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1. SUMMARY 

The continuous symmetry groups of a viscoelastic constitutive behaviour are calculated. The considered 

constitutive law is expressed within a thermodynamic approach of irreversible processes, called the 

Distribution of Non-linear Relaxations (acronym DNLR). Interpreting the material behaviour as a partial 

differential equation satisfied by the stress as a function of the time and of a set of continuously varying 

parameters, its continuous symmetries are determined, from the generator vector fields associated to each 

infinitesimal symmetry. The expression of the symmetry groups makes it possible to find a master curve and 

to underline the well-known time temperature equivalence principle. The symmetry analysis provides a 

rational and systematic way of construction of the master curves, that appears more economical in terms of 

experiments compared to the traditional heuristic approach. 

2. INTRODUCTION 

The Lie group theory (from the mathematician Sophus Lie) is known to be of great importance as a guide 

for the integration of ordinary or partial differential equations, and to obtain the continuous symmetry groups 

of a given problem, or the group - invariant solutions of physical systems (see e.g. Olver /1/ and the 

references therein). It is of great help in various physical fields such as quantum mechanics, 

electromagnetism, or mechanical engineering (Ibragimov, /2/). For example, Ozer /3/ studied the Lie 

symmetry groups of nonlocal elasticity equation to find its solution, and Vassilev /4/ used Lie groups to study 

the linear theory of rods and plates. More recently and focusing on the thermomechanics of dissipative 

processes in continuous media, Anthony 151 expressed the field equations of heat conduction from a 

lagrangian framework, that evidences the so-called gauge invariance, while Mielke /6/ related finite 

elastoplasticity to Lie groups and geodesies. Following similar lines of thoughts, we calculate in the present 
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work the Lie symmetry groups of the viscoelastic behaviour equation, which is written in the DNLR 

formalism (Cunat, Πί). 

3. DNLR APPROACH AND VISCOELASTIC BEHAVIOUR 

The DNLR approach relies on the assumptions that the Gibbs relationship (1902) can be extended to 

transformations outside equilibrium (see Cunat, 111 and the references therein that give an historical 

perspective of the framework), by completing the set of thermodynamic state variables with a set of suitable 

internal variables. Starting from the specific internal energy e(y,z), where y is the vector of extensive 

variables (e.g. the strain ε or the entropy s) and i the vector of internal variables (describing the 

microstructure), we can obtain the rate form of the internal energy as: 

e = e j, · y + e j · ζ = Y(y, z)y- A{y, ζ)·ζ (1) 

(the subscript denotes the partial derivative), which allows us to define the set of intensive dual variables 

Y(y,z) = e y such as the stress a o r the temperature Γ conjugated to the strain and entropy respectively, and 

A(y,z) = -e; the generalized affinities (or non equilibrium thermodynamic forces). The evolution of these 

intensive variables is then given in rate form by the following system: 

( 
Y 

Λ 

.yy e,zy 

\e,yz e,zz 
(2) 

where the matrix of second order derivatives is, for the sake of simplicity, assumed to be constant. These 

equations that define the state laws have to be completed by the evolution laws of the internal variables. 

Thus, for a first order kinetic equation, viz ζ = LA, with the condition that the affinities rate vanish at 
a = - 1 / ν =-1 = 

relaxed state: A = 0 , one obtains ζ = -τ z - z with τ =L.e^ the inverse of relaxation times, the 

internal variables at the relaxed state being given by zr = - ( e 5 ) 1 e^.y. Identifying then, as a peculiar 

case, y with the strain ε, and Y with the stress σ, for the simple case of a single dissipative mode ( ζ ξ ζ ), it 

can be shown that the one dimensional equation of viscoelasticity written within the DNLR formalism takes 

the form: 

Av isco«, *» έ, σ, σ) = σ(ή - Ε„έ( t) + = 0 (3) 
τ 

242 



V. Magnenet et al. Journal of the Mechanical Behavior of Materials 

where a(t) and e(t) are respectively the stress and the strain at time t. Eu (= e ε ε ) is the instantaneous 

Young modulus, σΓ(ί) the relaxed stress at time t and r the relaxation time. In a first approach, σ Γ ( / ) is 

assumed to be equal to Ere(t), where Er (= e ζ ε ) is the relaxed modulus. Both the relaxed and 

instantaneous modulus £ , and E„ are supposed to be constant. The chosen loading path is such that e(t) is 

linear in time: ε(ί) = έί where έ is constant. The relaxation time τ may be expressed for simplicity as a 

function of the temperature T, according to: 

r < r ) = - | e * P 
Δ/7 - Γ Δ 5 

RT 
(4) 

where h is the Planck constant, k the Boltzmann constant, R the ideal gas constant. The parameters ΔΗ+ and 

Δ 5 + are supposed to be constant and correspond respectively to the activation enthalpy and entropy. T o find 

the Lie groups of Equ. (3 ) whith the varying 3 parameters of the problem ( i . e . /, τ , έ ) in a consistent way 

with the differential geometry method, we have to reconsider the stress σ(ί) as a new function σ(ΐ,τ,έ) o f 

these independent variables. Accordingly, Eq. (3 ) can be rewritten: 

„ · σ(ί,τ,έ)-Erät „ 
\isco(t,T,e,a,a) = a(t,T,S)-EUE+ v ; R— = 0 (5 ) 

r 

where T = T(T), with the initial condition σ(1 = Ο,τ,έ) = 0. Let us call asol(t, τ,έ) the solution of this 

problem. 

