Fundamental Solution in the Theory of Consolidation with Double Porosity

M. Svanadze

Department of Elasticity Theory, I.Vekua Institute of Applied Mathematics Tbilisi State University, 2 University Str., 0143 Tbilisi, Georgia email: svanadze@gol.ge

1. SUMMARY

Aifantis' theory of consolidation with double porosity is considered. The fundamental solution of the system of linear partial differential equations of the steady oscillations is constructed in terms of elementary functions and its basic properties are determined.

2. INTRODUCTION

At the beginning of the 1960s, Trusdell and Toupin presented the modern formulation of continuum theories of mixtures /1/. Two decades later, Aifantis /2/ introduced the coupling of multi-porosity theory to a deformable porous medium by employing the theory of mixtures, and, in addition, Wilson and Aifantis /3/ presented the theory of consolidation with double porosity. Furthermore, a multi-porosity thermodynamics continua model was considered by Aifantis /4,6,7/, Aifantis and Beskos /5/, Bai and Roegiers /8/, Masters et al. /9/, and the main results obtained in this area were presented by Aifantis and Hill /10/, Hill and Aifantis /11/, Khaled et al. /12/, Lewallen and Wang /13/, and Berryman /14/. The basic results and the historical information on the theory of porous media were summarized by de Boer /15/. In order to formulate boundary value problems in classical theory of elasticity and thermoelasticity, by using the boundary integral equation method (potential method), it is necessary to construct fundamental solutions of systems of partial differential equations and establish their basic properties. Several pertinent methods have been developed and can be found in the literature (see Kupradze et al. /16/, and Nowacki /17/). Moreover, useful information on fundamental solutions of differential equations is given from Hörmander in /18/.

The fundamental solutions in the linear theory of porous-elasticity (Biot theory) were established in the works of Cleary /19/, Cheng and Liggett /20/ and Rudnicki /21/. The fundamental solutions of equations of the linear theory of binary mixtures for elastic and thermoelastic solids are constructed in the middle of

nineties by Svanadze /22-24/. In this article Aifantis' theory of consolidation with double porosity is considered and the fundamental solution of the system of linear partial differential equations of the steady oscillations is constructed in terms of elementary functions and the basic properties are established.

3. BASIC EQUATIONS

Let $x = (x_1, x_2, x_3)$ be the points of the Euclidean three-dimensional space E^3 , $|x| = (x_1^2 + x_2^2 + x_3^2)^{\frac{1}{2}}$, $D_x = (\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_3})$. The system of the steady oscillations of the Aifantis theory of consolidation with double porosity can be written as (see Wilson and Aifantis /3/)

$$\mu \Delta u + (\lambda + \mu) \operatorname{graddivu} - \beta_1 \operatorname{grad} p_1 - \beta_2 \operatorname{grad} p_2 = 0,$$

$$m_1 \Delta p_1 + i\omega \alpha_1 p_1 - k(p_1 - p_2) + i\omega \beta_1 \operatorname{divu} = 0,$$

$$m_2 \Delta p_2 + i\omega \alpha_2 p_2 + k(p_1 - p_2) + i\omega \beta_2 \operatorname{divu} = 0,$$
(1)

where u is the displacement vector of the solid, p_1 is the pressure in the fissures, p_2 is the pressure in the pores and the various phenomenological coefficients λ , μ , m_1 , m_2 , α_1 , α_2 , β_1 , β_2 , k are constants, ω is the oscillation frequency ($\omega > 0$), Δ is the Laplacian, $i = \sqrt{-1}$.

