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1. SUMMARY 

Conditions for shakedown of structures (solids) of elastic plastic creeping materials with anisotropic 

plastic damage, strain hardening and softening, as subjected to thermo mechanical loading, are in question. 

The current yield surfaces are assumed to enclose the one of the minimal diameter (/«-surface). This is valid 

at the stage of strain hardening, and also at the part of the softening stage. The shakedown conditions are of 

the classical (Melan) type; however the residual stress may depend on time. The sufficient condition is 

formulated relative to the /»-surface. 

2. INTRODUCTION 

In this paper the model of elastic plastic creeping damage material is accepted. The argumentation is 

based on the assumption that the yield surface in the effective stress space is closed, and on the dissipative 

inequality σ : L : σ > 0 where σ denotes the current nominal stress, and L does the current value of the 

elastic compliance tensor. It is-also assumed that the current yield surfaces enclose the one with minimal 

diameter (w-surface). This assumption is valid both at the stage of material strain hardening, and also at the 

part of material softening stage. 

The paper provides necessary and sufficient conditions for shakedown. The conditions are of the classic 

static (Melan) condition type; however, unlike it, the virtual residual stress may be time dependent, and also 

the sufficient shakedown condition relates to the m-surface. 

Notations: 
a : b = ajjbij, (A : B) ijki=AijmnBmnk|, the fourth rank unit tensor is denoted I. 
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3. MATERIAL MODEL 

A model of elastic plastic creeping material with limited strain hardening and anisotropic plastic damage 

was taken. It assimilated some features of the models by Lemaitre / l / and Ju 111. The consideration is 

restricted by the mechanical theory. Inertia forces, thermal fluxes, and changes in temperature due to thermal 

emission are neglected. The temperature 0(x,t) is considered as a given function of time and position. 

The model is not specified in detail, because only its general features are needed for the subsequent 

argumentation. 

The deformation is assumed small, so that the total strain tensor can be decomposed into elastic εε, plastic 

ερ, creep ε°, and thermal (prescribed) εθ parts. 

ε = ε 6 + ε ρ + ε ° + ε θ (1) 

Consequently the total strain rate is represented as 

έ = έ ε + έ ρ + έ ί ; + έ θ . (2) 

Damage 

It is assumed that the damage process is coupled with the process of plastic deformation: it can develop 

only, if the plastic deformation process is in progress, i.e. the nature of damage is assumed ductile. Due to 

this assumption, the growth of damage ceases simultaneously with the cessation of plastic deformation. 

Consequently, damage variables are bounded, if the plastic deformation ceases at some time. 

Let L denote the current (damaged) value of the elastic compliance tensor with its ordinary symmetry, 

and C=L 1 denote the corresponding stiffness tensor. Either of these tensors can be taken as the damage 

variable. 

No residual strain and stress are assumed induced by damage. 

Plasticity 

The current (damaged) value of the elastic stiffness tensor C is defined through the fourth rank 

transformation tensor M(x,t), as C=M :C 0 , where C 0 denotes the initial value of C corresponding to the initial 

time point of deformation process t0. Analogously L=M"':L0. The transformation tensor can be also taken for 

damage variable. 

The solid could experience a plastic deformation and damaging before the beginning of deformation 

process. Therefore it is assumed that χ=χ0(χ) and M=M0(x) at t=t0. 

The effective stress tensor is defined as σ = M~' :σ where σ denotes the nominal stress tensor. 
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The yield condition is formulated in terms of the nominal stress tensor 

Φ ( σ , Μ , χ , θ ) = 0 (3) 

where the components of the transformation tensor Μ should be considered as internal variables similar to 

the strain hardening parameter. This approach is in line with the formulation of some elastic plastic damage 

material models. See, for example, /l/. 

Hardening is assumed limited: 0<χ<χ* where χ * is the material parameter corresponding to the hardening 

saturation state of undamaged material. 

