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ABSTRACT 

This paper has addressed the issue of isothermal uniaxial mechanical response of a shape memory 

polymer (SMP) in series and parallel arrangements with a spring, dashpot, a Maxwell solid and a Kelvin 

solid. It is shown analytically that four models - the SMP- spring series hybrid, SMP-spring parallel hybrid, 

SMP-Kelvin solid series hybrid and the SMP-Maxwell solid parallel hybrid - demonstrate an effective 

response analytically identical to that of a shape memory polymer. Explicit expressions for the creep strain 

and damping capacity are provided for the SMP-spring hybrids. Parametric studies for the SMP-spring series 

hybrid and the SMP-spring parallel hybrid are then used to suggest design strategies for SMP-based 

composite laminates and aligned fiber composites. 

K e y W o r d s : Shape memory polymers, SMP, composites, viscoelasticity, shape memory strain, damping 

1. INTRODUCTION 

Smart materials research encompasses a wide variety of materials; some of these are shape memory 

alloys, piezoelectric materials, ferroelectric materials, magnetostrictive materials, polymeric gels. A recent 

addition to that list is shape memory polymers (SMP). The SMPs are a class of polyurethanes that are 

capable of undergoing significant deformations when subjected to a thermomechanical input. The 

deformations are recoverable, although with some hysteresis. This class of deformations is commonly 

referred to in the literature as the shape memory effect (SME), and in that sense, the response of the SMP is 

1 Tel: 501 569 8027 , Fax: 501 569 8020 , Email: axbhattachar@ualr.edu 
2 http://mems.appsci.ualr.edu 
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very similar to those of shape memory alloys (SMAs). Representative contributions in SMP research are 

those due to Tobushi et al. (1997), Liang, Rogers and Malafeew (1991), Tobushi, Hayashi and Lin (1994), 

Gordon (1994), Tobushi et al. (1996) and Bhattacharyya and Tobushi (2000). 

A linear viscoelastic model including a friction element was proposed for the SMP by Tobushi et al. 

(1997), see Figure 1. While the SME is no doubt a notable feature of SMPs, these materials also possess 

significant damping properties. In fact, Bhattacharyya and Tobushi (2000), in their analysis of the isothermal 

mechanical response of the SMP viscoelastic model proposed by Tobushi et al. (1997), proved analytically 

that above a certain threshold frequency, the damping seemed to be independent of the shape memory effect. 

Further, they also demonstrated that above this threshold frequency, the SMP damping capacity vs. 

temperature relation is non-monotonic, with the damping capacity reaching a maximum at the glass transition 

temperature. 

E , ( T ) WV 
e . ( t , T ) E , ( T ) 

=wv 
Fig. 1: The schematic of the shape memory polymer (SMP) rheological model. 

The current work is motivated by several issues. For example, if the SMP is used along with an inactive 

constituent in a two-phase composite, to what extent would the properties of the SMP translate to that of the 

composite? A specific example is a glass fiber-reinforced SMP composite that will potentially demonstrate a 

significant SME and an excellent damping property (due to the SMP) as well as benefit from the reinforcing 

effects of an inactive but a stiff second phase (due to the glass fibers). An ideal approach to design such 

composites is to combine modeling with corresponding experiments. This of course implies that the 

multiaxial constitutive response of the SMP needs to be developed for input into any analysis of the SMP-

based composite response. On the other hand, one-dimensional (ID) constitutive models may be used to gain 

some insight into the response of SMP-based composites before multiaxial constitutive models for the SMP 

are developed. 

In a situation as described above, it is often of interest to consider the classical approach of "constructing" 

hybrid rheological models that are ID in stress and strain. The new ingredient, which has not been considered 

before, is the SMP rheological element as a model component. Thus, for example, an SMP-spring series 

hybrid may be used to study the response of a SMP-elastic composite laminate subjected to uniaxial loading 
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perpendicular to the plane of the laminate (see Figure 2a). On the other hand, a spring-SMP parallel hybrid 

may be used to study the uniaxial loading (along the fiber direction) of an aligned elastic fiber-reinforced 

SM Ρ composite (see Figure 2b). Hybrid models are also useful from a practical standpoint. The response of 

the SMP-based composites as obtained from experiments may seek to be simulated by different SMP-based 

hybrid models, and whichever model matches the experimental results "best" may be used in engineering 

design to represent the particular composite response it simulates. In this paper, we focus on several hybrid 

models, which follow by combining an SMP element with, in turn, (i) an elastic element, (ii) a dashpot, (iii) a 

Maxwell solid, and (iv) a Kelvin solid (see Figure 3). For each hybrid model, both series and parallel 

combinations are considered. General expressions for the loss angle and the creep response to a constant 

stress input are given for all the hybrid models, and analytical observations made on their effective response. 