We introduce the matrix differential operator $A(D_x) = ||A_{lj}(D_x)||_{5\times 5}$, where $A_{lj}(D_x) = \mu \Delta \delta_{lj} + (\lambda + \mu) \frac{\partial^2}{\partial x_l \partial x_j}$, $A_{l,q+3}(D_x) = -\beta_q \frac{\partial}{\partial x_l}$, $A_{q+3,l}(D_x) = i\omega \beta_q \frac{\partial}{\partial x_l}$, $A_{q+3,q+3}(D_x) = m_q \Delta - k + i\omega \alpha_q$, $A_{45}(D_x) = A_{54}(D_x) = k$, $l, j = 1, 2, 3, q = 1, 2, and \delta_{lj}$ is the Kronecker delta. The system (1) can be written as $A(D_x)U(x) = 0$, where $U = (u, p_1, p_2)$. We assume that

$$\mu(\lambda + 2\mu)m_1m_2 \neq 0. \tag{2}$$

Obviously, if condition (2) is satisfied, then $A(D_x)$ is the elliptic differential operator (see Hörmander /25/).

Definition. The fundamental solution of system (1) is matrix $\Gamma(x) = \|\Gamma_{lj}(x)\|_{5\times 5}$ satisfying condition (see Hörmander /25/)

$$A(D_x)\Gamma(x) = \delta(x)J, \ x \in E^3, \tag{3}$$

where δ is the Dirac delta and $J = \| \delta_{li} \|_{5\times 5}$ is the unit matrix.

In this article the matrix $\Gamma(x)$ is constructed in terms of elementary functions and basic properties are established.

4. FUNDAMENTAL SOLUTION

We consider the system of equations

$$\mu\Delta u + (\lambda + \mu) \operatorname{graddiv} u + i\omega\beta_1 \operatorname{grad} p_1 + i\omega\beta_2 \operatorname{grad} p_2 = f_0,$$

$$-\beta_1 \operatorname{div} u + (m_1 \Delta + \alpha_3) p_1 + kp_2 = f_2,$$

$$-\beta_2 \operatorname{div} u + kp_1 + (m_2 \Delta + \alpha_4) p_2 = f_3,$$
(4)

where $\alpha_q = i\omega\alpha_{q-2} - k$ (q = 3, 4); f_0 is a three-component vector function on E^3 , f_2 and f_3 are scalar function on E^3 . As one may easily verify, the system (4) may be written in the form

$$A^{T}(D_{x})U(x) = F(x) , \qquad (5)$$

where A^T is the transpose of matrix A, $F = (f_0, f_2, f_3)$ and $x \in E^3$.

Applying the operator div Eq. (4); from (4) we have

$$a\Delta divu + i\omega\beta_1\Delta p_1 + i\omega\beta_2\Delta p_2 = f_1,$$

$$-\beta_1 divu + (m_1\Delta + \alpha_3)p_1 + kp_2 = f_2,$$

$$-\beta_2 divu + kp_1 + (m_2\Delta + \alpha_4)p_2 = f_3,$$

where $a = \lambda + 2\mu$, $f_1 = div f_0$. Its matrix form is

$$B(\Delta)V = \tilde{F} , \qquad (6)$$

where $V = (divu, p_1, p_2), \tilde{F} = (f_1, f_2, f_3)$ and

$$B(\Delta) = ||B_{lj}(\Delta)||_{3\times 3} = \begin{vmatrix} a\Delta & i\omega\beta_1\Delta & i\omega\beta_2\Delta \\ -\beta_1 & m_1\Delta + \alpha_3 & k \\ -\beta_2 & k & m_2\Delta + \alpha_4 \end{vmatrix}_{3\times 3}$$

The system (6) implies

$$\Lambda_1(\Delta)V = \Phi \ , \tag{7}$$

where

$$\Phi = (\Phi_1, \Phi_2, \Phi_3), \ \Phi_j = d\sum_{l=1}^3 B_{lj}^* f_l, \ \Lambda_1(\Delta) = d \det B(\Delta), \ d = \frac{1}{am_1m_2},$$
 (8)

and B_{ij}^{\bullet} is the cofactor of the element B_{ij} of the matrix B. It is easily seen that $\Lambda_1(\Delta) = \Delta(\Delta + \lambda_1^2)(\Delta + \lambda_2^2)$, where λ_1^2 and λ_2^2 are the roots of equation

$$am_{1}m_{2}\lambda^{2} - [a(m_{1}\alpha_{4} + m_{2}\alpha_{3}) + i\omega(\beta_{1}^{2}m_{2} + \beta_{2}^{2}m_{1})]\lambda$$
$$+ [a(\alpha_{3}\alpha_{4} - k^{2}) + i\omega(\beta_{1}^{2}\alpha_{4} - 2\beta_{1}\beta_{2}k + \beta_{2}^{2}\alpha_{3})] = 0.$$

