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1. SUMMARY

Large deformations are exposed from the viewpoint of differential geometry. This makes it possible to
formulate kinematics of continua in a compact, coordinate-free way with clear geometrical meaning. In
addition, more advanced concepts of Riemannian geometry bring interesting, entirely novel ideas to the very
basic theory of large deformations. The primary aim of this paper is to present a brief outline of this approach
and attract attention to these new ideas, quite unknown until now. At the end, a novel objective time

derivative will be proposed.

2. INTRODUCTION

In order to consistently describe successive process of deformation, differential geometry is employed,
which offers significantly more refined tools for description of finite deformations than matrix calculus. It
was Noll who initiated a deep interest in the mathematical foundations of mechanics of continua, and, at
present, Riemannian geometry has been employed in many papers concerned with theoretical aspects of the
deformation of continua (Marsden and Hughes /11/, Giessen and Kollmann /4/, Stumpf and Hoppe /14/,
Kadianakis /9/ et al.).

In addition to presenting this standard view, the paper briefly outlines. more advanced aspects of the
kinematics of finite deformations, as they have appeared in the literature, although without attracting much
notice. It is the book of Rougee /12/ in particular, which offers novel key ideas for a proper understanding of
finite deformations, and closely related mathematical papers on geometry of infinite dimensional Riemannian
spaces. By combining the Rougee’s approach with this general mathematics, a new objective time derivative

will be derived at the end.
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3. PRELIMINARY INFORMATION -
CONTINUUM MECHANICS AND RIEMANNIAN MANIFOLD

Classically, the kinematics of continua is described by tensor fields on 3D Euclidean spaces E’ using
general curvilinear coordinate systems, but the more modern approach, considering Euclidean space as
Riemannian manifold, predominates. For our purposes it suffices to characterize the Riemannian manifold as
a set of points, with no privileged coordinate system endowed with metric, which enters the Riemannian
manifold via the tangent space; for more, see Frankel /2/ and Schutz /13/. Making use of the geometrical
entities (such as pull-back, push-forward, Lie derivatives, covariant derivative etc.) enables us to identify the
actual geometrical content of the kinematics of finite deformations. The following three paragraphs offer a

brief outline of Riemannian geometry in continuum mechanics. For more details, see Fiala /1/.

3.1. Basic notions

« A configuration of a simple body B, is a mapping ®:I x B —> E* parameterized by time from the interval
1=[0,T]. The configurations at time 0 or at actual time ¢, called referential R =(f)(0,B) or spatial

S = @(t,B) configurations respectively, form Riemannian manifolds. The mapping @ then induces a
mapping @ : I/ xR — S . We denote by X points from R, and by x points from S.

o The tangent space TyR is a linearized, infinitesimal neighbourhood of a point X e R. It is a linear,
finite-dimensional real vector space of all “infinitesimal material line elements” represented by vectors
tangent at the point X to curves lying in R.

o The cotangent space T}R . It is again a linear, finite-dimensional real vector space of all “infinitesimal
material surfaces” represented by covectors, which are quantities intimately related to gradients to

functions at the point X. The covectors a act as linear mappings (a,u)T g Of vectors u to real numbers R,

and so the cotangent space is the dual space to the tangent space. Unlike the classical approach, making
use of the dual space enables us to define the tensors on manifolds more clearly, and distinguish between
vectors and covectors, contravariant and covariant tensors, being considered here as different objects. As
above and below, the same applies to the spatial configuration.

o (p-q)-tensors (p-contravariant, g-covariant) on a linear vector space V, with V" being its dual, are
elements of the sets T/ =T ®T, =V ®..®V®V"' ®..®V" and T = R. Here V stands for some

tangent space, Ty R or TS, and V' for its corresponding cotangent space, T}R or T;S !

o The key notion of Riemannian geometry is the metric, a positive-definite symmetric 2-covariant tensor G
defining the scalar product of two vectors u,veTyR: u-v= G(u,v) .

o The metric G defines a mapping G:TyR —»T;R via the relation (Gu,v)TVR =G(u,v). It assigns an

associated covector u' to a vector u: u” = Gu (and conversely an associated vector a' to a covector a:

392



Z. Fiala Journal of the Mechanical Behavior of Materials

a' =G™'a). The so-called associated tensors t', " to a(1-1)-tensor ¢ are (2-0)- and (0-2)-tensors
respectively, defined by extending the mapping G to tensors. These operations correspond to raising and
lowering indexes of components of tensors in classical approach. The metric G also induces the scalar

product on covector space, defined by means of the associated 2-contravariant tensor G':
a-b=G"(a,b)=G(a",b!).

o A mapping ®:IxR — S induces the tangent mapping (or deformation gradient F in other words)
TO(=F):TyR>T,S.

