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1. SUMMARY

Aifantis’ theory of consolidation with double porosity is considered. The fundamental solution of the
system of linear partial differential equations of the steady oscillations is constructed in terms of elementary

functions and its basic properties are determined.

2. INTRODUCTION

At the beginning of the 1960s, Trusdell and Toupin presented the modern formulation of continuum
theories of mixtures /1/. Two decades later, Aifantis /2/ introduced the coupling of multi-porosity theory to a
deformable porous medium by employing the theory of mixtures, and, in addition, Wilson and Aifantis /3/
presented the theory of consolidation with double porosity. Furthermore, a multi-porosity thermodynamics
continua model was considered by Aifantis /4,6,7/, Aifantis and Beskos /5/, Bai and Roegiers /8/, Masters et
al. /9/, and the main results obtained in this area were presented by Aifantis and Hill /10/, Hill and Aifantis
/11/, Khaled et al. /12/, Lewallen and Wang /13/, and Berryman /14/. The basic results and the historical
information on the theory of porous media were summarized by de Boer /15/. In order to formulate boundary
value problems in classical theory of elasticity and thermoelasticity, by using the boundary integral equation
method (potential method), it is necessary to construct fundamental solutions of systems of partial differential
equations and establish their basic properties. Several pertinent methods have been developed and can be
found in the literature (see Kupradze et al. /16/, and Nowacki /17/). Moreover, useful information on
fundamental solutions of differential equations is given from Hérmander in /18/.

The fundamental solutions in the linear theory of porous-elasticity (Biot theory) were established in the
works of Cleary /19/, Cheng and Liggett /20/ and Rudnicki /21/. The fundamental solutions of equations of

the linear theory of binary mixtures for elastic and thermoelastic solids are constructed in the middle of
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nineties by Svanadze /22-24/. In this article Aifantis’ theory of consolidation with double porosity is
considered and the fundamental solution of the system of linear partial differential equations of the steady

oscillations is constructed in terms of elementary functions and the basic properties are established.

3. BASIC EQUATIONS
L]
Let x=(x1,x2,x3) be the points of the Euclidean three-dimensional space E3 , | x|= (xlz +x§ +x§ )2,
D, = (i O i). The system of the steady oscillations of the Aifantis theory of consolidation with
Ox Oxy O3

double porosity can be written as (see Wilson and Aifantis /3/)

HAu + (A + p)graddivu — f gradp, — prgradps =0,
mAp +ivoypr —k(p1 — p2) +iofdivu =0, 1)
maApy +iway pr +k(p1 — p2)+iwfrdivu =0,

where u is the displacement vector of the solid, p, is the pressure in the fissures, p; is the pressure in the pores
and the various phenomenological coefficients A, y,my,mz,01,a2, 51,2,k are constants, @ is the

oscillation frequency (@ >0), A is the Laplacian, i = J-1.
We  introduce  the  matrix  differential  operator  A(Dx) | Aj(Dx)|lsxs,  where

a? d d
Alj(Dx)zﬂAé‘lj +(/1+/l) = b Al,q+3(Dx) = _ﬂq =0 Aq+3,l (Dx) =imﬂq =
OX1OXj oxy oxy

Ag+3,9+3(Dx) =mgA -k +inay,, A4s(Dx)=Asa(Dx)=k, 1,j=1,23, q=12, and Ji is the
Kronecker delta. The system (1) can be written as A(Dx U (x) =0, where U =(u, p, p2) . We assume that

u(A+2)mmy #0. (2

Obviously, if condition (2) is satisfied, then A(Dy) is the elliptic differential operator (see Hormander
125/).

Definition. The fundamental solution of system (1) is matrix I'(x) 5| T (x)|sxs satisfying condition (see

Hoérmander /25/)
A(DT(x) =8(x)J , xe E3, 3)

where Sis the Dirac deltaand J =|| &, ||s,s is the unit matrix.

124



M. Svanadze Journal of the Mechanical Behavior of Materials

In this article the matrix I'(x) is constructed in terms of elementary functions and basic properties are
established.

4. FUNDAMENTAL SOLUTION

We consider the system of equations

pAu+ (A + p)graddivu + iof gradp) +iwfh gradpr = fo,
-prdivu + (mA +az)pr +kp2 = 2, @)
—Podivu+kp + (maA+as)p2 = f3,

where o =iwagz-2 -k (9=3,4); fo is athree-component vector function on E°, 2 and f3

are scalar function on E’. As one may easily verify, the system (4) may be written in the form

A" (D )U(x) = F(x) ,

&)
where A’ is the transpose of matrix 4, F =(fy, f2, f3) and x € E3.
Applying the operator div Eq. (4), from (4) we have
aAdivu +iof1Ap) +iwfrAp) = fi,
-pidivu + (mA +a3)p) +kp2 = f2,
—fadivu + kpy + (maA+as)p2 = f3,
where a=A+2u, fi =divfy. Its matrix form is
B(AY =F, (6)
where V = (divu, p1, p2), F =(fi, f2, f3) and
al iofiA iofhr A
B(A) =| B (A) lbx3=}-H1 mA+a;3 k
—ﬂz k mA+ay 1x3
The system (6) implies
AM(AYW =, @)
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where

3 1

© = (01,02, ®3), ®; =d) Bjfi, Ai(Ad)=ddet B(A), d = ——, ®)
I amymy

and B;- is the cofactor of the element Bj of the matrix B. It is easily seen that A (A)=A(A+X12 )(A+122),

where /112 and Lj‘ are the roots of equation

amlmzﬁ,z f[a(m|a4 +m2a3)+iw(ﬂ3m2 +ﬂ22 my)]|A

Ha(asas - k) +io(Blas -2/ Bk + B3 a3)] = 0.

