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1. SUMMARY 

A meso/macro discrete model of fabric has been developed, based on the yarn-yarn interactions occurring 

at the crossing points of the interwoven yarns. The fabric yarns shape is modeled by a Fourier series 

development, and the yarns are discretized into a set of elastic bars associated to stretching springs, 

connected at frictionless hinges by rotational springs. The motion of each node is described by a vertical 

displacement and a discrete rotation. Considering a single yarn within the woven structure, the reaction force 

exerted by the transverse yarns at the contact points, is expressed, and the work of the reaction forces is 

established. Simulations of a traction curve of a fabric in the warp direction are performed, that evidence the 

effect of the yarn-yarn interactions. 

2. INTRODUCTION 

The widespread use of woven structures in various domains (clothes, vascular prosthesis, armour, 

mechanical parts) has triggered many research activities related to the analysis of their deformation and shape 

forming capacities. Discrete structural models of fabric have been developed recently, see / l , 2, 3/ and the 

references therein, whereby the yarns are idealized as a set of extensible bars connected at nodes, endowed 

with a rotational rigidity. Few works in the literature have been devoted to the analysis of the contact or 

interactions between the yarns, notwithstanding 3D finite element analysis within a context of continuum 

contact mechanics (see e.g. /4/). The goal of the present approach is to incorporate the effect of the yarn 

interactions in a manner compatible with a discrete modeling, at a mesoscopic scale of description, without 

considering the detailed 3D analysis inherent in a microscopic view of the yarns' contact. 
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3. DISCRETE MODEL DESCRIPTION ACCOUNTING FOR THE YARN INTERACTIONS 

We consider here the planar motion of a single yarn (the warp) subjected to a traction force at its 

extremities and to the punctual contact reactions exerted by the transverse yarns (the weft), Fig. 1, assuming 

the contact to be perfect (no sliding). Although it is somewhat artificial to isolate mentally the yarn from the 

trellis, this approach will give an initial insight into the coupling effect between both sets of yarns, at a 

mcsoscopic scale of description. The discretized yarn consists of a set of punctual nodes connected by 

extensional rigidities Ce j = E A / Δ ; each node is given a rigidity in flexion Cb i = E I / Δ (Δ is the distance 

between two consecutive nodes), Fig. 1. The kinematics of the yarn is described by the vertical displacements 

Wj and the rotations ψ| (the rotation axis being orthogonal to the plane of the figure) of the nodes. The 

contact forces exerted by each transverse yarn (marked with a cross in Fig. 1) are first expressed, from the 

Timoshenko beam theory 151. 

Fig. I: Discrete model of the yarn isolated from the trellis 

Determination of the weft and the warp force interactions (reaction forces) 

We shall first express the reaction force, occurring at the interlacing points, in terms of the mechanical 

and geometrical parameters characteristic of the yarn. At equilibrium, the deformed shapes of the fabric yarns 

arc assumed to be periodic and expressed as the following Fourier series: 
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In order to establish the expression of the reaction force exerted at the yarn-yarn contact points, we first 

consider the mechanical behavior of the weft yarns Q w e : the sub-mechanical system Q w e is there 

considered as an external system. We next express the coeff icients of the previous series vs. the reaction 
k i 

force R w ' a / w e - exerted by the warp on the weft. By using T imoshenko ' s beam theory, in the case of an 

elastic beam subjected to a lateral force F exerted at a point having the abscissa c (Fig. 2), the equil ibrium 

shape of the elastic beam, supposed to be periodic, is given by: 
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with L the projected beam length and EI the beam bending rigidity. 

w 

Fig. 2: T imoshenko ' s beam model 

L 

Using the superposition principle (the force F in (3) playing the role of the reaction force R ^ / w e ), the 

equilibrium shape associated to a weft yarn, viewed as an elastic beam subjected to periodic lateral forces 

(Fig. 3), is directly deduced from (3) by 
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251 



Vol. 16. Nos. 4-5, 2005 Discrete Models of Fabric - Effect of Yarn-Yarn Interactions 

Fig. 3: Distributed contact forces exerted on a weft yarn having index j 

The coefficients of the previous series involve the reaction force and the mechanical and geometrical 

parameters of the weft. We note w w e = A w e the amplitude of the weft within the woven structure, at the 

abscissas of the contact points (Fig. 3), viz 

'we(C j) | (5) 

At the interlacing points, the double sum in Equation 4 simplifies as 

Σ Σ | = 7 T - f o r y = c k V k e [ 1 , N w a ] Ν 
(6) 

