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The method of boundary integral equations (BIE) for the solution of non-stationary boundary value 

problems (BVP) of dynamics of anisotropic elastic mediums is elaborated. The central moment of this 

method is constructing the fundamental solutions of equations system, kernels of BIE. Here the fundamental 

solutions in two- and three-dimensional cases (N, M=2,3) are considered and their properties are studied. In 

the space of generalized functions the solutions of initial BVP are obtained and their integral representations, 

regular inside a range of definition are given. Generalizing the Green and the Gauss formulas for the 

generalized solutions of these equations, singular integral equations for the solution of non-stationary BVP 

are constructed. The uniqueness theorem of the solutions, including for the class of shockwaves, is presented. 

2. STATEMENT OF NONSTATIONARY BOUNDARY VALUE PROBLEMS 

Let u(x,t) be the solution of the system of hyperbolic equations which describes dynamics of anisotropic 

elastic mediums. We consider it in the cases of plane (N=2) and space (N=3) deformation: 

L.A. Alexeyeva, 

1. SUMMARY 

Lij(SxA) Uj(x,t) + G,(x,t) = 0, (x,t)eRN+] (2.1) 

Lij(dx,dt) = Cl?'dmdl-SiJd?, i,j =1,M, m,l =1, Ν ij Vmul 

s^lm _ ,-ml 
ij ~ ij ~ ^ ji · (2.2) 

259 



Vol. 16, Νos. 4-5, 2005 Boundary Value Problems of Dynamics of 
Anisotropic Elastic Media 

Here C f is the matrix of elastic constants satisfying to the condition of strong hyperbolicity 

W(n,v) = C"'nmn, V ' V > 0 V w*0, V*0 

χ =(χι,..., xN), χ e S~, S is the boundary of elastic body S~ e RN and belongs to the class of Lyapunov's 

surfaces with continuous exterior normal n, ||«|| = 1, (x,t)e D~, D =S x(0, <»), DJ~ = S~x(0, t), 

D= S~ x(0, oo), D, = S x(0, f). Everywhere summation is carried over like indexes in the indicated limits. It 

is supposed that ueC (D~ <JD), GeC (D~ u D ) and G ->0, t ->• +°o, VxeS~. 

Further u is twice differentiated vector function almost everywhere by exception characteristic surfaces -

wavefronts F„ on which following conditions on gaps are executed /1,2/: 

[«,0M)]F ( = 0 (2.3) 

[«ι < « / + ,/]/, = 0 (2.4) 

[afm, + cuH = 0 σ[ = C f U ] , m (2.5) 

Here "c" is the speed of a wavefront motion, which instituted from the solution of the characteristic 

equation of the system (2.1): 

where v=(vi,..., vN, v) is the vector of characteristic normal: 

C = - V , /(v,v,)u2,c = ±ck(ν), 0<c* <ck+h k=l,...,M-I 

Wave vector m=(m/,..., mN) is the normal to a wave front F, in RN : m = —v/^V/)1'2 

Problem I. To define the solution of the system (2.1), if next conditions are known: 

Initial values 

Ui(x,0) = u?(x), x e S ' u S , (2.6) 

uit(x,0) = ul(x), xeS~- (2.7) 
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Dirichlet's conditions 

Uj(x, t)—w j(x,t) xeS, t>0; (2.8) 

generalizing Neumann's conditions 
σ / ( x , t ) = n,(x)gi(x,t), xeS, t>0, i = l,...N. (2.9) 

Problem II. To construct boundary integral equations for the solution of following boundary value problems. 

First BVP. To find the solution of the Eq. (2.1), satisfying the conditions (2.6)-(2.8) and (2.3)-(2.5). 

Second BVP. To find the solution of Eq.(2.1), satisfying the conditions (2.6), (2.7), (2.9) and (2.3)-(2.5). 

We will call such solutions classical ones. 

3. CONSERVATION LAWS AND UNIQUENESS OF THE SOLUTIONS OF BVP 

Consider the following functions: W(u)=0,5 u^uj,b K(u)=0,5\\u,,f , E(u)=K(u) + W(u), L(u)=K(u)-

W(u). Functions W, Κ, Ε are densities of internal, kinetic and full energy of a field. 

Theorem 3.1. If vector-function u is the classical solution of the first (or second) BVP, then 

I L(u(x,t))dV(x,t)= j Gl(x,t)ul(x,t)dV(x,t) + 
D- D-

+ I 8t(x,t)wt(x,t)dS(x,t)~ j (ui(x,t)ut l(x,t)-uf(x)ul(x))dv(x), 
Dt s-

j (E(u,t)-E(u,0)dV(x)= \ Gi(x,t)uu(x,t)dV(x,t)+ j gi(x,t)wu,(x,t)dS(x,t). 
S- D~ D, 