Applying the operator $\Lambda_1(\Delta)$ to Eq. (4) and taking into account Eq. (7), we obtain

$$\Lambda_1(\Delta)\Delta u = \Phi', \tag{9}$$

where

$$\Phi' = \frac{1}{\mu} \left[\Lambda_1 f_0 - (\lambda + \mu) \operatorname{grad} \Phi_1 - i\omega \beta_1 \operatorname{grad} \Phi_2 - i\omega \beta_2 \operatorname{grad} \Phi_3 \right], \tag{10}$$

On the basis of Eqs. (7) and (9) we get

$$\Lambda(\Delta)U(x) = \tilde{\Phi}(x), \tag{11}$$

where

$$\bar{\Phi} = (\Phi', \Phi_2, \Phi_3), \ \Lambda(\Delta) = ||\Lambda_{Ij}(\Delta)||_{5\times 5}, \ \Lambda_{qq}(\Delta) = \Delta^2(\Delta + \lambda_1^2)(\Delta + \lambda_2^2),$$

$$\Lambda_{44} = \Lambda_{55} = \Lambda_1, \ \Lambda_{II}(\Delta) = 0, \ I, \ j = 1, 2, \dots, 5, \ I \neq j, \ q = 1, 2, 3.$$

In what follows we use the notation

$$n_{l1}(\Delta) = -\frac{d}{\mu} [(\lambda + \mu) B_{l1}^{*}(\Delta) + i\omega \beta_{1} B_{2}^{*}(\Delta) + i\omega \beta_{2} B_{l3}^{*}(\Delta)],$$

$$n_{lj}(\Delta) = dB_{lj}^{*}(\Delta), \ l = 1, 2, 3, \ j = 2, 3.$$
(12)

In view of Eq. (12) from Eqs. (8), (10) we have

$$\Phi' = \left[\frac{1}{\mu} \Lambda_1 I + n_{11} \operatorname{grad} \operatorname{div}\right] f_0 + n_{21} \operatorname{grad} f_2 + n_{31} \operatorname{grad} f_3,
\Phi_2 = n_{12} \operatorname{div} f_0 + n_{22} f_2 + n_{32} f_3, \quad \Phi_3 = n_{13} \operatorname{div} f_0 + n_{23} f_2 + n_{33} f_3.$$
(13)

Thus, from Eq. (13) we have

$$\tilde{\Phi}(x) = L^T(D_x)F(x), \qquad (14)$$

where

$$L = ||L_{lj}||_{5\times5}, \ L_{lj}(D_x) = \frac{1}{\mu} \Lambda_1(\Delta) \delta_{lj} + n_{l1} \frac{\partial^2}{\partial x_l \partial x_j}, \ L_{lp}(D_x) = n_{l,p-2} \frac{\partial}{\partial x_l},$$

$$L_{pl}(D_x) = n_{p-2,l} \frac{\partial}{\partial x_l}, \quad L_{pq}(D_x) = n_{p-2,q-2}, \ l, j = 1, 2, 3, \ p, q = 4, 5.$$