We then deduce, from equations (4) to (6), the expression of the reaction forces exerted by the transverse 
yarns on the weft yarns : V y = c k , we have 

|wwe(y)| = w w e = % ^ 4 * - O R w a / w e 
π EI N-11 ^'we *'wa ( L r ) 

3 Wwe (7) 

A result identical to that of Timoshenko /4/ is obtained, viz 

r π4 EI . r = — w 2 L3 (8) 

4. IMPACT OF THE YARN-YARN INTERACTIONS ON THE TRACTION BEHAVIOUR 

In this section, we assess and illustrate the effect of the weft and warp interaction within a woven 

structure loaded by a traction force acting in the warp direction only. For this purpose, we consider and 
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compare the cases of a warp within a woven structure with a yarn being initially deformed (extracted from 

the woven structure), the yarns in both cases sharing identical mechanical and geometrical properties. In both 

cases, the yarn shapes are assumed to be periodic, their equilibrium shapes being expressed as a Fourier 

series development limited to the Nwe first harmonics, as 

W w a ( x ) = Σ a r s i n 

n=l 
ηπ — 

ν '-'wa J 
(9) 

with L w a the projected length of the yarn on the x-axis and Nwe the number of half-periods of undulation 

which corresponds, in the case of a warp yarn within the woven structure, to the number of the transverse 

yarns contacts. Under the traction loads Pwa, the equilibrium state - with or without lateral contacts - is 

obtained as the minimum of the total potential energy of the deformed yarns. In the sequel, the expression of 

the total potential energy is established (in each of previous cases) as a function of the kinematical yarn 

parameters, namely the displacements Wj and the rotations ψ, of the yarn's nodes, for an inextensible yarn, 

focusing here on the analysis of the process of loss of undulation. 

The assumed continuity of the displacement of the yarns at the contact points leads to the following 

relationship between the vertical displacements of the summits of the undulations of the yarns (Fig. 4), 

neglecting the compressibility of both yarns: 

^wa ~ ^ w e W s -we — ^so-we W s -wa — ^ so-wa (10) 

This relationship can be interpreted as a transfer of undulation between the two mechanical systems Q c h 

and Ω,Γ (set of warp and weft yarns respectively). In other words, when the undulation decreases in one 

direction, it increases in the other direction (transverse yarn). 

Fig. 4: Motion of the undulated warp 
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From the relations (7) and (10), we deduce the expression of the reaction force at any contact p o i n t : 

R J _ π 4 ( E ' ) w e π 4 ( E I ) w e Γ , 
wa / we , .3 w s - w e - 3 

2 ( L r ) ( L P 6 ) 

so-we w so -wa ) W s -wa J (11) 

Using the action-reaction principle, the reaction force exerted by the weft on the warp at the crossing 
points having index j (which coincide with the summits of the undulations, see Fig. 4) is then given by 

DJ _ _ D j 
we/wa wa/we 
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"j^(wso-we w so -wa ) + W s -wa J 

The work of the reaction force exerted by the weft at a crossing node (index j ) is given by 
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(13) 

Furthermore, the total work of the reaction forces exerted at the warp yarn contact points is 

Nw„ 
W,.. = Z w R J 

J=1 

which is added to the total work of the external forces (gravity forces, traction loads), as 

Wext ~ + W g r + W c o n l a c , 

(14) 

(15) 

with W t r the work of the traction loads P w a , and Wg r the work of the gravity forces. The explicit 

expression of the external work W e x l is then 

N w c _ 4 

w c x l = - I 
π 4 Μ, 

Η ( L p e ) 

(wso-we wso-wa)ws-wa + 2 W s _ w a j " i ( w so -we wso-wa )wso-wa + ^ Wso-wa 

Ν,ι -1 

+ Pwa Σ τ ( ψ ? - ψ ο ί ) + u N d + i - Σ m i i ( w i - w ° ) 
Vi=1 Z ) i=1 

(16) 

254 



Β. Ben Boubaker, Β. Haussy and J.-F. Ganghoffer Journal of the Mechanical Behavior of Materials 

Nd is the number of discrete elements and ( u j ) ^ N + 1 j denote the nodal extensional displacements ; 

the index ο refers to the initial value corresponding to a kinematical variable in its initial state. 

