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1. SUMMARY 

Large deformations are exposed from the viewpoint of differential geometry. This makes it possible to 

formulate kinematics of continua in a compact, coordinate-free way with clear geometrical meaning. In 

addition, more advanced concepts of Riemannian geometry bring interesting, entirely novel ideas to the very 

basic theory of large deformations. The primary aim of this paper is to present a brief outline of this approach 

and attract attention to these new ideas, quite unknown until now. At the end, a novel objective time 

derivative will be proposed. 

2. INTRODUCTION 

In order to consistently describe successive process of deformation, differential geometry is employed, 

which offers significantly more refined tools for description of finite deformations than matrix calculus. It 

was Noll who initiated a deep interest in the mathematical foundations of mechanics of continua, and, at 

present, Riemannian geometry has been employed in many papers concerned with theoretical aspects of the 

deformation of continua (Marsden and Hughes / II / , Glessen and Kollmann /4/, Stumpf and Hoppe /14/, 

Kadianakis /9/ et al.). 

In addition to presenting this standard view, the paper briefly outlines more advanced aspects of the 

kinematics of finite deformations, as they have appeared in the literature, although without attracting much 

notice. It is the book of Rougee /12/ in particular, which offers novel key ideas for a proper understanding of 

finite deformations, and closely related mathematical papers on geometry of infinite dimensional Riemannian 

spaces. By combining the Rougee's approach with this general mathematics, a new objective time derivative 

will be derived at the end. 
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3. PRELIMINARY INFORMATION -

CONTINUUM MECHANICS AND RIEMANNIAN MANIFOLD 

Classically, the kinematics of continua is described by tensor fields on 3D Euclidean spaces E3 using 

general curvilinear coordinate systems, but the more modern approach, considering Euclidean space as 

Riemannian manifold, predominates. For our purposes it suffices to characterize the Riemannian manifold as 

a set of points, with no privileged coordinate system endowed with metric, which enters the Riemannian 

manifold via the tangent space; for more, see Frankel 121 and Schutz /13/. Making use of the geometrical 

entities (such as pull-back, push-forward, Lie derivatives, covariant derivative etc.) enables us to identify the 

actual geometrical content of the kinematics of finite deformations. The following three paragraphs offer a 

brief outline of Riemannian geometry in continuum mechanics. For more details, see Fiala /I/. 

3.1. Basic notions 

• A configuration of a simple body B, is a mapping Φ : 1 χ Β —> Ε3 parameterized by time from the interval 

I = [0 ,Γ ] . The configurations at time 0 or at actual time t, called referential R = 0(0,B) or spatial 

5 = Φ ( ί , β ) configurations respectively, form Riemannian manifolds. The mapping Φ then induces a 

mapping Φ : / χ R —> S . We denote by X points from R, and by χ points from S. 
• The tangent space TXR is a linearized, infinitesimal neighbourhood of a point X e R . It is a linear, 

finite-dimensional real vector space of all "infinitesimal material line elements" represented by vectors 

tangent at the point X to curves lying in R. 

• The cotangent space T*XR . It is again a linear, finite-dimensional real vector space of all "infinitesimal 

material surfaces'" represented by covectors, which are quantities intimately related to gradients to 
functions at the point X. The covectors a act as linear mappings [a,u)j R of vectors u to real numbers R, 

and so the cotangent space is the dual space to the tangent space. Unlike the classical approach, making 

use of the dual space enables us to define the tensors on manifolds more clearly, and distinguish between 

vectors and covectors, contravariant and covariant tensors, being considered here as different objects. As 

above and below, the same applies to the spatial configuration. 

• (p-q)-tensors (/»-contravariant, ^-covariant) on a linear vector space V, with V* being its dual, are 

elements of the sets Tq
p =TP ®Tq=V ®...®V ®V* ®...®V* and Γ0° = R. Here Κ stands for some 

• * * 
tangent space, TXR or TXS, and V for its corresponding cotangent space, TXR or TXS . 

• The key notion of Riemannian geometry is the metric, a positive-definite symmetric 2-covariant tensor G 
defining the scalar product of two vectors u,v eTxR : u · ν = G (m, v) . 

• The metric G defines a mapping G :TXR -+TXR via the relation (Gu,v)T R = C ( « , v ) . It assigns an 

associated covector u' to a vector u: u' = Gu (and conversely an associated vector a' to a covector a: 
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a'=G 'ia). The so-called associated tensors t', /b to a (1-1)-tensor t are (2-0)- and (0-2)-tensors 

respectively, defined by extending the mapping G to tensors. These operations correspond to raising and 

lowering indexes of components of tensors in classical approach. The metric G also induces the scalar 

product on covector space, defined by means of the associated 2-contravariant tensor G': 

• A mapping Φ : / χ R -» 5 induces the tangent mapping (or deformation gradient F in other words) 
ΤΦ(= F ) : TXR TXS . 