By virtue of Eqs. (4), (14), from (11) it follows that $\Lambda U = L^T A^T U$. It is obvious that $L^T A^T = \Lambda$ and

$$A(D_{\mathbf{x}})L(D_{\mathbf{x}}) = \Lambda(\Delta). \tag{15}$$

We assume that $\lambda_1^2 \neq \lambda_2^2$. Let

$$\gamma(x) = ||\gamma_{lj}(x)||_{5\times5}, \ \gamma_{qq}(x) = \sum_{j=1}^{4} \eta_{lj}\gamma_{j}(x), \ \gamma_{44}(x) = \gamma_{55}(x) = \sum_{j=1}^{3} \eta_{2j}\gamma_{j}(x),$$
$$\gamma_{lj}(x) = 0, \ l, j = 1, 2, \dots, 5, \ l \neq j, \ q = 1, 2, 3,$$
(16)

where

$$\gamma_j(x) = -\frac{e^{i\lambda_j|x|}}{4\pi |x|}, \ \gamma_3(x) = -\frac{1}{4\pi |x|}, \ \gamma_4(x) = -\frac{|x|}{8\pi}, \ j = 1, 2,$$

and

$$\eta_{11} = \frac{1}{\lambda_{1}^{4}(\lambda_{2}^{2} - \lambda_{1}^{2})}, \quad \eta_{12} - \frac{1}{\lambda_{2}^{4}(\lambda_{1}^{2} - \lambda_{2}^{2})}, \quad \eta_{13} = -\frac{\lambda_{1}^{2} + \lambda_{2}^{2}}{\lambda_{1}^{4}\lambda_{2}^{4}}, \quad \eta_{14} - \frac{1}{\lambda_{1}^{2}\lambda_{2}^{2}}, \\
\eta_{21} = \frac{1}{\lambda_{1}^{2}(\lambda_{1}^{2} - \lambda_{2}^{2})}, \quad \eta_{22} = \frac{1}{\lambda_{2}^{2}(\lambda_{2}^{2} - \lambda_{1}^{2})}, \quad \eta_{23} = \eta_{14}.$$

It is easily seen that

$$(\Delta + \lambda_{j}^{2})\gamma_{j}(x) = \delta(x), \ \Delta\gamma_{3}(x) = \delta(x), \ \Delta^{2}\gamma_{4}(x) = \delta(x), \ \Delta\gamma_{4}(x) = \gamma_{3}(x), \ x \in E^{3}, \ j = 1, 2,$$

$$\eta_{11} + \eta_{12} + \eta_{13} = 0, \ \lambda_{1}^{2}\eta_{11} + \lambda_{2}^{2}\eta_{12} - \eta_{14} = 0, \ \lambda_{1}^{4}\eta_{11} + \lambda_{2}^{4}\eta_{12} = 0, \ \lambda_{1}^{6}\eta_{11} + \lambda_{2}^{6}\eta_{12} = 1.$$
 (17)

Lemma 1. The matrix γ is the fundamental matrix of operator $\Lambda(\Delta)$, that is,

$$\Lambda(\Delta)\gamma(x) = \delta(x)J. \tag{18}$$

Proof. It is sufficient to show

$$\Delta^{2}(\Delta + \lambda_{1}^{2})(\Delta + \lambda_{2}^{2})\gamma_{11}(x) = \delta(x), \ \Delta(\Delta + \lambda_{1}^{2})(\Delta + \lambda_{2}^{2})\gamma_{44}(x) = \delta(x), \ x \in E^{3}.$$
 (19)

