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1. SUMMARY

The method of boundary integral equations (BIE) for the solution of non-stationary boundary value
problems (BVP) of dynamics of anisotropic elastic mediums is elaborated. The central moment of this
method is constructing the fundamental solutions of equations system, kernels of BIE. Here the fundamental
solutions in two- and three-dimensional cases (N, M=2,3) are considered and their properties are studied. In
the space of generalized functions the solutions of initial BVP are obtained and their integral representations,
regular inside a range of definition are given. Generalizing the Green and the Gauss formulas for the
generalized solutions of these equations, singular integral equations for the solution of non-stationary BVP

are constructed. The uniqueness theorem of the solutions, including for the class of shockwaves, is presented.

2. STATEMENT OF NONSTATIONARY BOUNDARY VALUE PROBLEMS

Let u(x,) be the solution of the system of hyperbolic equations which describes dynamics of anisotropic

elastic mediums. We consider it in the cases of plane (N=2) and space (N=3) deformation:

L;(3:,0,) u;j(x.1)+G;(x,t) =0, (x,t)e RN*! @.1)

L,.j(ax,a,)=c,;.'"a,,,a,—5,.ja,2, ij=1LM, mil=1,N

l ~ r
(6 i ,.5."' = L;.';l, (2.2)

259



Vol. 16, Nos. 4-5, 2005 Boundary Value Problems of Dynamics of
Anisotropic Elastic Media

Here C,-;-"l is the matrix of elastic constants satisfying to the condition of strong hyperbolicity
W(n,v)=C'n,mv'v’ >0 V n20, v0

x =(x;,..., xy), x € S~, S is the boundary of elastic body S~ e RY and belongs to the class of Lyapunov's
surfaces with continuous exterior normal n, ||n|| =1, x)e D™, D =S x(0, ), D=8 x(0, 1),
D=S"x(0, ), D,=S x(0, t). Everywhere summation is carried over like indexes in the indicated limits. It
is supposed that ueC (D™ UD), GeC (D™ UD)and G -0, t =+ VxeS™.

Further u is twice differentiated vector function almost everywhere by exception characteristic surfaces -

wavefronts F,, on which following conditions on gaps are executed /1,2/:

[u,(x,0)] K =0 (23)

[u, . mt cu,-.,]F’ =0 (2.4)
1

[ofm, tCUyy | = 0 a! =C,5-’"urm (2.5)

!

Here “c” is the speed of a wavefront motion, which instituted from the solution of the characteristic

equation of the system (2.1):

!

det{C,-T'v,,,v, - V,25~~} =0

where v=(v,, ..., w, ¥) is the vector of characteristic normal:
c=-V, /(VIVI )1/2 , C= iCk (V) 5 0<Ck Cisls k=1,...M-1

Wave vector m=(m,,..., my) is the normal to a wave front F, in RV :m=—v viv )” =

Problem L. To define the solution of the system (2.1), if next conditions are known:
Initial values

u;(x,0)=u(x), xeS"US, (2.6)
u; (x,0)=ul(x), xS - @7
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Dirichlet's conditions
ui(x,t)=wix,t) xes, >0, (2.8)

or

generalizing Neumann's conditions
ol (x,0)=n(x)gi(x,t), x€S8, t>0, i=1,.N. (2.9)

Problem II. To construct boundary integral equations for the solution of following boundary value problems.
First BVP. To find the solution of the Eq. (2.1), satisfying the conditions (2.6)-(2.8) and (2.3)-(2.5).
Second BVP. To find the solution of Eq.(2.1), satisfying the conditions (2.6), (2.7), (2.9) and (2.3)-(2.5).

We will call such solutions classical ones.

3. CONSERVATION LAWS AND UNIQUENESS OF THE SOLUTIONS OF BVP

Consider the following functions: W(u)=o,5cg;"' Uil K(u)=0,5||u.,||2, E(u)=K(u)+W(u), L(u)=K(u)-

W(u). Functions W, K, E are densities of internal, kinetic and full energy of a field.

Theorem 3.1. If vector-function u is the classical solution of the first (or second) BVP, then

[ L(u(x,0))dV(x,t)= | G,(x,t)u,(x,t)dV(x,t)+

D D,

+ [ 8w, (x,0dS(x,0)— | (i (x, ), (x,0) — ) (X)u} (x))dV (),
b, S
[ (E,t)=Eu,0)dV(x)= | Gy(x,0)u; ,(x,0)dV(x,t)+ [ gi(x,t)w, ,(x,t)dS(x,¢).