The tangent mapping defines push-forward Φ . and pull-back Φ* operations between corresponding 

spaces of tensors. These then, in a simple way, couple the description of deformation and stress state in the 

referential and spatial configurations: In fact, the description of the motion in the REFERENTIAL (SPATIAL) 

picture is obtained by pull-back (push-forward) of the spatial picture. 

3.2. Dual stress and strain tensors, dual time derivatives 

The various stress and strain tensors, and their objective time derivatives can be related to each other (Hill 

Π, 8/, Haupt and Tsakmakis /6/) via the stress power density : 

where σ, is the Cauchy stress (l-l)-tensor and d, is the rate-of-deformation (l-l)-tensor. 

The Hill's result is obtained by pulling-back the spatial picture to the referential configuration, so that the 

referential stress power density reads 

a • b = G*(a,b) = G(a*,b*)· 

(1) 

(κ:,δΗή 
, where d stands for the material time derivative. 

In the above, the following two relations, playing the key role in the next paragraph, were employed 

(2) 

By pushing-forward the Hill's result back to spatial configuration Haupt and Tsakmakis obtained: 
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π. ref _ 

=&y -{d+wYg^nf - { » f g ^ d - w f 

Lf — Φ . ° d ° Φ ' is the so-called Lie derivative (again F = ΤΦ), and w is vorticity. This dual time 

derivative (Oldroyd derivative), obtained from material derivative exactly the same way as the 

corresponding dual stress and strain tensors, is naturally objective. 

S - Ja is the WEIGHTED CAUCHY stress ( l- l)- tensor (or KIRCHHOFF), and Jacobian J (being scalar) is 

the determinant of the tangent mapping transformation J = 

G (resp. g) denotes the metric on R (resp. S) (i.e. the scalar product on TXR (resp. TXS)). 

Tangent space: Is' group 

REFERENCE configuration: pulling back g and S' 

CL = the associated RIGHT CAUCHY-GREEN deformation (0-2)-tensor 

Ε = Y(C - / ) the GREEN-ST.VENANT strain ( l-l)-tensor (Lagrangian strain tensor) (3) 

Ρ' the associated SECOND PLOLA-KLRCHHOFF stress (2-0)-tensor 

SPACE configuration: pushing forward G 

& = Φ,β 

e = j{i~c) the A L M A N S I - H A M E L strain ( l- l)- tensor (Eulerian strain tensor) (4) 

S' the (contravariant) WEIGHTED CAUCHY stress (2-0)-tensor 

• The following relations hold: Ε" = Φ*β ι , & = Φ . , Ε ' . 

Dual space: 2nd group 

REFERENCE configuration: pulling back g' and -S* 

B· = <S>'g> 

Η = - / ) the Ρ10LA strain ( l - l)- tensor (5) 

Κ" = - Φ " . ν the associated NEGATIVE CONVECTED stress (0-2)-tensor 

SPACE configuration: pushing forward G' 

b' = Φ,Ο' the associated LEFT C A U C H Y - G R E E N deformation (2-0)-tensor 

h = j { i - b ) the FINGER strain ( l - l)- tensor (6) 

- S1 the (covariant) NEGATIVE WEIGHTED CAUCHY stress (0-2)-tensor 

• Also, the following relations hold: Η' = ΦΉ, h' = Φ,Η'. 
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Table 

Triplets of related strain, stress tensors and time derivatives 

Configuration S T R A I N T E N S O R S S T R E S S T E N S O R S T I M E D E R I V A T I V E S 

Is' eroun fcovariant) fcontravariant) 

reference G R E E N - S T . V E N A N T 2 N " PIOLA-K.IRCHHOFF M A T E R I A L 

space A I . M A N S I - H A M E L KIRCHHOFF O L D R O Y D 

2ND erouD (contravariant) Ccovariant) 

reference PLOLA N E G A T I V E CONVECTEO M A T E R I A L 

space FINGER N E G A T I V E KIRCHHOFF O L D R O Y D 

4. ADVANCED INFORMATION - RlEMANNIAN MANIFOLD OF RIEMANNIAN METRICS 

In summary, here are the main points of the previous paragraphs required later on: 

• Finite deformations of the continua at the referential point X are described by any of two deformation 

tensors C (3) or B' (5). 

• Their time derivatives dC 1 or dB', in progress of deformation, are obtained by pulling-back the 

corresponding associated tensors of the rate-of-deformation tensor d* or d' (see (2)). 