Taking into account the equalities (16) and (17) we have

$$\begin{split} & \Delta \Lambda_{1} \gamma_{11} = \Lambda_{1} [\sum_{j=1}^{2} \eta_{1j} (\delta - \lambda_{j}^{2} \gamma_{j}) + \eta_{13} \delta + \eta_{14} \gamma_{3}] = \Lambda_{1} [-\sum_{j=1}^{2} \lambda_{j}^{2} \eta_{1j} \gamma_{j} + \eta_{14} \gamma_{3}] \\ & = (\Delta + \lambda_{i}^{2}) (\Delta + \lambda_{2}^{2}) [-\sum_{j=1}^{2} \lambda_{j}^{2} \eta_{1j} (\delta - \lambda_{j}^{2} \gamma_{j}) + \eta_{14} \delta] = (\Delta + \lambda_{1}^{2}) (\Delta + \lambda_{2}^{2}) \sum_{j=1}^{2} \lambda_{j}^{4} \eta_{1j} \gamma_{j} \\ & = (\Delta + \lambda_{1}^{2}) \{\lambda_{2}^{4} \eta_{12} \delta + \lambda_{1}^{4} \eta_{11} [\delta + (\lambda_{2}^{2} - \lambda_{1}^{2}) \gamma_{1}]\} = \lambda_{1}^{4} (\lambda_{2}^{2} - \lambda_{1}^{2}) \eta_{11} (\Delta + \lambda_{1}^{2}) \gamma_{1} = \delta . \end{split}$$

Equation (19)₂ is proved quite similarly.

We introduce the matrix

$$\Gamma(x) = L(D_x)\gamma(x). \tag{20}$$

Using the identity (20) from Eqs. (15), (18) we get

$$A(D_x)\Gamma(x) = A(D_x)L(D_x)\gamma(x) = \Lambda(\Delta)\gamma(x) = \delta(x)J$$
.

Hence $\Gamma(x)$ is a solution to Eq. (3). We have thereby proved the following theorem.

Theorem 1. The matrix $\Gamma(x)$ defined by Eq. (20) is the fundamental solution of system (1).

5. BASIC PROPERTIES

Theorem 1 leads to the following results.

Corollary 1. Each column of the matrix $\Gamma(x)$ is the solution to the system (1) at every point $x \in E^3$ except the origin.

Corollary 2. If condition (3) is satisfied, then the fundamental solution of the system

$$\mu \Delta u + (\lambda + \mu) \operatorname{graddiv} u = 0$$
, $m_1 \Delta p_1 = 0$, $m_2 \Delta p_2 = 0$

is the matrix $\Psi(x) = ||\Psi_{li}(x)||_{5\times 5}$, where

$$\begin{split} \Psi^{(1)}(x) &= (\frac{1}{a} \operatorname{graddiv} - \frac{1}{\mu} \operatorname{curlcurl}) \gamma_4(x) \,, \ \Psi^{(1)}(x) = \parallel \Psi_{lj}(x) \parallel_{3\times3} \,, \\ \Psi_{qq}(x) &= \frac{1}{m_{q-3}} \gamma_3(x) \,, \ \Psi_{ql}(x) = \Psi_{lq}(x) = \Psi_{45}(x) = \Psi_{54}(x) = 0 \,, \ l = 1, 2, 3 \,, \ q = 4, 5 \,. \end{split}$$

Theorem 2. The relations

- a) $|\Gamma_{pq}(x)| < const |x|^{-1}$, $|\Gamma_{44}(x)| < const |x|^{-1}$, $|\Gamma_{55}(x)| < const |x|^{-1}$; b) $|\Gamma_{4p}(x)| < const$, $|\Gamma_{p4}(x)| < const$, $|\Gamma_{5l}(x)| < const$, $|\Gamma_{l5}(x)| < const$;
- c) $\Gamma_{li}(x) \Psi_{li}(x) = const + O(|x|)$;

d)
$$\frac{\partial^{s}}{\partial x_{1}^{s_{1}}\partial x_{2}^{s_{2}}\partial x_{3}^{s_{3}}} \left[\Gamma_{ij}(x) - \Psi_{ij}(x) \right] = O(|x|^{1-s}),$$

hold in the neighborhood of the origin, where $s = s_1 + s_2 + s_3$, s > 1, l, j = 1, 2, 3, 4, p, q = 1, 2, 3.