As well, explicit expressions are given for some selected models and, finally, parametric studies are carried 

out for the SMP-spring hybrid models. It is worthwhile to note that these results are based on the specific 

linear viscoelastic model proposed by Tobushi et al. (1997). These results can only be applied to SMPs with 

low strain. While that is indeed a limitation, the analytical results are quite useful in studying the trends in the 

mechanical response of the SMP-based hybrid models and composites. However, for large strain 

applications, the linear model may be replaced by the nonlinear constitutive model proposed recently by 

Tobushu, Okumura, Hayashi and Ito (2001). We propose to study the impact of the non-linearity and large 

strain on SMP-based hybrid models in the future. 

This paper is organized in seven sections. The rheological model of the SMP is recapitulated in Section 2. 

The governing equations for the SMP-based hybrid models are given in Section 3. The solution for the 

isothermal constant stress creep response (that demonstrates the shape memory strain acquired at a given 

temperature) as well as the damping are addressed in Section 4. In Section 5, explicit expressions for the 

Λ 

c 

ο 

(a) The active phase 
(SMP) 

(b) 

J j The inactive phase 

Fig. 2: Schematic of a two-phase composite with an active (SMP) and an inactive phase, in a (a) laminate 

arrangement, (b) parallel fiber-matrix arrangement. 

109 



Vol. 15, Nos. 1-2, 2004 Shape Memory Polymer Based Hybrid Models 
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(c) (d) 

Fig. 3: A schematic of (a) a spring, (b) a dashpot, (c) a Maxwell solid, and (d) a Kelvin solid, with their 

associated parameters. 

creep strain and loss angle for the spring-SMP hybrid models are given. Results and parametric studies are 

given in Section 6 whereas conclusions are given in Section 7. In the entire study, inertia effects will not be 

considered and the theory will be developed within the context of small deformations and deformation 

gradients. 

2. THE RHEOLOGICAL MODEL OF A SHAPE MEMORY POLYMER 

A rheological model for a shape memory polymer (SMP) was proposed by Tobushi et al. (1997) and is 

shown in Figure 1. The model was developed based on tensile tests of SMP thin films, and consists of two 

springs, a dashpot and a friction element. In absence of the friction element, the resulting 3-element model is 

a linear viscoelastic solid that has been categorized as a member of Group I models, all exhibiting a solid-like 

character with retarded elasticity (Findley, Lai and Onaran, 1976). The friction element is used to capture the 

shape memory effect of the polymer. This model has certain interesting features, uncovered in the analysis of 

Bhattacharyya and Tobushi(2000). 

Consider the SMP to be subjected to a stress, oSMP(t) (where "t" is time). The SMP will have a creep 

strain, eS M P( t) , defined as 

SMP ,,, 
eSMP ) = e S M P . σ (0 , ( , ) 

E(T) 

where eSMP(t) is the total SMP strain and E(T) is the Young's modulus of the SMP (defined later). A 

component of this creep strain is irrecoverable and is denoted as £ s(t ,T) (strain in the friction element). The 

value of this strain during t > t was proposed to have the following form (Tobushi et al., 1997) 
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E,(t,T) = 

when £^M P(t)<EL(T) 

C ( T ) ( £ ^ p ( t ) - £ L ( T ) ) when s ^ p ( t ) > e L ( T ) , έ * Μ Ρ ( ϊ ) > 0 

s ,( t , t ) έ ® Μ Ρ ( ί ) > 0 

_ , (2 ) 
during t > t 

where C(T) and eL(t) are positive temperature-dependent parameters, 0 < C(T) < 1, e L ( T ) > 0 (Tobushi et 

al., 1997), and the superimposed time derivative, i.e. έ*ΜΡ ξ d£®MI7dt • The irrecoverable creep strain, 

e s ( t ,T ) , is responsible for the shape memory effect in the SM P. Since the differential equation relating the 

total SMP stress, oSMP(t), to the total SMP strain, sSMP(t), as suggested by Tobushi et al. (1997) involves 

e s ( t ,T) (see Equation 2), there are three possible expressions for the differential equation. All three 

expressions may be summarised as 

• S M P / A „ S M P , , · , 

eSMP(t) = — — + ° ( t ) eSMP(t) e ^ C T . C ) 