At this point, some comments are still in order on why the deformation tensors, instead of strain tensors 

are more fitting for the description of the process of finite deformations. The answer reflects the very nature 

of the difference between finite and small deformations: Provided we split the deformation 

χ = φ ( χ ) = X + Z/(A'), for two successive deformations X - > JC,—>• x2, the following holds: 

*2 = Φ 2 Ο Φ ι ( Α ' ) = Φ 2 ( ^ | ) = Φ 2 ( Χ + Μ | ( Χ ) ) = Χ + Μ2(Λ ' + Μ 1 ( ^ ) ) + Μ | ( Χ ) . In case of small defor-

mations one neglects all the terms of the second order in magnitude, and so the relation takes the form 

x2* X +u2(X) + u l ( X ) , i.e. the diffeomorphism Φ acts as identity mapping • Χ - Φ ^ ) * X , and the 

conception of diffeomorphisms changes into that of fields. Similarly, for the deformation gradient 

ΤΦ = I + Tu & 1, and for transformations of vectors and covectors: ν = ΤΦ(ν) « V , A = Γ Φ * ( α ) « a. The 

conception of small deformations thus identifies tangent and cotangent spaces in reference, and spatial 

configurations. In particular, the metric tensors are equal g « G, and the objective time derivative is 

replaced by simple material lime derivative Lf = Φ , ο δ ο φ * a d. Infinitesimal variation u{x) around 

identity mapping Φ 0 ( X ) = χ « X at the point χ = Φ 0 ( Λ ' ) (i.e. linearization of mapping Φ in other words) 

results in substituting fields for diffeomorphisms, and enters the theory of small deformations via 
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infinitesimal variation of the metric g= G. It is the strain tensors e ~ Ε , Λ « Η that represent this 

infinitesimal variation of metric. Now, c l and b* « Β*, and the relations (2) read: dC '= 2dE1 « 2d^ 

and dB# = 2dHu « -2d# . 

On the other the hand, in the case of finite deformations the deformation process no longer keeps moving 

inside the tangent linear space 7^.,Μ (see later on), as in the case of small deformations, and the finite 

difference between initial and terminal deformation tensors provides the same piece of information about 

deformation, as Euclidean distance between starting and ending points about the whole trajectory of a particle 

does: that means no information! Consequently, the deformation process at each material point X should be 

described not by time dependent strains, but by a trajectory in the manifold Μ = Met(/?) of all possible 

deformation tensors (relative to reference configuration). 

A fundamental observation o fRougee /12/ made it possible for him to significantly broaden the analysis 

of the process of finite deformations. He realized that the quantities dCb in fact constitute tangent vectors to 

the manifold Μ at the particular point C b , chosen at the actual moment of time /. With the assistance of the 

relation 2Φ*ύΓ he introduced a scalar product on the tangent space Τ Μ , so that the manifold Μ 

became Riemannian manifold. He managed to do this by extending the usual scalar product of vectors, 
defined on TXS by the metric g, to a scalar product of 2-tensors (see also (1)). In particular, for the rate-of-

deformation tensor d^ he obtained: = g'kg''d'kjdl. As the diffeomorphism Φ, is actually an 

isometry (a metric preserving diffeomorphism), he introduced the scalar product on the tangent space Τ Μ 

via the relation: dC ·δ02[, =φ ( · ( ί / 1 1 -d'2), where dC" <eT ( . .M, C l = 0 ; ( g ) , B' = ( C 1 ) " ' and 

dC1' = 2Φι{άίΙ) . Carrying out the pull-back operation, Rougee eventually obtained the metric on IM (i.e. 

the scalar product on the tangent space Γ Μ ) : 

dC" • dCi21 = i Bik Β "dCljdCl. (7) 

Do not be confused by considering the deformation tensors Cb as points of the Riemannian manifold M, 
and their material time derivatives dO' e Γ . Μ as vectors lying in the corresponding tangent space Τ . Μ , 

at a particular point Ο of Μ! As we shall see in the next paragraphs, such a viewpoint offers far-reaching 

implications for the description of kinematics of finite deformations. 

First , one can define time derivative of a tensor fields over S, via the covariant derivative of vector fields 
over IM. For a vector V e Γ . Μ and a vector field U over M, the covariant derivative reads: 

= § ] where ί φ + q v ) \ ^ . 
SV 2 

5U 

δν dq 

Let : / —> Μ denote a smooth curve, then derivative of vector field U along the curve reads 
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—u] = (v ( / ) = d u „ - U d C ^ U . , + U,.BltdCkl), since 5 0 =dU. 
{Dt J0 '" " 2 y 1 '' S(dC) 
As now dO — 2Φ{ά', pushing the above derivative forward to the spatial configuration, one obtains 

- φ , ( ν ί Χ · 4 = (8) 

u = Φ,.υ is any spatial 2-covariant symmetric tensor field over S corresponding to U over IM. The 

resulting time derivative is the Zaremba-Jaumann derivative (Rougee /12/). If we interpret parameter t as 

time and the curve C \ as a deformation process taking place at point X , the underlying mathematical 

structure of the Riemannian manifold M, based on the metric (7), then unambiguously selects the only one 
objective time derivative (8). Note also that g/J = 0, or equivalently DC jOt = 0 . 

