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1. SUMMARY

The continuous symmetry groups of a viscoelastic constitutive behaviour are calculated. The considered
constitutive law is expressed within a thermodynamic approach of irreversible processes, called the
Distribution of Non-linear Relaxations (acronym DNLR). Interpreting the material behaviour as a partial
differential equation satisfied by the stress as a function of the time and of a set of continuously varying
parameters, its continuous symmetries are determined, from the generator vector fields associated to each
infinitesimal symmetry. The expression of the symmetry groups makes it possible to find a master curve and
to underline the well-known time temperature equivalence principle. The symmetry analysis provides a
rational and systematic way of construction of the master curves, that appears more economical in terms of

experiments compared to the traditional heuristic approach.

2. INTRODUCTION

The Lie group theory (from the mathematician Sophus Lie) is known to be of great importance as a guide
for the integration of ordinary or partial differential equations, and to obtain the continuous symmetry groups
of a given problem, or the group — invariant solutions of physical systems (see e.g. Olver /1/ and the
references therein). It is of great help in various physical fields such as quantum mechanics,
electromagnetism, or mechanical engineering (Ibragimov, /2/). For example, Ozer /3/ studied the Lie
symmetry groups of nonlocal elasticity equation to find its solution, and Vassilev /4/ used Lie groups to study
the linear theory of rods and plates. More recently and focusing on the thermomechanics of dissipative
processes in continuous media, Anthony /5/ expressed the field equations of heat conduction from a
lagrangian framework, that evidences the so-called gauge invariance, while Mielke /6/ related finite

elastoplasticity to Lie groups and geodesics. Following similar lines of thoughts, we calculate in the present

241



Vol. 16, Nos. 4-5, 2005 Lie Symmetry Groups and Non Linear Viscoelastic Behaviour

work the Lie symmetry groups of the viscoelastic behaviour equation, which is written in the DNLR
formalism (Cunat, /7/).

3. DNLR APPROACH AND VISCOELASTIC BEHAVIOUR

The DNLR approach relies on the assumptions that the Gibbs relationship (1902) can be extended to
transformations outside equilibrium (see Cunat, /7/ and the references therein that give an historical
perspective of the framework), by completing the set of thermodynamic state variables with a set of suitable
internal variables. Starting from the specific internal energy e(y,z), where y is the vector of extensive
variables (e.g. the strain £ or the entropy s) and Z the vector of internal variables (describing the

microstructure), we can obtain the rate form of the internal energy as:
é=ej-y+e;-z2=Y(5,2)-y-A(j,2) 2 )

(the subscript denotes the partial derivative), which allows us to define the set of intensive dual variables
Y(,2)= e 3 such as the stress o or the temperature T conjugated to the strain and entropy respectively, and
Ay, 2)= ~e 5 the generalized affinities (or non equilibrium thermodynamic forces). The evolution of these

intensive variables is then given in rate form by the following system:

);’ y z y
(s 2
A €yz €2z )\Z '

N/

where the matrix of second order derivatives is, for the sake of simplicity, assumed to be constant. These
equations that define the state laws have to be completed by the evolution laws of the internal variables.

Thus, for a first order kinetic equation, viz z =LA, with the condition that the affinities rate vanish at
=—l Vi _ =—l =

5 Q N
relaxed state: 4" =0, one obtains z = -1 |\ zZ-2 ) with 7 =L.e3 the inverse of relaxation times, the

- : ; . = -1 = Y :
internal variables at the relaxed state being given by z” =-(e|5;) ez-y . Identifying then, as a peculiar
case, y with the strain g, and Y with the stress g, for the simple case of a single dissipative mode (z = z), it

can be shown that the one dimensional equation of viscoelasticity written within the DNLR formalism takes

the form:

s - . (—a' (1)
Avisco(taf’gao',a)=O'(t)—Eu£(t)+_n_-¥_;L=0 3)
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where o(f) and &(t) are respectively the stress and the strain at time ¢. E,(=e,.) is the instantaneous

Young modulus, &’ (¢) the relaxed stress at time ¢ and 7 the relaxation time. In a first approach, o’ (f) is

assumed to be equal to E,e(t), where E,(=e,.) is the relaxed modulus. Both the relaxed and
instantaneous modulus E, and E, are supposed to be constant. The chosen loading path is such that £(¢) is

linear in time: £(¢) = £t where £ is constant. The relaxation time 7 may be expressed for simplicity as a

function of the temperature 7, according to:

\ T +
0~ oo [T @

where 4 is the Planck constant, & the Boltzmann constant, R the ideal gas constant. The parameters AH " and
AS* are supposed to be constant and correspond respectively to the activation enthalpy and entropy. To find
the Lie groups of Equ. (3) whith the varying 3 parameters of the problem (i.e. t, 7,£ ) in a consistent way
with the differential geometry method, we have to reconsider the stress o(f) as a new function o(f,7,£) of

these independent variables. Accordingly, Eq. (3) can be rewritten:

o(t,r,6)-E, €t _

Avisco(t:r’évdza)=d(tar,é)—Eué+ 0 &)

where 7 =17(T), with the initial condition o(t=0,7,£)=0. Let us call o, (t,7,£) the solution of this

problem.

4. A COMPUTATIONAL PROCEDURE FOR FINDING SYMMETRY GROUPS

Using Olver notations /1/, one can consider the smooth manifold M = X x U, where X is the set of
independent variables (¢,7,£) and U the set of dependent variables (i.e. the stress o(t,7,€)). Let v be a

vector field on M, expressed as an infinitesimal operator by its components:
‘ 0 . 0 . 0 ¢ 0
v=_¢(tr1,8,0)—+a(tr,£,0)—+ p(t,1,6,.0)—+¢(t,1,6,0)— (6)
ot or o€ oo

This vector field v generates a symmetry group for a first order differential equation A(t, 7,E, a,d) =0

if and only if it transforms a solution of A into another one. A necessary and sufficient condition for v to
generate a symmetry group for A is given by priva=0. whenever A = 0, where prV v s the first

prolongation of the vector field v defined by:
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(d¢ df 0o da o dﬂ@a)i )

dt di o dt or dt 0€)dc

(see /1/ for the general prolongation formula). The explicit expression of a one-parameter group G is given by

the vector exponentiation of its generator v, which consists in solving the differential system:

dt - - == dr - - = — dé - — do - - —
—=£(,1,€,0) —=a(,1,6,0) —=p(,1,£,0) —=¢(t,7,€,0)
du du du du (3)

t(u=0)=t T(u=0)=r E(u=0)=¢ oc(u=0)=c

where u is the parameter of the group. For example, the vector field for which £ =t and a =1 gives after

exponentiation the finite symmetry group:

G : { t=ett t=eft £=¢ o=0 } ®

which is the group of dilatation for the time ¢ and the relaxation time 7. As o is a function of (; ,; - E) one
obtains the equality: E(I,?,E):a(:, 1,€)=0o(e™” t,e™"7,€). The necessary and sufficient condition
pr(') vA =0 provides a computational procedure for finding the Lie symmetry group of A, . Starting
from an unknown vector field v as defined by relation (6), one has to expand the term pr(]) VA, o - This
cxpression, solved with a Matlab program, leads to a polynomial in o and its time derivative, with
coefficients involving the unknown functions (£, @, 8,4 ). The term o may be substituted using A, , and
all polynomial coefficients are then equated to zero. This calculation leads us to a system of PDE for the

functions (£, a, B,¢ ), whose solution takes the following form (Maple program):

{

&=-Fy(r,6)re * +F2(r,s‘)§+ Fy(1,€) (10)
a = Fy(z,€) (11)
B =F(r,¢) (12)

1

¢=((0 - E,é1)Fy(r,6)+ Fs(r,8)) e * +((E, ~E,)r+ E,t)-f-Fz(r,é) (13)

+((E, —E,)t+E,t) Fi(r,6) + E,£ Fy(r,£)

where Fi(r,€), Fy(1,€), Fi(7,€), F,(r,€), F5(7,€) are arbitrary functions. Among all these groups, let

us now consider the particular groups G for which the following condition is fulfilled:
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o(t=0,1,£)=0 (14)
which means that every function transformed by G, o , satisfies the same initial condition as Oooi(t,7,€).
Because of the uniqueness of the solution, one can write the equality:

0(t,7,6) = Oy (1,7, ) (15)
for each value of the parameter x4 The condition (14) is mathematically equivalent to the invariance of

algebraic conditions (t =0,0= O). Hence, the conditions pr(') vit=0 and pr(') v 0 =0, whenever

(t,0) =(0,0), lead to the new equations:

[&(t=0,7,6,0=0)=0

| ¢t =0,7,6,6 =0)=0 (16)

Using these two equations, one can express Fy(7,€)and Fs5(r,£) in terms of Fi(7.€). F5(7,€), and

F3(7,€) . The solution then takes the form:

!