M D f] DI

lim u;;, >0, xeS§ then
[ Lu(x,0)dV(x,0)= | G,(x,0)u;(x,0)dV (x,t)+ | gi(x,0)w, ,(x,0)dS(x,1)
D D~ D

If 4(5,0)=0, u;(%,0)=0, lim u,, —0,
1—»+0

From this theorem follows

Theorem 3.2. If classical solution of first (or second) BVP exists and satisfies the conditions:

limu,—>0, limu,—>0, VxeS thenitis unique.
=40

I+
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4. THE GENERALIZED SOLUTIONS OF BOUNDARY VALUE PROBLEMS.
ANALOGY OF THE KIRCHHOFF AND GREEN FORMULAS

Here Dy, (RY +I) is the space of generalized vector functions f(x,t)=( f,,..., fM\] on the space

Dy, (RM*™") of base vector-functions @(x,£) ={@,...0u } Vo,eD (R /3/. For regular f we have

(F @hew))= | dt [ f(xDpx0dV(), VoeDy R

-0 pN
For u which is determined on D~ we introduce a generalized function

u (x,f)=H(1) H_(x) u(x,z) 4.1)

Here H(¢) is Heaviside’s function, Hg(x) is the characteristic function of the set S~ which is equal to 1

for xe 8™, to 0,5 for xe S and to 0 for xe R¥ \ (§ \U S7). Analogously to (4.1) we have G (x,t)=
H(t) Hg (x) Gi(x,).
Green's matrix U ,/‘ (x,t) is the fundamental solution of Eq. (2.1), corresponding to G (x,0)- 64 0(x,1)

and
Uk(x,00=0, Uk (x,00=0 x=20

Regarding the construction for U see /4/. Also we use the fundamental solution of Eq. (2.1) by
G (x,)= 0,0(x) H(t) as a convolution

VE(x,0) =U{‘(x,t):H(x).

Theorem 4.1. If the function u is the classical solution of first (or second) BVP then 4 (x,f) can be

represented over convolutions:

:( o k * A k * I il

i(x,0)=U; (x,1) Gy (x,0)+U; (x,1) w (0Hg (x)+
t

+UK (x, z);u,?H § ) +UX(x,0)* g, (x, 08¢ (DH (1) -

—C,'g'Vi’fz (%0 j My ()5 COH ()= Cl’c}""i’f 10 (I ()55 () 4.2)

262



L.A. Alexeyeva and G.K. Zakiryanova Journal of the Mechanical Behavior of Materials

€@,

Here gi(x,£)0((x)H(?) is the simple layer on cylinder D; sign “*” means full convolution on (x,£); sign “x
or “¢’ under an asterisk corresponds to convolution only over x or ¢ accordingly.

The formula of this theorem is the generalized solution of Problem I.

5. MATRICES OF THE FUNDAMENTAL SOLUTIONS V, T, W
New matrices are considered:

1
Si']':(x,t)=Ci';' U{;,[’ I“lk(x,t,n)=Si'l':nm

T (x,,m) = -Tf (x,t,m) = n, UK ()

Vi@n=UT(x0* 8, 6@H©O =Uk 1) *HO)

k - m * . k *
Wj (x,t,n) = T.}- (x,8,n)* 8,4 O(X)H (1) = Tj (x,t,n)t H(t)

Some properties of symmetry of these matrices are

Uk =UF(x1, Uk@0=ULxn,
VR0 =VExn, V) =VEi(x)
ST (x,1) = ~Sii (-x,0) , T (x,1,m) = T (=x,,n) = T (x,1,-n)

k _ k __wk _
Wi (x,t,n)——Wl- (—x,t,n)= Wl (x,t,—n)

Theorem 5.1. Multipole matrix Tl-""(x,t,n)at fixed “k” is the fundamental solution of the system (2.1),

applicable
Gi(x,t) =n,Cl'8, (x,1).

Let us introduce U{((s)(x) as the Green matrix of static equations (2.1) (when J,u =0):

L;(0,,0) UK (x) + 5,6(x) =0, U¥S(x) 5 0, |Jx]| — ,

T} (x,m) = Pl UP , 1O (x,m) = -TH (x,m) = -1 (x,-m)
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Lemma S.1. T'.»"“”) is the fundamental solution of static equations
L;i(34,00T*® (x,n) ~ n,,C' S, (x) = 0
l]( x? ) J (xr ”) Ry Cik Oy (x) i

It is easy to see that this system is of an elliptical type. The following representations are valid.