The tangent mapping defines push-forward ®. and pull-back @' operations between corresponding

spaces of tensors. These then, in a simple way, couple the description of deformation and stress state in the
referential and spatial configurations: In fact, the description of the motion in the REFERENTIAL (SPATIAL)
picture is obtained by pull-back (push-forward) of the spatial picture.

3.2. Dual stress and strain tensors, dual time derivatives

The various stress and strain tensors, and their objective time derivatives can be related to each other (Hill

/7, 8/, Haupt and Tsakmakis /6/) via the stress power density:
n, =0,-d, =<a},d,‘> ) =<G},dt’> ; 1)
TS TS

where o, is the Cauchy stress (1-1)-tensor and d, is the rate-of-deformation (1-1)-tensor.

'
The Hill’s result is obtained by pulling-back the spatial picture to the referential configuration, so that the

referential stress power density reads

xS = , where 0 stands for the material time derivative.

<[)’.’8E:>//e' _{Pr'aE:
(k.om) | |K-0H,

IR
In the above, the following two relations, playing the key role in the next paragraph, were employed

O'd=0E (=1o0C')  ®'d'=—oH (=-1oB') @

By pushing-forward the Hill’s result back to spatial configuration Haupt and Tsakmakis obtained:
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ﬂref — <Sl’ > LFe:>“_- (Ll"e.)ij = é:j + (d - w)ik gkle;j a5 e;kgu (d U w)lj
(S L) (L) = ()~ (d+w)* gy () - (B g (d - w)"
L, =®, c0o®d" is the so-called Lie derivative (again F=T®), and w is vorticity. This dual time

derivative (Oldroyd derivative), obtained from material derivative exactly the same way as the
corresponding dual stress and strain tensors, is naturally objective.

S =Jo is the WEIGHTED CAUCHY stress (1-1)-tensor (or KIRCHHOFF), and Jacobian J (being scalar) is
the determinant of the tangent mapping transformation J = dct(a(D/ﬁXHdctigi/dctiG ).

G (resp. g) denotes the metric on R (resp. S) (i.e. the scalar product on T, R (resp. T.5)).

Tangent space: I group

REFERENCE configuration: pulling back g and S*

C=0'g the associated RIGHT CAUCHY-GREEN deformation (0-2)-tensor
E-= -;—(C - 1) the GREEN-ST.VENANT strain (1-1)-tensor (Lagrangian strain tensor) 3)
P =S the associated SECOND PIOLA-KIRCHHOFF stress (2-0)-tensor

SPACE configuration: pushing forward G

¢ =0,G
e= -;-(z = c) the ALMANSI-HAMEL strain (1-1)-tensor (Eulerian strain tensor) 4
St the (contravariant) WEIGHTED CAUCHY stress (2-0)-tensor

o The following relations hold: E' =®%¢", ¢ =D E*.

Dual space: 2™ group

REFERENCE configuration: pulling back g' and — S

B = (D‘gl
H=ii5- 1) the PIOLA strain (1-1)-tensor )
K=-0'§ the associated NEGATIVE CONVECTED stress (0-2)-tensor

SPACE configuration: pushing forward G'

b =d.G the associated LEFT CAUCHY-GREEN deformation (2-0)-tensor
h= -5-(1 —b) the FINGER strain (1-1)-tensor (6)
-S the (covariant) NEGATIVE WEIGHTED CAUCHY stress (0-2)-tensor

o Also, the following relations hold: H' =®'h', h' =D, H".
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Table

Triplets of related strain, stress tensors and time derivatives

Configuration STRAIN TENSORS STRESS TENSORS | TIME DERIVATIVES
1* sroun (covariant) B (contravariant) | PR
reference GREEN-ST.VENANT 2" PIOLA-KIRCHHOFF MATERIAL

space ALMANSI-HAMEL KIRCHHOFF OLDROYD
2™ oroun (contravariant) o (covariant) |

_reference |  PiotA |  NEGATIVE CONVECTED ___MATERIAL

space FINGER NEGATIVE KIRCHHOFF OLDROYD

4. ADVANCED INFORMATION - RIEMANNIAN MANIFOLD OF RIEMANNIAN METRICS

In summary, here are the main points of the previous paragraphs required later on:

» Finite deformations of the continua at the referential point X are described by any of two deformation
tensors C* (3) or B' (5).

o Their time derivatives 0C*' or OB', in progress of deformation, are obtained by pulling-back the
corresponding associated tensors of the rate-of-deformation tensor d* or d* (sce (2)).