4. A COMPUTATIONAL PROCEDURE FOR FINDING SYMMETRY GROUPS 

Using Olver notations l\l, one can consider the smooth manifold Λ/ = Χ χ U, where X is the set of 

independent variables (ί,Γ,έ) and U the set of dependent variables (i.e. the stress σ(ί,τ,έ)). Let ν be a 

vector field on M, expressed as an infinitesimal operator by its components: 

ν = ξ(ί, r, έ,σ)-^- + a(t, r, έ,σ)^- + ß(t, r, έ , σ ) ~ + φ(ί, τ, έ, σ ) ^ - (6 ) 
dt στ οε οσ 

This vector field ν generates a symmetry group for a first order differential equation Δ (/ , τ,έ,σ,σ) = 0 

if and only if it transforms a solution of Δ into another one. A necessary and sufficient condition for ν to 

generate a symmetry group for Δ is given by = whenever Δ = 0, where p r ^ v is the first 

prolongation of the vector field ν defined by: 
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(άφ άξ da da da dß δαN 

1 5 

[dt dt dt dt δτ dt δε , Ida 
pr^ ' ν = ν + —— 2. — (7) 

V dt dt dt dt δτ dt δέ )δσ 

(see III for the general prolongation formula). The explicit expression of a one-parameter group G is given by 

the vector exponentiation of its generator ν , which consists in solving the differential system: 

dt r — d r . r — de n. r — da ,. r — 
— = ξ(ί,τ,ε,σ) -— = α(ί,τ,ε,σ) — = β(ι,τ,ε,σ) — = φ(ί,τ,ε,σ) 

dμ άμ άμ άμ (8) 

ί(μ = 0) = ί τ (μ =0) = τ έ(μ=0) = έ σ(μ=0) = σ 

where μ is the parameter of the group. For example, the vector field for which ξ = t and a = r gives after 

exponentiation the finite symmetry group: 

G : I t = εμί τ = ε μ τ έ = έ σ = σ j (9) 

which is the group of dilatation for the time t and the relaxation time τ . As σ is a function of ( / , τ , έ) one 

obtains the equality: σ(ί,τ,έ) = σ(ί,τ,έ) = σ(ε~μί,β~μ τ,έ) . The necessary and sufficient condition 

pr^vA = 0 provides a computational procedure for finding the Lie symmetry group of Avisco. Starting 

f rom an unknown vector field ν as defined by relation (6), one has to expand the term p r ^ ν A v i s c o . This 

expression, solved with a Matlab program, leads to a polynomial in σ and its time derivative, with 

coeff icients involving the unknown functions ( ξ , α, β, φ). The term σ may be substituted using A v l i C O , and 

all polynomial coefficients are then equated to zero. This calculation leads us to a system of P D E for the 

functions ( ξ,er, β,φ), whose solution takes the following form (Maple program): 

_ / 

ξ = - F , ( r , e ) r e " + F 2 ( r , * ) ^ - + F 4 ( r , e ) (10) 

a = F2(rJ) (11) 

β = ^(τ,έ) (12) 

φ = ((σ-ΕΓέί)Ρ^τ,έ)+Ρ^τ,έ))ε * + ( ( £ „ -ΕΓ)τ + Ert)^Ρ2(τ,έ) ( J 3 ) 

+((£„- Er) r + Ert) F, ( r , έ) + Ε,έ F4(r, έ) 

where F ( ( r , e ) , F 2 ( r , e ) , F , ( r , f f ) , F 4 ( r , e ) , F 5 ( r , e ) are arbitrary functions. Among all these groups, let 

us now consider the particular groups G for which the following condition is fulfilled: 
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σ ( ϊ = 0 , Γ , έ ) = 0 (14) 

which means that every function transformed by G, σ , satisfies the same initial condition as aso[ (/, τ, έ). 