£ =1 Fy(1,6) (1—e_;)+F2(r,é)£ 17)
a = Fy(1,6) (18)
B =F(r¢) (19)

b=Fi(r.éXt(E, ~E,)(1-e )+E,t)+ Fy(r,éXr(E, —E,)(1~e¢ 7)+E)E
4 (20)

! 4

+Fy(r,6XE, ét(1-€ T)+e T (0—E,ét))

To emphasize the significance of this last results, let us examine the particular case where F{(7,£)=-¢,

F(r.é)=1,and F3(r,€)=0, leading to the generator:

V=l f e G @1

Its exponentiation gives the following group of transformation:

G:{ t=et T=et E=cMi G=0y } 22)
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Keeping in mind that o is a function of (;,;,E ) and o, afunction of (¢,7,£) yields:

o(t,7,€) = 0 (e H 1,6 H1,6"E) (23)
and:

o(t=0,1,6)=0,,(0,e#1,e"6)=0, Y u (24)

Thus, according to Eq. (15), one obtains :

a(t,7,6) = 0y (1,7, €) (25)

leading to a relation (replace (;,;,E) by (t,7,€) and e ¥ =a for simplicity) which defines the first

“equivalence principle™:
£ 5
ER . O tar, Z) =05 (1,7,£) (26)

In the same way, we consider the two other cases for which F(7,£)=¢, F,(7,£€)=0, F3(r,£)=0 and

F(7.€)=0, Fi1,&)=1, F117,£) =0, leading to the cqualities (where ¢ ™ =a ):

1
EPy: 0y (t.1,a6)= 00y (t,7,8) +(@~1)| TE(E, -E,)(1-e T)+E,té @7

!
EP,. o (at,at,é) =0y, (t,1,6)+(@-1)| 1£(E, -E,)(1~e 1) +Eé (28)

5. DISCUSSION AND PHYSICAL INTERPRETATION

A significant result of the previous calculation is that the exact solution of the problem (5) explicitly
appears in Egs. (27) and (28):

!
Ooot(t,7.6)=1E(E, —E,)(1-¢ T)+E té (29)

Thus, using the solution (29), Eqs. (27) and (28) can be rewritten respectively as:
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O (8,7, 06) = @ 0oy (1,7, €) (30)
o (@t at,é)=ac,(t,1,€) (31)

Remembering that the relaxation time is a function of temperature, Eq. (31) takes the equivalent form:

h AH' -TAS™ || . A% AH™ -TAS"' || .
aw,(at,a(-}(—f lexp[[——l”—)],s)zaom,(q —EJCXP[[——R}——— ,6') (32)

/ \

This equality may be regarded as the well-known time temperature equivalence “principle”. For instance,
performing a loading experiment between #and 1, at constant 7; and constant £ will lead, at the same &,
between at) and at,, at a temperature 75, the same stress curve multiplied by a. The temperatures 7; and

T, are related by the following relationship:

ol (5]

It is also interesting to note that the solution o, (f,7,£) appearing explicitly in the symmetry groups
allows us to define a master curve (where E,, is an equivalent modulus):

1

o
Eeq=—-=np(E,~E,)(1-¢ ") +E, (34)

(where np =§ denotes the well-known Deborah number). This equation satisfies Eqgs. (26), (30) and (31).

An example of this master curve for a polymer is given in Figure 1.

©
a
O
£ E, = 2.76 GPa
& E, =0.14 GPa
1t d
3 ——
0 2 4 n, 6 8 10

Fig. 1: The master curve corresponding to the linear viscoelastic behaviour of a polymer.
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(the properties E, and E, denote the instantaneous and relaxed moduli respectively). Further calculations of

symmetry groups are in progress.

6. CONCLUSION

The infinitesimal Lie symmetries for a viscoelastic behaviour have been generally written within the
DNLR framework. Especially, one has underlined those leaving the initial condition invariant. Three
particular cases have been emphasized and one of them can be interpreted as the time temperature
equivalence principle, that allows the construction of the master curve in a deductive manner. An extension
of this methodology to the exploration of more general dissipative behaviours is in progress (e.g. non linear

viscoelastic behaviour), considering variational symmetries as well /8/.
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