At this point, some comments are still in order on why the deformation tensors, instead of strain tensors
are more fitting for the description of the process of finite deformations. The answer reflects the very nature
of the difference between finite and small deformations: Provided we split the deformation
x=d(X)=X +u(X), for two successive deformations X—> X,— x,, the following holds:
x, =@, 0d,(X)= ®,(x,)= O, (X +u (X)) =X +u, (X +u, (X))+u,(X). In case of small defor-
mations one neglects all the terms of the second order in magnitude, and so the relation takes the form
Xy~ X +uy (X )+u (X), ie. the diffeomorphism @ acts as identity mapping x = ®(X)~ X, and the
conception of diffeomorphisms changes into that of fields. Similarly, for the deformation gradient
T® =1 +Tu~ 1, and for transformations of vectors and covectors: v=T®(V )=V, 4= Td'(a)~a. The
conception of small deformations thus identifies tangent and cotangent spaces in reference, and spatial
configurations. In particular, the metric tensors are equal g ~G ., and the objective time derivative is
replaced by simple material time derivative Lg =®, cdo®d" ~d. Infinitesimal variation u(X) around
identity mapping @ (X)=x~X at the point x =®y(X) (i.e. linearization of mapping @ in other words)

results in substituting fields for diffeomorphisms, and enters the theory of small deformations via
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infinitesimal variation of the metric g=G. It is the strain tensors e~FE, h~H that represent this
infinitesimal variation of metric. Now, ¢' ~C* and b' ~ B', and the relations (2) read: 0C *=20E"* ~2d"*
and oB* = 20H* ~ -24"* .

On the other the hand, in the case of finite deformations the deformation process no longer keeps moving
inside the tangent linear space T\ M (see later on), as in the case of small deformations, and the finite
difference between initial and terminal deformation tensors provides the same piece of information about
deformation, as Euclidean distance between starting and ending points about the whole trajectory of a particle
does: that means no information! Consequently, the deformation process at each material point X should be
described not by time dependent strains, but by a trajectory in the manifold M = Met(R) of all possible
deformation tensors (relative to reference configuration).

A fundamental observation of Rougee /12/ made it possible for him to significantly broaden the analysis
of the process of finite deformations. He realized that the quantities C* in fact constitute tangent vectors to
the manifold M at the particular point C", chosen at the actual moment of time ¢. With the assistance of the
relation 0C'=2® d" he introduced a scalar product on the tangent space T M, so that the manifold M

became Riemannian manifold. He managed to do this by extending the usual scalar product of vectors,
defined on TS by the metric g, to a scalar product of 2-tensors (see also (1)). In particular, for the rate-of-

deformation tensor d* he obtained: o' -a"’l: =g"g"d d; . As the diffeomorphism @, is actually an
g.x

isometry (a metric preserving diffeomorphism), he introduced the scalar product on the tangent space 7: M

via the relation: 6C”-6C‘2| "=CD,'(d”-d‘2), where aC"ET;.,M, C'=®)(g), B'=(C")" and

(e
OC*' =2®d;(d""). Carrying out the pull-back operation, Rougée eventually obtained the metric on M (i.e.
the scalar product on the tangent space 7_M):

acY-acv|.  =+B'B'3C,OC] . (7

X

Do not be confused by considering the deformation tensors C > as points of the Riemannian manifold M,
and their material time derivatives 0C*' € TlM as vectors lying in the corresponding tangent space 7. M,
at a particular point C* of M! As we shall see in the next paragraphs, such a viewpoint offers far-reaching
implications for the description of kinematics of finite deformations.

First, one can define time derivative of a tensor fields over S, via the covariant derivative of vector fields
over M. Fora vector ¥ € T. M and a vector field U over M, the covariant derivative reads:

Il

Uy U d -
(V,.U)U_ =[WJ _E(V"BMU“ +U,.,B"‘Vkl_),where (W]u d—UU.((, +qV)lq=0.

q

ij

Let C:/ — M denote a smooth curve, then derivative of vector field U along the curve reads
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D _ 1 K " ; U
[EU)U = (Vn(uU),-j - anj _‘2_(6C”B Ulj +ljilB aCkI)’ SICE 6(66“) =oU

Asnow OC* =2® d", pushing the above derivative forward to the spatial configuration, one obtains

(ﬂu) =0V, .U) = (L), ~d,g"u, +u.g"d, )= (a" ), ®)
Dt [ iy . ) - . .- . e

ij

u=®, U is any spatial 2-covariant symmetric tensor field over S corresponding to U over M. The

resulting time derivative is the Zaremba-Jaumann derivative (Rougee /12/). If we interpret parameter ¢ as
time and the curve C; as a deformation process taking place at point X, the underlying mathematical

structure of the Riemannian manifold M, based on the metric (7), then unambiguously selects the only one
objective time derivative (8). Note also that g” =0, or equivalently DC* / Dt=0.