Because of the uniqueness of the solution, one can write the equality: 

σ(ί,τ,έ) = σ5θ1(ί,τ,έ) (15) 

for each value of the parameter μ. The condition (14) is mathematically equivalent to the invariance of 

algebraic conditions (/ = 0 , σ = 0 ) . Hence, the conditions p r ^ v f = 0 a n d pr^ ν σ = 0 , whenever 

( / , σ ) = ( 0 , 0 ) , lead to the new equations: 

i # ( / = 0 , r , f f , a = 0) = 0 

{ φ(ί=0,τ,ε,σ = 0) = 0 

Using these two equations, one can express F^(T,e)md F 5 ( r , e ) in terms of F2(r,e), and 

Fi(t,s) . The solution then takes the form: 

_t 

£ = r F , ( r , < r ) ( l - e ~ Ö + F 2 ( M ) - (17) 
τ 

a = F2(r,e) (18) 

ß = F \ ( r , e ) (19) 

φ = F , ( r , έ \ τ ( E u -Er)(1 - Ο + Ert) + F 2 ( r , * ) ( r { E u -Er)(1-e") + Ert)-
τ 

ι t 

+F3(T^)(EräT(l-e T)+e Τ(σ-ΕΓέή) 

(20) 

To emphasize the significance of this last results, let us examine the particular case where Fi (r, έ) = - έ , 

F2 ( ΐ , έ ) = r , and F3 (τ,έ) = 0 , leading to the generator: 

5 5 . 5 
v = t - + T - ε— (21) 

dt δτ δέ y ' 

Its exponentiation gives the following group of transformation: 

G : I ~t=eMt τ =βμτ έ = β~μέ σ = σ , ο / j (22) 
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Keeping in mind that σ is a function of (Ι,τ,έ) and asol a function of ( / , τ, έ ) yields: 

σ(ι,τ,έ) = σ5θΙ(ε μΐ,ε μτ,εμέ) (23) 

and: 

σ(ΐ = 0 ,τ,έ) = σ5θΙ (0, έ~μ τ,βμέ) = 0, V μ (24) 

Thus, according to Eq. (15), one obtains : 

σ(ί, τ,έ) = σ5θ/(ι,τ,έ) (25) 

leading to a relation (replace ( / , τ,έ) by ( Ι , τ , έ ) and e μ =a for simplicity) which def ines the first 

"equivalence principle": 

• asoi(a t,ar,—) = σ5θ1 (ι,τ,έ) 
a 

(26) 

In the same way, we consider the two other cases for which F\ ( r , e ) = έ , F2 ( τ , έ) = 0 , F3 ( r , £•) = 0 and 

F | ( r , f ) = 0, = r , = 0 , leading to the equalities (where β~ μ = a ) : 

E , \ • °.sol(t,r,ai) = σ5θΙ(t, r , έ ) + ( a - 1 ) τέ(Ε„ - E r ) ( 1 - e T ) + Erti 

Epi • asol(αι,ατ,έ) = σ50ι(ι,τ,έ) + (α-\) τέ(Ε„ -Er)(l-e τ ) + ΕΓΐέ 

(27) 

(28) 

5. DISCUSSION AND PHYSICAL INTERPRETATION 

A significant result of the previous calculation is that the exact solution of the problem (5) explicitly 

appears in Eqs. (27) and (28): 

asoi ( ' - έ ) = r έ (£„ - Er) (1 -1> r) + £Γιέ (29) 

Thus, using the solution (29), Eqs. (27) and (28) can be rewritten respectively as: 
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σ5θΙ(ί,τ ,αέ) = ασ5θ1(ί,τ,έ) 

asol (a t,a τ, έ ) = ασ5θ1 ( ί , τ, έ ) 

(30) 

(31) 

Remembering that the relaxation time is a function of temperature, Eq. (31) takes the equivalent form: 

σso, (at, a jT 
kTj 

exp 
' AH+ -ΤΑΞ+λ 

RT 
,έ) = ασ5θ1(ί,\ — |exp 

AH -TAS 
RT 

,έ) (32) 

This equality may be regarded as the well-known time temperature equivalence "principle". For instance, 

performing a loading experiment between t\ and f 2
 a t constant 7j and constant έ will lead, at the same έ , 

between a t \ and a / 2 > a t a temperature T2, the same stress curve multiplied by a . The temperatures 7] and 

T2 are related by the following relationship: 

/ h N 

ykT2 
exp 

r AH-Τ2Α5Λ 

RTo 
= a 

' h Λ 

\ k T \ ; 
exp 

AH -T^ AS 
RT; 

(33) 

It is also interesting to note that the solution σ5θ1(ί,τ,έ) appearing explicitly in the symmetry groups 

allows us to define a master curve (where Eeq is an equivalent modulus): 

EeQ=-=nD(Eu-Er)(l-e "») + Er 
te 

(34) 

(where n D = — denotes the well-known Deborah number). This equation satisfies Eqs. (26), (30) and (31). 

An example of this master curve for a polymer is given in Figure 1. 

Fig. 1: The master curve corresponding to the linear viscoelastic behaviour of a polymer. 
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(the properties Eu and Er denote the instantaneous and relaxed moduli respectively). Further calculations of 

symmetry groups are in progress. 

6. CONCLUSION 

The infinitesimal Lie symmetries for a viscoelastic behaviour have been generally written within the 

DNLR framework. Especially, one has underlined those leaving the initial condition invariant. Three 

particular cases have been emphasized and one of them can be interpreted as the time temperature 

equivalence principle, that allows the construction of the master curve in a deductive manner. An extension 

of this methodology to the exploration of more general dissipative behaviours is in progress (e.g. non linear 

viscoelastic behaviour), considering variational symmetries as well /8/. 
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