Second, the geometrical structure of the manifold Μ enables us to clarifythe geometrical meaning of 

logarithmic strains by relating them to geodesies (Rougee / 1 2 / , A P P E N D I X ) . 

Third, the manifold Μ can be split (Freed and Groisser /3/) into volumetric and shape 
submanifolds: Μ = V o l ( ^ ) x M e t / i ( ^ ) . Whereas the space Vol(/?) is flat, the space M e t ^ / ? ) has nonzero 

curvature (negative), resulting in the dependence of deformation processes on the trajectory C) in M. In 

particular, here seem to lie the problems with the existing use of logarithmic strains in modelling of 

constitutive relations. 

5. DISCUSSION AND NOVEL PROPOSAL OF TIME DERIVATIVE 

Provided we eliminate the restriction of deformation processes to a single material point X e R , which is 

the case of Rougee /12/, we have slightly to modify the above theory. Now, the Riemannian metric is a tensor 

field Ο of deformation tensors over the referential configuration R, and the corresponding manifold Μ of 

such Riemannian metrics is an infinite dimensional Riemannian manifold (Freed and Groisser /3/, Gill-

Medrano and Michor /5/, Kriegel and Michor/10/). The metric (7) should then be modified by 

dX. ( 9 ) 

Now, due to the additional multiplicative term ) (which appears quite natural from the 

viewpoint of the relation (1) and that which immediately follows), the covariant derivative reads 
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(V,U\ = ~ ( v X U k j + υ,,Β'ν^+^Βχυ,, -Bk'VloB"pUpkCH + VtjBk'Ulk), 
V •1 

and so for the objective time derivative of a spatial symmetric 2-covariant tensor field u one obtains: 

The approach sketched above, initiated by Rougee /12/, offers a great number of entirely novel ideas in 

the kinematics of finite deformations and deserves further scrutiny. To this end, the mathematical theory of 

infinite dimensional Riemannian manifolds of Riemannian metrics, as described in papers cited in the 

previous paragraph, will no doubt prove helpful. For a starter, novel objective time derivative (10) with 

clear geometrical origin has been proposed. As the time derivative should represent the rate of change of 

quantities attached to the points l e i ? , the new objective time derivative seems to be promising. In fact, 

Dg/Dt = 3/2 · c/1, (cf. Lrg = 2d^) and DCi/Dt = 3/4 • 5 C l , contrary to the Zaremba-Jaumann derivative, 

for which these derivatives are zeros. 
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APPENDIX: A GEOMETRICAL MEANING OF THE LOGARITHMIC STRAIN TENSOR 

The geometrical structure of the manifold Μ makes it possible to clarify geometrical meaning of the 

logarithmic strains by relating them to geodesies. In general, geodesic is a curve connecting two points of 

a manifold by the shortest possible way, or equivalently, it is a curve of constant velocity, i.e. zero 

acceleration. In our case of manifold Μ with the metric defined by (7) [not by (9)!], for curve C l : I - » Μ to 

be a geodesic, it has to satisfy: 

(ν Λ . d c \ = dXrdCXdCkj = Cud(B'kdCk)= 0 , 

and the equation of geodetics reads 
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Consequently, during the deformation process the referential tensor D = Φ, ( d ) : D'· = jBlkdCkj to the 

spatial rate-of-deformation tensor d is constant. Let D = ^ . Λ ; ·ρ (®ρ' be its spectral decomposition, where 

A / are proper numbers, p: proper vectors. The deformation process C\ following a geodesic curve can thus 

be expressed in general as 

The manifold Μ is thus being divided into submanifolds MB , made up of those deformation tensors, for 
which linearly independent directions Β = { p : } are mutually orthogonal. On each submanifold the 

deformation process takes precisely the above form. On the other hand, for any two metrics states C ^ , C^ 

there always exist submanifolds M B containing them both, and so they can be joined by a geodesic curve 

(Rougee/12/) 

q = Σ ι β χ ρ [ 2 ΐ ϊ ( / - / , ) / ( / 2 - 0 ] Δ ' ® Δ ' . (11) 

Now, Lj and Δ, are defined via the tensor = (ß*) (c^ , relating the deformed state at the moment 

h to that of /,. Let C = ^ 7/Δ, ®Δ' be its spectral decomposition, then the logarithmic strain tensor 

L = γ In C = Y L A ® Δ ' , where L. = In / , . Contrary to other strain measures, only the logarithmic strain is 

able to couple meaningfully two remote deformations states, since it compares them as being placed on a 

geodetic, i.e. via a well defined deformation process unambiguously defined by its outside points (metric 

states C) or C) ) and corresponding tangent vectors pointing from one point to the second one. 
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