E(T) μ ^ ( Τ , 0 λ6(τ (T,C) λ ^ ( Τ , 0 
t > t (3) 

where the parameters, μ ^ Τ , Ο ^ λ , ^ Τ , Ο ) and £ s e i r (T,C) , are defined as 

μ 0 ( Γ (Τ ,Ο = μ(Τ) 1-
E2(T)C 

E(T) 
^eff (T, C) = λ(Τ)[ΐ - c ] 1 , t > t (4) 

e s . e f f ( T , C ) = 

e s ( t ,T) 

C e L ( T ) 

1 - C 

when έ* Μ Ρ ( ϊ )<0 

otherwise 

(5) 

and 

C = 

0 when s f p ( t ) < E L ( T ) or when έ^ΜΡ(ϊ) < 0 

C(T) when s*MP(t) > e l ( T ) , p(t) > 0 

(6) 

Finally, the parameters, E(T), μ(Τ) and A(T) (used in Equations 1-5), are the elastic modulus, coefficient 

of viscosity and the retardation time respectively of the SMP, defined as 

E ( T ) = E , ( T ) + E2(T) μ(Τ) = 
η(Τ)Ε(Τ) 

Ε, ( Τ ) 
λ ( Τ ) = 

μ(Τ) 
Ε, (Τ) 

(7) 

where the parameters, Ε,(Τ), Ε 2(Τ) and μ(Τ) are positive temperature-dependent values of the SMP 

rheological model parameters. 
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3. T H E G O V E R N I N G E Q U A T I O N S FOR T H E S M P - B A S E D H Y B R I D M O D E L S 

The governing equations for the SMP-based hybrid models will be derived based on the composite 

laminate and the aligned fiber composite arrangements as shown in Figure 2. We denoted the active phase 

(SMP) with the subscript " A " and the inactive phase (any of Figure 3) with the subscript " IA". The 

composite laminate suggests a SMP-inactive phase series hybrid model where the stress and strain in the 

constituents are related as 

σ = σΑ = σ ΐ Α . e = VA ε Α + V 1 A ε1Α . (8) 

The aligned fiber composite suggests a SMP-inactive phase parallel hybrid model with stress and strain 

components related as 

σ = ν Α σ Α + ν ΐ Α σ 1 Α , ε = ε Α =ε Ι Α . (9) 

Equations 9 and 8 are subject to the restriction that 

V a + V i a = 1 . (10) 

The total stress-total strain relation for each hybrid model may now be derived using Equation 3, either of 

Equation 8 or 9 and the appropriate constitutive response of the inactive phase (see Fig. 3 and refer to 

Findley, Lai and Onaran, 1976). The governing equations for all SMP-based hybrid models can be cast into 

the following differential form 

P(T, C, D) o(t) = Q(T, C, D) [ε(1) - £;o,al (T, C)] , (11) 

where d ξ — is the time operator, while P(T, C, D) and Q(T, C, D) are differential operators relating the 
dt 

stress, a ( t ) , to the expression, £( t ) -e™ a l (T,C) . Specifically, 

P(T,C, D) = a , ( T , C ) D 2 + a 2 ( T , C ) D + a , ( T , C ) , 2 

Q(T,C, D) = β, (Τ, C)D 2 + β 2 ( Τ , C ) D + β , ( Τ , C ) , 

where the parameters, a , (T,C), ß; (T,C) (i = 1 , 2 , 3) and E |otal(T,C) (collectively referred to hereafter as the 

"model parameters") have expressions specific to the model that is being considered. 
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3.1 The Shape Memory Polymer 

The specific expressions of the model parameters for the shape memory polymer ( S M P ) follow by 

rearranging Equation 3 in the form of Equation 11 where 

a , ( T , C ) = 0 , a 2 ( T , C ) = 
E(T) 

a 3 ( T , C ) = 
1 

μ ^ σ , ο 

ß , ( T , C ) = 0 , ß 2 ( T , C ) = l , ß , ( T , C ) = 

e f 1 (Τ, C) = ε ff (Τ, C) . 

