact ones, so they should 

be confirmed. First, the rank of the coefficient matrix should be checked. Second, the proportional parameter 

α calculated from its definition using assumed displacement components should be compared with its initial 

value. If it matches, the iteration process is ended. If it does not match, this process should be tried again by 

changing a. 

A simple example is simulated. The objective is a steel beam with both ends fixed. As a preliminary 
simulation, FEM software MSC.MARC is used. Its result is treated as an alternative to an actual 
measurement. Namely, the out-of-plane displacement is used in the iteration as a measurement value, and the 
rotation angle is computed by the method presented in this paper. 

Det D ( c w ) = 0 (12) 

»(c W )q = 0 (13) 

5. SIMULATION 
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5-1. Properties of the beam 

The beam's Young's modulus is 2.1 xlO11 [N/m3], density is 7850 [kg/m3], width and depth of the beam 

are 0.001 [m] and 0.0001 [m] respectively. Both ends of the beam are fixed, so the out-of-plane displacement 

w and rotation angle θ are 0 at the boundary. An exciter is placed near one end with 10 [N] force and 1000 

[Hz] frequency. 

5-2. FEM formulations 

In this case, our computation is performed on one element at the end of the beam. So it seems like a 
cantilever modeled by one element (see Figure.2). The other end is not free but continuous. This situation is 
modeled by Sommerfeld's condition. 

I 
Fig. 2: Finite element modeling with a beam element at the boundary 

Its characteristic equation is 

Κ ^ - ω 2 Μ ^ l i w , l iOl 
(14) 

K33 - ω2Μ33 - i(oacM Ku - ω2ΜΜ 

K43 - <y2Af43 ΚΛ4 - ω2Μ- imcM 

1 ο 
θ2\. jo 

where Knm and M m are components of the stiffness and mass matrices of the beam element. Because one end 

is fixed, namely Wj = θ̂  = 0 , the dimension of the elemental characteristic equation is (2x2) . 

The proportional parameter α is calculated by its definition as follows. 

F-θ 
Μ • w 

The force F and the moment Μ are calculated from the stiffness matrix Κ and the nodal displacement q. 
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5-3. Calculation result 

The length of the element is 0.015[m]. At the boundary point that x=0.015, the out-of-plane displacement is 

w = -1.097 χ 10~5 [m]. 

With an arbitrary a, two eigenvalues (cM) are obtained from the determinant of the coefficient matrix (Eq. 

(12)). For each eigenvalue, a rank check is needed and it should be 1 for the unique solution. 

The theoretical value of α presumed by the simulation is used for simplicity, namely α = 5346.3. In this 
case, eigenvalues are: cM =-0 .00132/ , - 0 . 0 2 4 1 0 Ϊ . 

The rank is 1 for each eigenvalue. So next a check for α is attempted. For the first eigenvalue, α 

calculated by Eq. (15) is -14904.1. This case is probably a wrong one because it is far from the initial value. 

In the second case, α is 5437.7. The error is merely 1.7% compared with its initial value. This value is 

considered to be right. Furthermore, the re-calculated rotation angle 0 is identical to the exact one (Θ 

= 4.845 x lO - 4 ) . 

This result is natural because simulated values are used in this calculation for simplicity. In the future, the 

iteration and check process should be further established. 

6. CONCLUSION 

This paper shows that using the impedance parameters, a vibration field can be obtained with some 

measurement points. With the concept of Sommerfeld's condition, a non-reflection condition can be modeled 

by FEM. Then, a relatively small number of measurement points can satisfy the condition equation, and it 

leads to the grasp of the vibration field. Once the vibration field is determined, the structural intensity vector 

is easy to obtain. However, details of the iteration process have not been established so far. This means that 

the presented process cannot be performed automatically. This problem must be overcome. 
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