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1. SUMMARY

The three-point bending (3PB) test of prismatic beams made from shellstone is studied both numerically
and experimentally. The numerical study is carried out using a 2D Finite Element Analysis. The shellstone is
modeled as a linearly elastic-ideally plastic material obeying a parabolic Mohr-Coulomb failure law. The

numerical results are in satisfactory agreement with experimental values from 3PB tests.

2. INTRODUCTION

The calculation of the stress and strain fields in a relatively short prismatic beam under the action of a
transverse concentrated load is a difficult task and a closed form solution does not exist yet. Relative studies
have already been reported since the end of the 19" century. The pioneering experimental works by Wilson
/1/ and Flamant /2/ and the analytical models by Boussinesq /3/ and Filon /4/ are among the earlier ones. Later
the problem was revisited by Carman /5/, Seewald /6/, Timoshenko /7/ and others. However, even today the
problem has not been solved analytically and the determination of the stress and strain fields remains the
subject of extensive experimental and numerical work. The problem is more complicated in the case where
the beam material cannot be considered as linearly elastic and isotropic. A general solution of the problem is
not available, even for the relatively simple cases of linearly elastic-ideally plastic or of transversely isotropic
soft rocks. However, such materials are widely used, among others, for the restoration of important
monuments made from porous stones and shellstones. Thus an in-depth investigation of such problems

appears to be indispensable.
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In order lo overcome these difficulties the problem is studied here numerically with the aid of the Finite
Elecment Method. Attention is focused on the material used by ancient Greeks for the erection of the Zeus
Temple at Olympia, a type of soft rock called conchyliates (shellstone). As a first slep it is assumed that plane
strain condilions prevail, and the complicated constitutive relationship of the material is modeled as lincarly
clastic-ideally plastic. The results of the numerical analysis are then compared with those obtained from a

scrics of 3PB tests with prismatic specimens prepared from freshly quarried shellstone.

3. EXPERIMENTAL PROCEDURE

The material

The specimens for the experiments were made from shellstone quarried from the wider Olympia site. It is
an inhomogencous material, of layered structure consisting of successive layers of seashells, bonded
relatively loosely to each other with the aid of carbonate material. The size of the shells exhibits very strong
variation between some millimeters and a few centimeters. The thickness of the layers is of the order of a few
millimeters. This structure imposes a transversely isotropic character to the material with two distinct axes of
anisotropy: one perpendicular to the material layers and one within their plane. The mechanical behaviour of
such materials is described with the aid of five material constants.

Typical stress-strain curves of shellstone under uniaxial compression are shown in Fig.1 /8/. These
experiments show that up to the peak load the constitutive law is almost linearly elastic. Then an abrupt load
drop is obscrved leading to the post peak regime, which is characterized by a very small slope almost up to
the final disintegration of the specimens. It should also be noted that two different failure mechanisms were
activated. Specimens made from recently excavated material fail due to the formation of cracks oriented
almost parallel to the axis of the load. In this case the finally recorded strain is relatively low. On the other
hand, for specimens cut from ancient material, the formation of cracks parallel to the load is [ollowed by a
stage of gradual collapsc of successive horizontal shell layers under almost constant overall load. The finally

recorded strain in this case is relatively high, of the order of about 4%.

The three-point bending tests

A scrics of 3PB tests was carried out with prismatic specimens 42 ¢cm long and 10x10 ¢m in cross-scction.
They were placed on two steel rollers (diameter 2 cm) at a distance of 40 cm from each other. The load was
applicd uniformly along the thickness of the specimens with the aid of a third identical steel roller. The
strains developed were measured using electrical strain gauges positioned according Lo a cartesian reference
system at the intersections of three vertical (x=0, -5, -10 ¢m) and five horizontal (y=-4.5, -2.5, 0, 2.5, 4.5 cm)
lines (Fig.2). Also, three dial-gauges of sensitivity 10° m were placed at points (x,y)=(0cm,Scm), (-5¢m,

Scm), (-10cm,5cm) for the measurement of the deflections of the beam.
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Fig.1: The axial stress-axial strain diagram Fig. 2: Schematic configuration of the specimens
of the shellstone of the tests /8/. and the position of the strain gauges.