Applying the operator Aj(A) to Eq. (4), and taking into account Eq. (7), we obtain

AM(A)Au=o', )
where
o'= -l—[Alfo —(A+u)grad®, —iwf gradd; —iwf, grad®;], (10)
Y7,

On the basis of Eqs. (7) and (9) we get

A (x) = D(x), (1)

where
@ = (D, D2, D3), AA) =l Ay()[lsxs, Agg(Ad) =A% (A+A2NA+AT),
Asa=Ass=A1, Ay(A)=0,10,j=1,2,--,5,1#j,q=1,2,3.

In what follows we use the notation

nn(8) = —%[(lw)Bh (A) + iwfL B (8) + iwBa By (A)),

ny(A)=dBj(A), [=1,2,3, j=2,3. (12)

In view of Eq. (12) from Egs. (8), (10) we have
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| .
@ =[:A|1+mgmddlv}fo +my)gradfy +n3)gradfs,

Dy =madivfo +m2 2 +m2f3, ®3 =m3divlo +m3fr+m3fi. (13)

Thus, from Eq. (13) we have

d(x)= L' (Dy)F(x), (14)

where

2

1 a 0
L =|| Ly , Ly (Dy)=—A1(A)oy; + , Lp(Dy)=nj p-2 —,
1 ] lIsxs 1]( ) P 1(A) i T h ax,axj Ip( ) L,p-2 &

0 ,
Lpi(Dy)=np_2) _6x s Lpg(Dx)=nn-24-2,1,j=1,2,3, p,g=4,5.
!

By virtue of Eqgs. (4), (14), from (11) it follows that AU = L” 47U . It is obvious that L7 47 = A and
A(Dx)L(Dx) = A(4). (15)

We assume that 112 * A,g . Let

4 3
Y =y () lIsws » Yaq () =D my7;(x), yaa(x) =yss(x)= Y m,7;(x),
J=1 J=1

7[/'(x)=0,l,j=l,2,"',5,l.¢j, q=l72,31 (16)
where
1-,;]|X| le - 12
j{X)=— 3 X)=— 2 ’ X)=——, =L,
7 (%) e 73(x) P ra)=——.J
and
o | =G )
T l Th : T alhie] n
|l 5 M2 ——F—>———> M3 =— s 4 — f
4,.,2 N 4.,2 2\ 4.4 2,2
A -4 AHOF -4 A A A4
1
» 23 =4 .

(RIS e e 2 =S pe
Ay =43) A5 -A)
It is easily seen that
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(A+A2);(x)=8(x), Ay3(x) =8(x), A’ra(x)=8(x), Aya(x)=73(x), x€ >, j=12,
mi+m2+ms =0, mi+A2m2-ma =0, Almi+A3m2 =0, Ami+ism2 =1. (17

Lemma 1. The matrix yis the fundamental matrix of operator A(A), that is,
AQA(x)=6(x)J . (18)
Proof. It is sufficient to show
A2 (A+AEXA+ A2 (x) = 6(x), AA+ A NA+ A} yaa(x)=8(x), x€ E° . (19)
Taking into account the equalities (16) and (17) we have
2.
4

2
A7llj(5—'1]2'7j)+m35+m473]= A=Y 1,2-771;71 +1m4y3]
1

J= J=1

AAyn = Aql

2 2

=D+ A2NA+ A=Y 28 - Ay)+mad)=(A+ A2 XA+ A3)Y Adm, v,
J=1 J=1

=(A+ A A3 m2s + A mils + (A2 - AHm 1y = 4 (4 -ADmi@a+4Hn =5

Equation (19), is proved quite similarly.

We introduce the matrix

[(x) = L(Dx )y (x). (20)
Using the identity (20) from Eqs. (15), (18) we get

A(Dx)I'(x) = A(Dx )L(Dyx )y (x) = A(A)y (x) = 6(x)J .

Hence I'(x) is a solution to Eq. (3). We have thereby proved the following theorem.

Theorem 1. The matrix I'(x) defined by Eq. (20) is the fundamental solution of system (1).

S. BASIC PROPERTIES
Theorem 1 leads to the following results.

Corollary 1. Each column of the matrix I'(x) is the solution to the system (1) at every point x € E except

the origin.
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Corollary 2. If condition (3) is satisfied, then the fundamental solution of the system
pAu+ (A + p)graddivu =0, mAp =0, maApy =0

is the matrix ‘¥'(x) =|| ‘¥ (x)|lsxs , where

¥ (x) = (L graddiv - s curlcurl)ys (x), YO (x) = Wi (x)I3x3
a u

1
Wgq(x) = ~ 73(x), Yo (x) =¥ (x) =¥as(x)=¥s4(x)=0, 1=1,2,3, ¢=4,5.

g-3

Theorem 2. The relations

a) |Tpg(x)|<const| x|, |Taq(x)|< const| x|, |Tss(x)|< const|x|!;
b) [T4p(x)[<const, |T pa(x)|<const, |Tsi(x)|< const, |T5(x)|< const ;
¢) Ty(x)-Wj(x)=const+0( x|);
o I-s
d) ———— [ -¥Yy())=0(x]""),
axfl oxy’t 8x3"

hold in the neighborhood of the origin, where s =51 +s2 +s3, s>1,/,j=1,2,3,4, p,q=1,2,3.
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