The yield function Φ is assumed strictly convex in the argument σ . It is chosen in such a way that the 

inequality Φ < 0 should correspond to the interior of the yield surface in the stress space σ , and the point 

σ =0 be in the interior. Consequently, if Φ ( σ ,Μ,χ ,θ)=0, and Φ ( σ ,Μ,χ,θ)<0, then 

where equality holds only, if έ ρ = 0 . It is important that (4) is valid, if σ is in the interior of the initial 

yield surface. 

The mechanical unloading and subsequent reloading process are assumed purely elastic. Therefore during 

these processes no damaging and hardening occur, and the elastic module and the transformation tensor save 

their current (damaged) values, which they had at the start o f unloading. Consequently the stress tensor can 

be decomposed as 

where σ 1 (x,t) represents the pure elastic response of the body under consideration to the current mechanical 

boundary conditions, and σ r(x,t) does the current tensor of residual stress. Thus, the following decomposition 

of the actual strain tensor is valid 

( σ - σ ) : έ ρ > 0 (4) 

σ = σ Ε + σ Γ (5) 

ε=εΕ+εΓ +ε θ =εΕ+ΈΓ0+Έ°+ερ+ίθ (6) 

where ε Ε is the elastic strain corresponding to σ Ε , namely, s E = L : a E , and E r e is the elastic part of the 

residual strain tensor: e r c=L:o r . Symbol εΓ denotes the total residual strain: 8r=8rc+ec+Ep. 

Creep 

Creep strain rate is defined by the creep flow rule: 
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. c _ a F ( M , C T , x , 6 ) 
δ σ ' 

where the potential function F(M, σ ,χ ,θ ) is assumed even, homogeneous and convex in σ. 

Thermal (prescribed) strain εθ. 

This could be an initial strain, otherwise it can be originated by thermal stress. Because thermal fluxes, 

and emission of heat due to deformation are neglected, the thermal strain is defined by the temperature field 

0(x,t), which is considered as given. 

Thermodynamics 

The accumulated plastic deformation χ is taken for the isotropic strain hardening parameter: 

χ = ( έ : έ ) 1 / 2 . 

The local damaged Helmholtz free energy function is formulated as 

T(ee,x,C) = i ( s e + ε θ ) : C : (ε ε + ε θ ) + Ψρ(χ) (8) 

where the first term represents the reversible part of the free energy, and the term Ψ ρ (χ ) does the free energy 

stored at the micro level due to strain hardening. As in Lemaitre / l / , the effect of damaging on this part of 

free energy is neglected. The kinematic strain hardening is here not considered. However it can be taken into 

account by the method proposed in /3/. 

The Clausius-Duhem inequality σ : έ - Ψ > 0 should be valid for any mechanical process. Employing 

the Coleman & Gurtin arguments /4/, we arrive at the elastic strain-stress relation 

σ = C: (ε6+εθ) (9) 

and the dissipative inequalities 

5Ψ 
σ:(έρ + έ ° ) — - ^ - χ ^ Ο (10) 

3χ 

(ε£+εθ): C: (εε+ε°)<0. (11) 
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Inequality (11) is valid, if the quadratic function (εε+εθ): C: (εΕ+εθ) is not positive. Thus, all eigenvalues of 

the matrix C are to be not positive. 

As L:C= I , then C = -C:L:C , and (εε+εθ): 0:(ε6+ε θ) = - o : L : o . Consequently 

o:L:o >0, (12) 

i.e. the eigenvalues of the quadratic function o:L:o have to be not negative. Inequalities (11), (12) are 

transformed into equalities only in the absence of damaging. In the case of isotropic damage inequality (12) 

results in the known conclusion that the rate of damage parameter is non-negative /I/ . 

4. PRELIMINARIES 

Supposition 

During deformation process the yield surface at a point of the solid changes its diameter. Strain hardening 

increases the diameter; on the contrary damage process decreases it. If 0=const through the solid, the current 

yield surfaces enclose the initial one. This assertion is valid until the ultimate stress point (USP) is reached. 

Moreover it is also fulfilled for some part of the unstable stage adjacent to USP. 