The specimens were cut parallel to the material layers. The longitudinal axis of the beams was oriented
parallel to the material layers, while the y-axis of the reference system (Fig. 2) was normal to them, The load
was applied statically at a constant displacement rate of 3x10°3 cm/min with the aid of a stiff hydraulic frame
of capacity 250 kN. Taking into account that the maximum load recorded during the whole series of 3PB
tests did not exceed 3.5 kN in any case, the stiffness of the frame can be considered infinite.

Typical experimental results for the deflection of the beam just before fracture are shown in Fig. 3, while
in Fig. 4 the deflection of the lowest point of the central section is plotted vs. the external load. In both cases
the experimental results agree well with the numerical ones (continuous lines), although some discrepancies

appear especially for the deflection of the mid-section for loads approaching the fracture load.

4. NUMERICAL SOLUTION AND RESULTS
Geometry

The test was modeled in 2-d space in the MSC.Mentat {ront-end program, and was solved by the MSC.
Marc Finite Element Analysis program /9,10/. To fully simulate the behavior of the materials during
bending, both the rock and the steel cylinders used to apply the load were modeled. Contact clements were
introduced to model the interface between steel and rock. Symmetry was not taken into consideration and
thus the dimensions of the final model matched those of the experimental set up (Fig. 5). The model
consisted of 1246 plane strain clements and 1167 nodes. Node positions were defined to coincide with strain

measuring points on the specimen. Figs. 6 and 7 show in detail the contact area between steel and rock.
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Fig. 3: The deflection of the lowest side of the beam Fig. 4: The deflection of the mid-section of the
just before fracture. beam versus the external load.

Fig. S: Mesh layout and boundary conditions.

Material models and boundary conditions

Steel was modeled as an elastic material of elastic modulus E=210 GPa and Poisson’s ratio v=0.3. The
respective values for the shellstone were E=I.1 GPa and v=0.25. The shellstone was modeled as an
elastoplastic material using a parabolic Mohr-Coulomb failure criterion. Its parameters were obtained through
calibration testing as: 6 = 0.265 MPa and 8 = 0.0757 for the following yield condition:

f =(342 + V35, )”2 -5=0, o’ =3[c?-@’3)), p=w/3Bc2-ad)'? ()
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Fig. 6: Dcuailed view of the stecl-shellstone Fig.7: Detailed view of the supporting cylinder.
contact.

Contact elements were introduced between the shellstone specimens and the steel cylinders. However, in
all contact cases there were three common nodes between the steel cylinders and the rock. The friction
coctticient between shellstone and steel was set 10 0.4 /11/. A maximum load of 3.125 kN was applied on the
central cylinder in ten steps (Fig.6). The centers of the bottom cylinders were fixed for both horizontal and

vertical displacements (Fig.7). No other boundary conditions were required (Fig.5).

Results of the numerical study

For every load step, displacements, stresses and strains were calculated at cach node. The distribution of
axial and transverse strains along the bottom line of the specimen, i.c. the line with y=5 ¢m, is plotted in
Fig.8, while Fig.9 presents the variation of the components of the stress tensor along the same line. 1t is clear
from these figures that the distributions are qualitatively similar to those predicted by the Bernoulli-Euler
theory, since the transverse and shear stresses are negligible compared to the respective axial ones. The only
exception is the immediate vicinity of the supporting cylinders where the concentrated reaction forces
generate considerable transverse stresses, exceeding in magnitude the axial ones. The situation, however, is
completely different as one moves towards the load application point. In Figs.10&11 the strain and stress
distributions are plotted along the central line of the specimen, i.c. the line with y=0cm, which according to
the classical theory represents the neutral axis of the specimen. However, these plots show that the strains
and stresses developed, although smaller from those of the line with y=5c¢m, are not negligible. It should be
mentioned that the axial strains at point (x,y)=(0,0) are equal to about onc tenth of the respective ones at
point (x.y)=(0.5cm), while the transverse strains at the same points are ol almost the same magnitude. The
last observation indicates that, under the influence of the concentrated transverse load. the neutral axis of the
beam does not coincide with the axis of symmetry of the beam and it does not pass {rom the centroid of the