If wi(x,0)=0, ui:l(x,0)=0, lim uu ->0, limuit^> 0, xeS~ then 
t->+o0 ' /->+00 ' 

j L(u(x,t))dV(x,t) = \ G,(x,t)ui(x,t)dV(x,t)+ \ gi(x,t)wu(x,t)dS(x,t) 
D~ D~ D 

From this theorem follows 

Theorem 3.2. If classical solution of first (or second) BVP exists and satisfies the conditions: 

lim u, ι -> 0, lim u,, 0, \/x e S~ then it is unique. 
/ - » - Η Λ / - > + α 0 
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4. THE GENERALIZED SOLUTIONS OF BOUNDARY VALUE PROBLEMS. 
ANALOGY OF THE KIRCHHOFF AND GREEN FORMULAS 

Here D'm(R"+:) is the space of generalized vector functions /(*,*) = (/ i o n t h e s P a c e 

DM(RN+l) of base vector-functions φ{χ,ί) = {φ\,...,φΜ), V ^ · e D (RN) β/. For regular / we have 

(f(x,t)Mx,t))=l dr J /,τ)φι(x,T)dV(χ), 
rn 

For u which is determined on D~ we introduce a generalized function 

u {x,t)=H(t) / / ; (x) u(x,i) (4.1) 

Here H(t) is Heaviside's function, Hg(x) is the characteristic function of the set S~ which is equal to 1 

for xe S~, to 0,5 for x e S and to 0 for xe R* \ (S U S~). Analogously to (4.1) we have G k(x,t)= 

H(t)Hs(x)Gk(x,t). 

Green's matrix t /*(j t , i ) is the fundamental solution of Eq. (2.1), corresponding to G (x,t)~ 5ikS{x,t) 

U-(x, 0) = 0, U-,(x, 0) = 0 x±0 

Regarding the construction for U see /4/. Also we use the fundamental solution of Eq. (2.1) by 
G (x,t)= SlkS(x)H(t) as a convolution 

V,k(x,t)=uf(x,tyH{t). 

Theorem 4.1. If the function u is the classical solution of first (or second) BVP then u{x,t) can be 

represented over convolutions: 

h / ( 0 = uf (x, t) * Gk (x, t) + i f (x, t) * u\ (x)Hs (x) + 

+ ( t / f , (x, t) * u°kHs (χ) + υ\ (χ,t) * gk (x,t)Ss (x)H(t) -
χ 

u j,tnm W (0 ~ C'kjViJ (•*>') * (x)n
m (x)^s W (4·2) 
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Here gk(x,t)Ss{x)H(t) is the simple layer on cylinder D; sign "*" means full convolution on (x,t)\ sign "x" 
or "f" under an asterisk corresponds to convolution only over χ or t accordingly. 

The formula of this theorem is the generalized solution of Problem I. 

5. MATRICES OF THE FUNDAMENTAL SOLUTIONS V, T, W 

New matrices are considered: 

SZ(x,t) = cVlU^, rf (x,t,n) = S^nm 

Tl
k (x,t, n) = - r f (x, t, n) = -C^nJJ^ ,(x, t) 

Vj (*, t)=U"f {x, t) * SmkS(x)H(t) = υ ) (χ, t) * Η(t) 

Wf (x,t,n) = Tm(x,t,n) * Sm/(S(x)H(t) = T$(x,t,n)*H(t) 

Some properties of symmetry of these matrices are 

t / f (x, t) = uf (-χ, t), t / f (x, t) = U[ (x, t), 

vf (x, t) = vf (-χ, t), Vik (x, t ) = Vl (x, t ) 

S% (x,t) = ( - x j ) , rf (x, t, η) = - ή (-χ, t, n) = - ή (χ, t, -n) 

wf (x, t,n) = -Wj*· (-χ, t,n) = -Wi
k(x,t,-n) 

L 

Theorem 5.1. Multipole matrix T{ (x,t,n) at fixed is the fundamental solution of the system (2.1), 

applicable 

Gi(x,t) = nmCrk'S,l(x,t). 

Let us introduce U ^ s \ x ) as the Green matrix of static equations (2.1) (when d(u = 0): 

Ltj(dx, 0 ) U k / S \ x ) + 5ikS(x) = 0, U*(s\x) 0, ||x|| 

T,k(s)(x,n) = -C%'nmUff , T^\x,n) = -T«s\-x,n) = -Τ^(χ,-η) 
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Lemma 5.1. is the fundamental solution of static equations 

Lij(Βχ,0)Ύ^\χ,η) - nmC^S„ (x) = 0. 

It is easy to see that this system is of an elliptical type. The following representations are valid. 

Theorem 5.2. 