The length of the stage where the assertion is valid depends on the deformation process, and can be 

obtained by detailed computing. In the case of isotropic damage it can be estimated directly /3/. This method 

can be extended to anisotropic damage. 

However, increase in temperature reduces the diameter. Therefore it is possible that there exist yield 

surfaces with diameters less than the initial one. 

According to our assumption, the temperature does not depend on the deformation process. Therefore the 

maximal temperature at a solid point and also the yield surface with the minimal diameter can be found in 

advance. It could be either the initial yield surface, or the yield surface corresponding to the maximal 

temperature. This surface will be referred to as the minimal yield surface (/«-yield surface). 

The proof of the theorem is based on a Supposition that the current yield surfaces enclose the min yield 

surface. Due to the Supposition, the inequality Φ(σ (x,t),M(x,t),x(x,t),6(x,t))<0 is valid for any t>tQ, if it is 

valid for the min yield surface: Φ( σ (x,t),M(x,tm),x(x,tm), 0(x,tm))<O for t>t„ where tm, denotes the time point 

corresponding to w-yield surface. That is, if a stress σ is safe with respect to the min yield surface, then it is 

safe with respect to any current yield one, until the Supposition is valid. 

Obviously the notion of w-yield surface is similar to the notion of sanctuary 151. 

Assumption of the closeness the yield surfaces 

It is assumed that the yield surface Φ in the effective stress space σ is closed for any admissible values 
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of its arguments, so that the values of effective stress tensor components are uniformly bounded by a constant 

Β: |σ ϋ | < Β. Obviously the above assumption does not diminish the generality of the present consideration. 

The notion of shakedown 

An elastic plastic creeping damaged structure (solid) subjected to cyclic loading is considered. The term 

of shakedown (adaptation to cyclic loading), as applied to the taken material model, implies that after a 

transient (adaptation) period of deformation, the structure achieves a stationary state, during which the 

processes of plastic deformation and damage are absent, the elastic modules are constant, and the stress state 

becomes cyclic. This state is defined as the steady cyclic creep state 161. 

Necessary condition for shakedown 

The opposite is true if an elastic plastic creeping damage solid subjected to cyclic loading shakes down, 

then eventually, after some transient period of deformation, the solid achieves a stationary stage of the 

deformation process, during which it experiences only elastic and creep deformations. In this case there 
A r Α Ρ Λ r 

exists a residual stress σ (χ, t) such that for any t>ts, the stress o(x,t) = σ (x,t) + σ (χ, t) satisfies the 

inequality Φ(σ(χ, t),M(x,t),x(x,t),6(x,t)) < 0 , where ts is the time corresponding to the beginning of the 

stationary stage. Thus, the necessary condition for shakedown can be formulated as: if the structure shakes 

down, then there exist a residual stress σΓ(χ, t) and a yield condition, for which the stress σ is safe. 

5. STATIC SHAKEDOWN THEOREM 

Formulation of the theorem 

The proposed shakedown theorem can be formulated as follows: if there exists a field of a virtual residual 

stress σΓ(χ, t), such that the stress o = oE(x , t )+ nr(x, t) is safe with respect to the min yield condition, i.e. 

satisfies the inequality Φ(σ(χ, t),M(x,t0),x(x, t0 ),θ(χ, t)) < 0 starting from some time t0 on, then the 

structure under consideration will shake down. 

As distinct from the classic shakedown theorem, the proposed one admits time dependence of the virtual 

residual stress. 

The theorem provides a sufficient condition for shakedown. 

Proof of the theorem 
To prove the theorem one needs to consider the potential energy corresponding to the difference in actual 
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and virtual residual stresses: 

W = - J ( o r - Ä r ) : L : ( o r - o r ) d Q (13) 
Q 

where σΓ is the actual residual stress, and Q is the volume occupied by the solid. 