1 (13) 

3.2 SMP-based hybrid models 

In this section, we shall consider a linear spring, a dashpot, a Maxwell solid and a Kelvin solid (all shown 

in Figure 3 with their components) , in turn, connected with a S M P element in series (appropriately weighted 

with volume fractions; see Equation 8) and in parallel (see Equation 9). For each of these SMP-based hybrid 

models, the overall model parameters and the creep strain of the S M P have been derived. We have also 

derived the expression for the creep strain of the S M P as it is needed to determine e s (t ,T) (see Equation 2). 

The expressions for the spring-SMP models are given below whereas the expressions for the dashpot-SMP, 

Maxwel l -SMP and Kelvin-SMP models are given in Appendix A l . 

3.2.1 The spring-SMP series hybrid 

ai (T,C)=0 
E(T) Ep 

P i ( T , C ) = 0 ß2(T,C)=1 P3(T,C) = 

a3(T,C) = 

1 
Xeff (T ,C) 

I 
Meff(T,C) 

V A + V , A 
E2.efT(T,C) 

(14) 

e |0 ,a l(T,C) = VA6 s e f f(T,C) , 

ε Γ ( 0 = · ε Ο ) - ^ σ ( Ι ) 
o(t) 

E(T) 

when 

when 

V A = 0 

V A # 0 
(15) 
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3.2.2 The spring-SMP parallel hybrid 

a , (T ,C) = 0 , a 2 (T ,C) 

ε™3' (Τ, C) = • 

VAE(T) + V1AEp 

ß,(T,C) = 0 , ß 2 (T,C) = 1 , ß , (T,C) = 

a 3 ( T , C ) : 
1 

VA+V,A 
E(T) 

v + v -
1 A ,A E 2 e f f (T,C) 

< W ( T , C ) , 
vA + v1A 

E 2 , f f (T ,C) 

(16) 

Xeff(T,C) Ep VA τ 1A E(T) 

ε Γ ( 0 = 
V Ε 

VA E(T) 
s(t)- <*t) 

VAE(T) 

when 

when 

v A = o 

V A * 0 
(17) 

Note that among the eight models considered in this section, four of those can follow directly by 

replacing the SMP model parameters (Equation 13) by the corresponding hybrid model parameters. These 

four models are: (i) spring-SMP series hybrid, (ii) Kelvin solid- SMP series hybrid, (iii) spring-SMP parallel 

hybrid, and (iv) Maxwell solid-SMP parallel hybrid. Therefore, these four hybrid models have an effective 

response analytically identical to that of a shape memory polymer. Before closing this section, we point out 

that in addition to simulating the uniaxial response of two-phase composites, the hybrid models can also be 

used to simulate experimental results for two-phase composites with a SMP and an inactive phase with 

arbitrary phase distribution. In that case, the model parameters will simply represent the" composite" 

parameters, once we drop the restriction imposed by Equation 10 and set VA = 1 and V,A = 1 in Equations 8 

and 9 respectively. 

4. I S O T H E R M A L , CONSTANT STRESS C R E E P RESPONSE AND P E R I O D I C LOADING 

In general, it is of interest to know to what extent the properties of the SMP carry over to the overall 

response of the hybrid models. In particular, the two principal fundamental SMP properties - shape memory 

strain and damping - are of interest. The analytical solutions for the isothermal constant stress creep response 

and isothermal periodic loading for the SMP-based hybrid models will yield information on the overall shape 

memory strain and overall damping respectively. These solutions are given next. In either case, we shall 

consider the following initial conditions for the overall stress and strain 

e(t) = 0 a ( t ) = 0 at t = 0 . (18) 
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Also, in order to exclude residual stress states, we shall assume that the stress and strain of the constituent 

elements of the SMP-based hybrid models (including the friction element) are zero at t = 0 . No te that due to 

the assumption of an isothermal response, Equation 11 is a linear differential equation having an analytical 

solution. 