V,* (x,t) = U^s\x)H(t) + V^d\x,t) 

W,k (x, t) = 7}* (s ) (x)H(t) + W^d\x, t), 

where Uf(s)(x) H(t), T,k(s) H(t) are regular functions atx*0. At ||x|| 0 

U<(*>(x) ~ln\\x\\A%(ex) Τ^\χ,η) ~|ΜΓ' Β»(βχ), N=2 

U^\x)~\\xlN+2A»(ex) T^\X,n)~\XlN+lB»(ex), N>2 

Here ex = */||x||, A^ (ex), (ex) are continuous and restricted on the sphere ||e||=l functions; 

Wk{d) are regular functions, continuous at x=0, t>0. For anyone N: vfW (x,t) =0 and fV^d\x,t) =0 by 

||x||> max cM (e)r, and for uneven Ν these equalities are performed and for ||x||< min c\ (e)t. 
HH H H 

6. BOUNDARY INTEGRAL EQUATIONS 

Lemma 6.1 (analogue of Gauss formula). If S is any closed Lyapunov's surface in R", then we have 

jT,k^\y - x,n(y))dS(y) = ό,,Η^χ) (6.1) 
S 

By χ eS integral is singular, it is calculated in the sense of Value Principle. 

When M= 1 and Lll{dx,0)= djdj = Δ, this formula complies with the Gauss formula for potential of double 
layer of Laplace equations /3Λ 

Notice that formula (4.2) formally can be presented in the form: 

Ü k(x,t) = { ( Γ / ( x - y , n ( y ) , t - t ) U , (x,t) + Ui
k{x-y,t-r)gi(y,r)dD(y,r)) + 

D 

+ J f (* ~ y , 0 « , ° ω + ν[(χ-y,t)uj(y))dS~(y) 
s~ 
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Under zero initial conditions this complies with generalizing Green's formula for elliptical systems. 

However particularities of Green's matrices for wave equations do not allow using this formula for building 

solutions of boundary value problems, because there are strong singularities on fronts. But the matrices 

introduced in §5 allow building integral representations of formula (4.2). 

Theorem 6.1 If u is the classical solution of boundary value problems then 

Ü *(x,t)= U ' k ( x , t ) * G , ( x , t ) + U ' k ( x , t ) * g i ( x , t ) S s ( x ) H ( t ) -

- V . P . j ( T * s \ x - y , n(y))«,· ( y , t)dS(y) - \ dS(y)\ W * d ) ( x - y , n ( y ) , t - r ) u t J ( y , τ)άτ -
5 S 0 

- W H * - y , n ( y ) , t ) u ? ( y ) d S ( y ) + (U'k ( x , t ) * u ? ( x ) H ^ x ) ) , t 
s ' 

Proof. 

Integral presentation of formula (4.2) for even Ν has the form 

Ü k(x,t) = J dS(y)\ (Ui ( x - y , t - T ) g , ( y , r) - W'k (.r - y , n(y), t - r ) u i t ( y , τ ) ) ά τ -
s ο 

-j(Wl(x-y ,n(y) ,t)uhy)dS(y)+ J U ' k u ( x - y , t ) u ? ( y ) d S ~ ( y ) 
S s~ 

+ J U i k ( x - y , t ) u l ( y ) d S - ( y ) + \ υ [ ( χ - y , t - τ ^ , τ ^ ω ' ( y , r ) 

S' D~ 

I f use t h e o r e m 5 . 2 that second s u m m a n d p o s s i b l e t o present s o 
ί Κ ( χ - y , n ( y ) , t - r )«,·, ( y , τ ) d D ( y , τ) = J dS(y)\ Wlk (x - y , n ( y ) , t - r )dut , ( y , r ) = 

D S O 

= \ T l l s ) ( x - y , n ( y ) ) ( U i ( y , t ) - u ^ y ) ) d S ( y ) + i d S ( y ) \ w ^ \ x - y , n ( y ) , t - T ) w i t ( y , T ) d T 

S S 0 

According to determination Wk 
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- y,n(y),t)-T*s\x - y,n(y)))uf (y)dS(y) = \ W*d\x - y,n(y),t)u°(y)dS(y) 

s s 

After summation we obtain the formula of the theorem for internal points. If x* e 5 , χ e S and 

χ —> χ* , then 

/im uk(x,t) = uk(x\t)= UmjTl<<s\x-y,n(y))ui(y,t)dS(y) + 
x-yx x-tx ς 

w«d\x' - y,n{y),t)u°(y)dS(y) -
s 

-jdS(y)\(U'k(x -y,t-T)gi 0>,r) + #fV-y,n(y),t-T)uu(y,r)) + 

s 0 

+ \u'k(x -y,t)u,(y)ds~(y)+ \{ϋ[{χ - y,t)u, (y))„ dS~(y) + 

.V" s~ 

+ lu'k(x*-y,t-τγί&,τ)ω-{γ,τ) 

D 

The limit on the right part can be, by means of lemmas 6.1, converted to type 

J7f V-y,n{y)\Ui (y,t)-Ui (.x\t))dS(y) + ui (x* ,t)S'k = 

s 

= V.P.\T^\x* -y,n(y))Uj (y,t)dS(y)-Ui (x\t) V.P.\T^\x*-y,n(y))dS(y) + ui (x,t)S'k = 

5 S 

= V.P. jT^s\x* -y,n(y))dS(y) + 0,5«,· (x*,t)% 

s 

After summation we obtain the formula of the theorem for boundary points, which is the boundary 

integral equation for solving BVP. Please see paper 151, where this method was applied for solving wave 

diffraction problems in elastic media with cavities of different forms. 
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