cross section. The same conclusion was drawn recently for marble beams under 3PB /12/. Finally in Figs. 12
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and 13 the same quantities are shown for the upper side of the beam, i.e. along the line with y=-5cm. The
influence of the concentrated load is now more evident: In the vicinity of the punch the transverse strains
exceed the axial ones and, also, considerable transverse stresses of equal magnitude with the axial ones are

developed. Shear stresses are also generated along the length of the beam.

3-Point Bending of Rock-Type Materials
Using Elastoplastic Model
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Fig. 12: Axial and transverse strains Fig. 13: The stress tensor components
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5. DISCUSSION AND CONCLUSIONS
Comparison between theory and experiment

The results of the numerical analysis concerning the variation of the axial and transverse strains along the
height of the beam are plotted in Fig.14 (continuous and dotted line, respectively) for the central section of
the beam together with the respective experimental values (empty and filled symbols, respectively), for a
load equal to the fracture load P=3.125 kN. Results indicate that the axial strain is not linearly distributed
along the height of the beam and it is verified that the neutral axis is displaced upwards. In fact the upper half
of the beam appears to be almost axial-strain free. Similar observations were made by Kourkoulis et al. /12/
for marble specimens. On the other hand the transverse strain reaches very high values in the immediate
vicinity of the concentrated load, however the phenomenon attenuates rapidly and a constant value, equal to
about one tenth of the maximum one, is reached, at a distance equal to about one fourth of the height of the
beam. Axial and transverse strains are also plotted in Fig.15 for a section with x=-10 cm. Results show that
the axial strain is now almost linearly distributed (although a sigmoid variation is detected exactly as it was
detected recently for marble specimens of the same geometry subjected to 3PB /13/) or in other words the
influence of the punch is eliminated.

In both cases the agreement between numerical results and experimental findings is very satisfactory for
the longitudinal strains. Regarding the transverse strains, however, some discrepancies were observed: The
experimental values are slightly but systematically smaller from the numerical ones. This is more pronounced
for the section with x=-10 cm. A possible explanation of the phenomenon could be the fact that the
transversely isotropic nature of the specific shellstone, ignored by the present numerical model, reinforces the

beam against transverse deformation, since it acts as a horizontally laminated plate.
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Fig. 14: Strain variation along the height of the Fig. 15: Strain variation along the height of the
beam at the mid-section. beam at section x=-10 c¢m (numerically and
experimentally).
Conclusions

The behaviour of shellstone prismatic beams, of small aperture (L/h=4) under 3PB was studied in this
paper both numerically and experimentally. The transversely isotropic nature of the material was not taken
into account; it was modeled as isotropic linearly elastic-ideally plastic. Contact elements were introduced in
order to better simulate the phenomena in the immediate vicinity of the load application point. The results of
the numerical analysis were compared to experimental ones from 3PB experiments.

It was concluded from this study that the classical Bernoulli-Euler technical bending theory is not
adequate for the description of the problem due to the influence of the concentrated load as well as due to the
small aperture of the beam. It was shown that the neutral axis of the beam does not coincide with its axis of
symmetry and does not pass from its centroid. Considerable transverse and shear stresses are developed
almost all over the length and height of the beam since the small aperture of the beam does not allow for the
phenomena to be considered as local ones: Their influence attenuates at a distance from the point of load
application equal to about half the height of the cross section of the beam. As a result the strain distribution
along the height of the central section of the beam deviates completely from the assumed linear one and its
upper half portion appears to be almost axial-strain free.

The numerical results approach very well the experimental findings concerning the deflection of the beam.
The same is true for the axial strains, while some discrepancies are observed for the transverse ones. These
may be attributed to the laminated nature of the specific material, which was not taken into account in this

study. Preliminary studies with orthotropic models are encouraging, supporting this assumption.
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