The derivative of W with respect to time is equal to 

W = J ( < T r - ä r ) : L : ( n r - Ä r ) dQ + - | ( σ Γ - ό Γ ) : ί : ( σ Γ - ό Γ ) dQ . (14) 
Q 2 Q 

As 6 rc=L:a r, then L:σΓ = έΓε - L :o r . Analogously L:or = έΓε - L:or where έΓε = L :o r . Having these 

equalities in hand it is possible to shape (14) into the form 

W = J (o r - σ Γ ) : (έΓε - έ Γ ε ) d Q - - Jo r :L:o r dQ +- Jo r :L:o r dQ . (15) 
Q 2 Q 2 Q 

It results from (11) that έ = έ Ε + έΓε + έ ρ + έ ς + έ θ . As the stress σ = σ Ε + σΓ is safe, then έ ρ = 0 , and 

έ = έ Ε +έΓ ε +e c + έ θ . Hence έΓε - έ Γ ε = ( έ - έ ) - έ ρ - ( έ ς - έ ° ) . Furthermore σΓ - σ Γ = σ - σ 

Because the strains ε, έ and, consequently, the strain rates έ, έ are kinematically compatible, and the 

difference σ - σ is self-equilibrated, and meets zero boundary conditions, W can be reshaped as 

W = - | ( σ - σ ) : (έ ρ + ( έ ε - ^ c ) ) d Q - - Jo r :L:o r dQ + - jÄ r :L : a r dQ . (16) 
Q 2 0 2 Q 

Due to the assumed convexity of the function F( σ ,Μ,Θ) in σ , the following inequality is valid 

( σ - σ ) : ( έ ε - έ ε ) > 0 (17) 

Consequently 

V = W —- j6 r :L:Ä rdQ < - | ( σ Γ - σ Γ ) : έ ρ dQ - - Jo r :L:o r dQ (18) 2 J J\ / 2 
Q Q Q 

where 
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V= W - 1 Jdt J o r : L : a r d Q = W - - J e i : ( L - L 0 ) : o i d Q . (19) 
2 TO Q 2 Q 

Above σ* denotes an average value of σΓ in the interval [t0, T], and L0 denotes the value of L at t=t0. 

According to (4), the right part of (18) is non positive. Hence the left part is non positive as well. 

Suppose the structure does not shake down, i.e. |έΡ |>α>0 for any t, where α is a positive number. In this 

case inequalities (4) and (12) are strict. Therefore the right side of inequality (18) is strictly negative, and 

V < - b < 0 where b is a positive number. Hence |V(t)| —»oo for T—>oo. 

However the magnitude of V(t) is bounded. Actually as L=M"':L0 , this quantity can be estimated as 

| V ( t ) | < - J ( o r - Ä r ) : M " ] : L 0 : ( o r dQ + - J e i : ( M _ 1 - I ) : L 0 : o i d Q . (20) 
2 Q 2 Q 

If the transformations σ = Μ~':σ and its inverse are non-degenerate, then components of M'1 are 
bounded. According to the assumption, the yield surface in the effective stress space, Φ(σ, χ) =0, is closed. 

Therefore the yield surface in the nominal stress space, Φ( σ ,Μ,χ)=0, is closed as well, and the nominal 

stress tensor components are bounded. As σΓ is safe, then σ* is safe also. Hence the components of σ* are 

also bounded by the constant Β irrespective of value T; and the magnitude of V(t) is bounded for any value of 

T. Thus, if the transformations σ = Μ~' :σ and its inverse are non-degenerate, the supposition | έΡ \>a>() 

leads to contradiction, and should be declined. Consequently | έΡ |—>0, which proves the theorem. 

Now consider the case where a component of M"'(t) grows unlimitedly in its magnitude for Τ —> oo . 

Then, as L=1M"1:L0, some of the L components tend to infinity. This means that eventually the structure 

cannot bear the applied loads. This situation should be interpreted as the damage collapse. 

The objective of this investigation is to formulate the conditions for shakedown, i.e. for plastic safety of 

the structure. The problem of damage safety is out of the framework of the paper. 

The question of the failure due to damage accumulation in the case of isotropic damage was considered in 

/3/. The method developed in there can be applied to the model under consideration. 
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