Theorem 5.2.
Vi@ =UFO ) H (1) + VD (x,1)

Wk, =T B + W D1,

where U,-k(s)(x) H(y), T;"(S) H(?) are regular functions at x=0. At ||x|| > 0

Ut~ Ak e) T n) ~pd ' BY (e,), N=2

U’k(s)(x) ~||XI|_N+2 A;ﬁl(ex) T;k(s)(x,n) ~'Ix||_N+l

BY (e,), N>2
Here e, = x/||x||, A,-lkv (ey) ,B{Z(ex) are continuous and restricted on the sphere |le||=1 functions; V,-k(d) -

4 Kd) are regular functions, continuous at x=0, />0. For anyone N: V,k(d) (x?) =0 and W,-k(d)(x,t) =0 by

(x> ﬁﬁ cps(e)t , and for uneven N these equalities are performed and for ||x||< min1 c(e) .

lel=

6. BOUNDARY INTEGRAL EQUATIONS
Lemma 6.1 (analogue of Gauss formula). If S is any closed Lyapunov's surface in R”, then we have

[T (y - x,n(y))dS (y) = 6, H (x) 6.1)
S

By x €S integral is singular, it is calculated in the sense of Value Principle.

When M=1 and L;(0,,0)= 8,0, = A, this formula complies with the Gauss formula for potential of double
layer of Laplace equations /3/.

Notice that formula (4.2) formally can be presented in the form:

et = [(TF G-y n(y)t =), (61)+UL (x=y,t = 1)g; (y,)dD(y, 7)) +
D

: . A
+ [ U G-y, 000 () + UL (x - y, 0 ())dS ™ (y) +U * G
&
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Under zero initial conditions this complies with generalizing Green’s formula for elliptical systems.
However particularities of Green’s matrices for wave equations do not allow using this formula for building
solutions of boundary value problems, because there are strong singularities on fronts. But the matrices

introduced in §5 allow building integral representations of formula (4.2).

Theorem 6.1 If u is the classical solution of boundary value problems then

i (xt) = U," (x,t)* 8,(x,t) +Ug(x,0)* g;(x,0)85 (x)H (£) -

; 1 0
~V.P. (T} (x= y,n(y); (7,0)dS(y) - 1450 WD (- y,n(y),t - o)y, (y,1)dr -
S

= [V D=y, m(y), 0] (1)dS (y) + Uk (1) * ] (OH (1))
S

Proof.

Integral presentation of formula (4.2) for even N has the form

1 f) = £ dS(y):I) Ui (x=y,t-1)8;(y, 1)~ W} (x - y,n(y),t - T)u; , (y,7))d7 -

= [WeCe = y,n(), 067 (D)AS () + [ Uy (= 3,03 (5)dS™(9)

S K]
+ [ Ug(x =y, (0)dS~(y)+ [ Uk (x=y,t=1)G,(y,7)dD ™ (,7)
S D™

If use theorem 5.2 that second summand possible to present so

q t
gW/:(x—y,n(y),t—r)u,-,(y,r)dD(y,r) =£dS(Y)!)Wk‘(x_y’n(y)’t_r)dui.l(yvr) =

. I3 .
= [T}~ y,n())u; (p,8) - ) (y))dS(y)+ £ dS(y)({ W, (x~ y,n(y),t - 7)w; (v, 7)dr
S

According to determination W;
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[W (x= y,n(y).0) - T} (x - y, n(y))ui ()dS () = { WD (x— y,n(y), ud (y)dS ()
S

After summation we obtain the formula of the theorem for internal points. If x*eS, x €S and

*
x— x ,then

lim w (e, t)=u ()= lim [T, (c~ y,n(y); (,0)dS (y)+

XX X=X s

* WD (x* —y, n(y), 0l (y)dS(y) -

| dS(y):I) Ui (x" = y,t=1)g; (1, D)+ WD (x* =y, n(y),t =)y (¥, 7)) +
S

+ [Uio -y as~ )+ [(UL G - y.0u G)),, dST () +

+ IUI’((x‘ —y,l—f)Gi(y,fﬁD_(y,f)
D

The limit on the right part can be, by means of lemmas 6.1, converted to type

[T -y, n (s () —w; (x°,))dS (y) +u; (x°, )8, =
$

=V.P [T = y,n(y)u; (,0)dS(y) —u; (£",8) VP [T - y,n(y))dS(y) +u; (x°,1)5; =
M \)

=V.P.[T;)(x" - y,n(y))dS(y) +0,54; (x",1)5
¢

After summation we obtain the formula of the theorem for boundary points, which is the boundary
integral equation for solving BVP. Please see paper /5/, where this method was applied for solving wave

diffraction problems in elastic media with cavities of different forms.
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