Second, the geometrical structure of the manifold M enables us to clarifythe geometrical meaning of
logarithmic strains by relating them to geodesics (Rougee /12/, APPENDIX).

Third, the manifold M can be split (Freed and Groisser /3/) into volumetric and shape
submanifolds: M = Vol(R)x Met , (R) Whereas the space Vol(R) is flat, the space Met”(R) has nonzero

curvature (negative), resulting in the dependence of deformation processes on the trajectory C; in M. In

particular, here seem to lie the problems with the existing use of logarithmic strains in modelling of

constitutive relations.

5. DISCUSSION AND NOVEL PROPOSAL OF TIME DERIVATIVE

Provided we eliminate the restriction of deformation processes to a single material point X € R, which is
the case of Rougee /12/, we have slightly to modify the above theory. Now, the Riemannian metric is a tensor
field C* of deformation tensors over the referential configuration R, and the corresponding manifold M of
such Riemannian metrics is an infinite dimensional Riemannian manifold (Freed and Groisser /3/, Gill-
Medrano and Michor /S/, Kriegel and Michor /10/). The metric (7) should then be modified by

. dvoL,(c)=| %B“'B"U,:}.U,f,/dcl((”')'\_dX. . )

<U'.U2>(._ — LUI .U?

Now, due to the additional multiplicative term ,/det(C') (which appears quite natural from the

viewpoint of the relation (1) and that which immediately follows), the covariant derivative reads
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UY 1 I .
(VVU)"/' = (;)' - ;(V,.,B”‘U,q. it UntBlkaj)Jr Z(B“VlkUu -B',B UGy + VuBk’Uu )’

y

and so for the objective time derivative of a spatial symmetric 2-covariant tensor field u one obtains:

(%”] = (’.‘” ),, +%(g“du“,, -g'd g"u,g, +d:,g“”u) (10)

i

6. CONCLUSION

The approach sketched above, initiated by Rougee /12/, offers a great number of entirely novel ideas in
the kinematics of finite deformations and deserves further scrutiny. To this end, the mathematical theory of
infinite dimensional Riemannian manifolds of Riemannian metrics, as described in papers cited in the
previous paragraph, will no doubt prove helpful. For a starter, novel objective time derivative (10) with
clear geometrical origin has been proposed. As the time derivative should represent the rate of change of
quantities attached to the points X € R, the new objective time derivative seems to be promising. In fact,

Dg/Dt=3/2-d" (cf. L,g=2d")and DC*/Dt=3/4-8C"*, contrary to the Zaremba-Jaumann derivative,

for which these derivatives are zeros.
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APPENDIX: A GEOMETRICAL MEANING OF THE LOGARITHMIC STRAIN TENSOR

The geometrical structure of the manifold M makes it possible to clarify geometrical meaning of the

logarithmic strains by relating them to geodesics. In general, geodesic is a curve connecting two points of

amanifold by the shortest possible way, or equivalently, it is a curve of constant velocity, i.e. zero

acceleration. In our case of manifold M with the metric defined by (7) [not by (9)!]. forcurve C*: I - M to

be a geodesic, it has to satisfy:

(V.-<' aCk) = azCij - aCiIBlkaij = Cﬁa(BlkaCk,-)= 0,

ij

and the equation of geodetics reads
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a(B*ac,)=-aleB*c,)=0.

Consequently, during the deformation process the referential tensor D = ®, (d): Dﬁ~ = %B”‘ac,q- to the
spatial rate-of-deformation tensor d is constant. Let D = Z A p,®p' be its spectral decomposition, where
A, are proper numbers, p, proper vectors. The deformation process C; following a geodesic curve can thus

be expressed in general as
1>C =Y exp[2,(t-1,)+1,]p'®p'.

The manifold M is thus being divided into submanifolds Mg, made up of those deformation tensors, for
which linearly independent directions B ={ p,} are mutually orthogonal. On each submanifold the

deformation process takes precisely the above form. On the other hand, for any two metrics states C',‘I L (zh

there always exist submanifolds Mg containing them both, and so they can be joined by a geodesic curve
(Rougee /12/)

Cr =3 expl2L(t-1)/(;, -1 )]A'®A" . 1n

\
ke

A ik
Now, L; and A, are defined via the tensor C,= (B'I ) (C ,"2) _, relating the deformed state at the moment
t, to that of f,. Let C =Z‘:1,2A, ®A' be its spectral decomposition, then the logarithmic strain tensor
L= s1In C= Z' LA, ®A', where L. =Inl . Contrary to other strain measures, only the logarithmic strain is

able to couple meaningfully two remote deformations states, since it compares them as being placed on a
geodetic, i.e. via a well defined deformation process unambiguously defined by its outside points (metric

states C ,‘ or C} ) and corresponding tangent vectors pointing from one point to the second one.
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