The total potential energy V( (yarn-yarn interactions) is then obtained as the difference between the 

internal deformation energy U (due to the flexion and the extension of the yarn), given by 

Ν,ι -1 1 / \ 1 
u = u F + u e x = Σ - c b i (ψ Χ ι ί + 1 - ψ X i i ) + Σ - c e i ( u i + 1 - u i ) 

i=1 z i=i z 

and the work of the external forces W e x t , expression (16), thus leading to 

(17) 

Σ i 
i=l z 

, ^ π4 (EI) 

i=l 

\ Nj-1 

Σ - (ψχ,οί -ψχ, ί ; + "Nd + l + Σ m i g ( 
y i=1 

j=l ( L r ) 
(wso-we wso-wa)ws-wa + 2 W^_ w a j~Kwso-we wso-wa)wso-wa r̂  wso-wa (18) 

The simplified case without yarn-yarn interactions corresponds to a total potential energy V 2 given by 

Ν —1 ^ Ν (Ν Λ Ν —1 
ν 2 = Σ ^ Κ μ - ψ ^ ) +tl-cei (u i+1 -Uj) 2 - ρ Σ | ( < « - < ί ) +"Nd+> + i > s ( w i ~ w i ) ( 1 9 ) 

i=l Ζ i=l Ζ I i=l 7 i=l 

The index j , giving the successive labeling of the crossing points, is further replaced in the two previous 

expressions by the global discretization index i, such that 

Ws-wa w p 
W W ) W i t h p = ( ^ l 

2 N w e 
(20) 

The discrete nodal displacements ( w i ) j are obtained from the discretization of the continuous position 

N„c 

w w a ( x ) = Σ a ^ s i n ηπ- , 
n=1 V wa y 

according to 
N w /• \ 

V i e [ l , N d - l ] w i = w w a ( x i ) = ^ C a s i n [ ^ x i J with Xj = 
iL 

NH 
(21) 
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Using the relation (21), the total potential energies V | and V2 given by (18) and (19) can be expressed as a 

function of the coefficients ( ) of the Fourier series, and of the nodal extensions 
1 'ne[l,Nwe] 

(u2 ,U3 , . . . , u N d + 1 j of the discrete warp yarn (accounting for the condition Uj = 0 ) , t h u s 

V u = v ( a r a , . . . a r , . . a ^ , u 2 , . . . u „ . . . u N d + 1 ) (22) 

The yarn equilibrium shape is given as the minimum of the total potential energy with respect to the set of 

arguments ) + 1 ) . Thus, the equilibrium state of the yarns (with and without 

yarn-yarn interactions) is formally given by the solution of the set of algebraic equations: 

dV|.2 = _ d V U = = ^ 2 _ = 0 . gVj.2 _ _ ^ 1 , 2 _ _ gV|,2 _ Q ( Ώ ) 

5a,wa " ' da?» Κ " ' " ' 5ui "' ö"N d + i 

Carbon fibers reinforced fabric under uniaxial tension 

When considering carbon fiber reinforced fabric used in the aerospace industry, the following input 

parameters are used /6/: the mechanical properties of the warp and weft yarns are taken respectively as 

EI w a = 1.47e~7N.m ; EI w e =1 .47e" 7 N.m ; E A w a =13.72 Ν . 

EI EA 
The rigidities in flexion / extension of the springs are then evaluated as C b = — — and C e = — 

Δ Δ 

respectively. The geometrical parameters of the discretization are.taken as: 

L 0 = 0.1m ; w ^ . ^ = 0.5mm ; w M _ w e = 0.5mm ; N w e = 16 ; N d = 224 

The yarn is subjected to an increasing traction load at its extremities, and one represents the traction load 

vs. the yarn end-displacement (Fig. 5); the calculations have been performed with the software Maple©. The 

mean curve of the yarn is restricted to the (x,y) plane (Fig. 4), and both extremities of the yarn keep aligned 

with the direction of traction. The simulation without yarn interactions gives a reference comparison case to 

assess the importance of the yarn-yarn interaction. 

The extension of the yarn is here defined as the displacement of the end node of the undulated beam. The 

simulation leads to the J-shape measured unidirectional traction curve, and it is thought that the model gives 

the essence of the behaviour of a piece of fabric, although restricting here to the behaviour of a single yarn. 

The consideration of the yarn-yarn interactions leads to a stiffer response of the yarn (Fig. 5) : during the 
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traction, the transverse yarns resists to the yarn-yarn undulation transfer by increasing the reaction force. This 

explains why, without yarn-yarn interactions, the loss of undulation's is more rapid than in the case of yarn-

yarn interactions. The extension of the present work for a whole trellis, accounting for the yarn 

compressibility, is under way. 

0.04-

P„.(N) 

0.03-

0.02-

0.01-

End displacement (m) 

Fig. 5: Unidirectional traction curve of the warp yarn. Effect of yarn-yarn interactions 
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