4.1 Isothermal, constant stress creep response 

A constant tensile stress input, σ0 , is applied over the duration, 0 < t < tb; thus 

° ( 0 = · 
0 < t < t. , σ 0 > 0 

t > t „ . 

The total creep strain, ec(t), is defined as 

Ec(t) = 8 ( t ) - E e , ( t ) , (20) 

where s(t) and 8 d ( t ) the total strain and the total elastic strain respectively. The total strain, e(t), will follow 

from the solution of Equation 11. Therefore, the solution for the SM Ρ response and that of four hybrid 

models (Sections 3.2.1, 3.2.2, A1.3, and A l . 5 ) is given by 

e(t) = e f (T ,C) + [ε(ϊ*) - £;o,al ( T , C ) ] e M T ' C ) M ) 

ß 3 (T ,C) W l 
-MT.cxt-i) ] · t > t 

(21) 

whereas for two other models (Sections A1.1 and A1.2), we have 

6(t) = 8(t+ ) + a 3 ( T , C ) G(t)(t - t) + 1 

ß 2 ( T , C ) ß 2 ( T , C ) 
έ ( ϊ + ) 

a , ( T . C ) 

ß 2 ( T , C ) 
σ ( θ | [ ΐ .e-P:(T.C„,-ö] t { > ί (22) 

and for the remaining two models (Sections A1.4 and A1.6), we have 

ε ( 0 = ε Γ , ( Τ , 0 + ^ 1 σ ω + 
P3(I,C) 

έ(1 + ) - ψ 2 ( Τ , 0 ε(Γ+) - E s (T,C) -
α 3 ( Τ Ο 
ß3(T,C) 

σ(ΐ) 
,ψι(Τ,0(ΐ-ι) 

ψ , ( Τ , 0 - ψ 2 ( Τ , 0 
(23) 

έ(1 + ) - ψ , ( Τ , 0 „ /Γ+\ „total /τ « 3 ( T , C ) _ ^ 8(t ) - ε 5 (Τ ,C) ~ o( t ) 
a V 2(T,C)(t-t) 

ψ , ( τ , ο - ψ 2 ( τ , ο 
t > t 
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ΓΓ ^ _ - β 2 (Τ, C) + J ß \ (Τ, C) - 4β, (Τ, C)ß 2 (Τ, C) 
ψ] V ^ -

ψ2(τ,ο = 

2 ß i ( T , C ) (24) 

- ß 2 (T ,C) - Vß^(T,C) - 4β, (T,C)ß 2 (T,C) 

2 ß , ( T , C ) 

Note that the initial conditions, e ( t + )and e(t+>, used in Equations 21, 22 or 23 are at t = t + , where we 

define ε ( ϊ + ) = lim£(t + Δ) and έ( ϊ+) = 1ΐηιέ(ϊ + Δ) , Δ being a very small positive quantity (i.e. 0 < Δ « 1 ) . 
Δ->0 Δ-»0 

In that context, an alternative definition is 

ε ( Γ ) = ε(ϊ) + Δε(ϊ) , έ ( ϊ + ) = έ(ϊ) + Δέ(ϊ) (25) 

where Δε(ϊ) and Δέ(ϊ) are the jump in the total strain and the total strain rate respectively during the time 

interval, t < t < t+ (possible due to a change in the piecewise constant stress input and/or the friction element 
becoming active/inactive). The procedure to determine Δε(ΐ) and Δέ(ϊ) has been demonstrated for the 

dashpot-SMP series model in the Appendix A2. An identical approach may be used for the similar models, 

For later use (Section 5), we provide the following specific results 

Δε(ϊ) = ^ Ι ^ Δ σ ( ϊ ) , Δέ(ϊ) = 0 , (26) 

for the SMP, spring-SMP series and parallel hybrid models. 

The elastic strain, 8el(t) (see Equation 20), for the stress input given in Equation 19 may be written as 

ε ε 1 (0 = ε ί Ι ( ϊ + ) = ε ί 1( ϊ) + Δε ί 1(ί) = ε ί Ι ( ϊ ) + Δε(ί) , t > t . (27) 

For the specific stress input given in Equation 19, the total strain, e(t), over the entire time range can be 

developed from either Equations 21, 22 or 23 (depending on the model under consideration), and the creep 

strain will follow from Equation 20. The details of the approach have been summarized in the flowchart 

given in Figure 5. The resulting specific expressions for the spring-SMP models will be given in Section 5. 