6. REFERENCES

- 1. C. Truesdell and R. Toupin, The classical field theories, in: Handbuch der Physik, Vol. III. S. Flügge (Ed.), Springer-Verlag, Berlin, 1960.
- 2. A.C. Aifantis, Introducing a multi-porous medium, Development Mechanics, 9, 209-211 (1977).
- 3. R.K. Wilson and E.C. Aifantis, On the theory of consolidation with double porosity, International Journal of Engineering Science, 20, 1009-1035 (1982).
- 4. E.C. Aifantis, On the problem of diffusion in solids, Acta Mechanica, 37, 265-296 (1980).
- 5. E.C. Aifantis and D.E. Beskos, Heat extraction from hot dry rocks, Mechanics of Research Communications, 7, 165-170 (1980).
- 6. Aifantis, E.C., Further comments on the problem of heat extraction from dry hot rocks, Mechanics of Research Communications, 7, 219-226 (1980).
- 7. E.C. Aifantis, On Barenblatt's problem, International Journal of Engineering Science, 18, 857-867 (1980).
- 8. M. Bai and J.C. Roegiers, Fluid flow and heat flow in deformable fractured porous media, *International* Journal of Engineering Science, 32, 1615-1633 (1994).
- 9. I. Masters, W.K.S. Pao and R.W. Lewis, Coupling temperature to a double-porosity model of

- deformable porous media, *International Journal for Numerical Methods in Engineering*, 49, 421-438 (2000).
- 10. E.C. Aifantis and J.M. Hill, On the theory of diffusion in media with double diffusivity-I. Basic mathematical results, *Quarterly Journal of Mechanics and Applied Mathematics*, 23, 1-21 (1980).
- 11. J.M. Hill and E.C. Aifantis, On the theory of diffusion in media with double diffusivity-II. Boundary-value problems, *Quarterly Journal of Mechanics and Applied Mathematics*, 23, 23-41 (1980).
- 12. M.Y. Khaled, D.E. Beskos and E.C. Aifantis, On the theory of consolidation with double porosity, *International Journal for Numerical and Analytical Methods in Geomechanics*, 8, 101-123 (1984).
- 13. K.T. Lewallen and H.F. Wang, Consolidation of a double-porosity medium, *International Journal of Solids and Structures*, **35**, 4845-4867 (1998).
- 14. J.G. Berryman, Extension of poroelastic analysis to double-porosity materials: new technique in microgeomechanics, *Journal of Engineering Mechanics*, **128**, 840-847 (2002).
- 15. R. de Boer, Theory of Porous Media: Highlights in the historical development and current state, Springer-Verlag, Berlin Heidelberg New York, 2000.
- V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili and T.V. Burchuladze, Three-Dimensional Problems
 of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam New York
 Oxford, 1979.
- 17. W. Nowacki, *Thermoelasticity*, Pergamon Press, Oxford, 1962.
- 18. L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983.
- 19. M.P. Cleary, Fundamental solutions for a fluid-saturated porous solid, *International Journal of Solids and Structures*, 13, 785-806 (1977).
- 20. A.H.-D. Cheng and J.A. Liggett, Boundary integral equation method for linear porous-elasticity with applications to soil consolidation, *International Journal for Numerical Methods in Engineering*, 20, 255-278 (1984).
- 21. J.W. Rudnicki, On "fundamental solutions for a fluid-saturated porous solid" by M.P. Cleary, *International Journal of Solids and Structures*, 17, 855-857 (1981).
- 22. M. Svanadze, The fundamental matrix of the linearized equations of the theory elastic mixtures, *Proceedings of the I. Vekua Institute of Applied Mathematics of Tbilisi State University*, 23, 133-148 (1988).
- 23. M. Svanadze, Fundamental solutions of equations of stable oscillation and pseudo-oscillation of two-component elastic mixtures, *Proceedings of the I. Vekua Institute of Applied Mathematics of Tbilisi State University*, 39, 227-240 (1990).
- 24. M. Svanadze, The fundamental solution of the oscillation equations of the thermoelasticity theory of mixture of two elastic solids, *Journal of Thermal Stresses*, 19, 633-648 (1996).
- 25. L. Hörmander, *Linear Partial Differential Operators*, Springer-Verlag, Berlin Göttingen Heidelberg, 1963.