4.2 Isothermal, periodic loading 

We now consider a periodic strain with an amplitude, ε®, and a frequency, ω, to be superimposed over a 

constant strain, ε „ , such that the total strain will have the form, ε^ +8®cos(cüt) · An alternative approach is 

to write the strain as 

ε (0 = ε0
Α+ε0

Αε"»' , ε 0
Α > ε 0

Β > 0 , (28) 
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σ , ε σ , ε 

ι 

Fig. 4: A schematic o f the SMP-dashpot series hybrid model showing the variables used for the stresses and 

strains in the constituent elements. 5. The flowchart for the computational procedure. 

where i = V ^ T ; note we have imposed the requirement, ε^ > ε® > 0 , to guarantee a globally extensional 

stress state at all times. It shall be understood that the strain is given by the real part o f the expression on the 

right o f Equation 2 8 . Such a representation allows the use o f complex variable techniques to solve for the 

periodic part o f the stress response (see Findley, Lai and Onaran, 1976). The response o f a viscoelastic solid 

to a periodic strain input as in Equation 2 8 will have a stress response with a short-term transient component, 

σ„ ( t ) , and a long term periodic component, σ Q e1 ( ω 1 f 5 ' . The total stress then is 

σ ( 0 = σ ο ( 0 + σ ο e ( 2 9 ) 

where δ is the phase angle (or the loss angle); if δ is positive (negative), then the periodic component of the 

stress leads (lags) the periodic component of the imposed periodic strain. Equations 2 8 and 2 9 give us the 

relaxation storage modulus, ESU)rago and the relaxation loss modulus, E,„„. These follow respectively as the 

real and imaginary components of the ratio, σ " e ' s / ε" · W e have determined these to be 

Ε , 8 , ( T , C , ü ) ) 

E l n „(T ,C ,o>) 

_ ( β , ( Τ , Q - a r ß , ( Τ , C ^ c t , ( Τ , C ) - ω 2 α , ( Τ , C ) ) + ω ; α 2 ( Τ , C ) ß ; ( Τ , C ) 

(α, ( Τ , C ) - ω 2 α , (Τ , C)J + o 2 a 2 ( T , C ) 

_ ω [ - α 2 ( T , C ) ( j ß , ( Τ , C ) - ο τ β , ( Τ , C ) ) + β 2 ( Τ , C ) ( a , ( Τ , C ) - ω ; α , ( Τ , C ) ) ] 

(α, (Τ, C ) - a ) 2 a , ( T , C)f + ω 2 α 2 ( Τ , 0 

( 3 0 ) 
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Fig. 5: The f lowchart for the computational procedure. 
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P The loss angle may be determined f rom the definition, § _ t a n -· . Using Equation 30, it is 
Ε 

S(T C ω) - tan 1 C ) C ) K ßz (T> C ) K ( T > C ) ~ °>2a, (T> C ) ) l (31) 
(P.i (T, C) - ω2β, (Τ, C)Xa, (Τ, C) - ω 2 α, (Τ, C ) j + ω 2 α 2 (Τ, C ) ß , ( T , C) ' 

Note that if the friction element is active (the second of Equation 2), then C = C(T) whereas if it is 

inactive (the first and third of Equation 2), then C = 0. Therefore, during the periodic loading, the loss angle 

will fol low from Equation 31 corresponding to either C = C(T) or C = 0. Specific expressions for the loss 

angles of some selected models will be given in Section 5. 

5. OVERALL SHAPE MEMORY STRAIN AND DAMPING FOR 

THE SPRING-SMP HYBRID MODELS 

In order to ascertain the interactions of the S M P with a purely elastic inactive material (the linear spring), 

we shall focus on the series and parallel combinat ions of the S M P with the spring. T h e explicit expressions 

are given for overall shape memory strain (generated using Equations 20-27) and damping capacity (in terms 

of the loss angle). For completeness, we shall also include the explicit expressions pertaining to the shape 

memory polymer. 

5.1 The Shape Memory Polymer 

The creep strain of the shape memory polymer is determined to be 

C ( 0 = 

1 1 

ε, (Τ) + σ„ 

e 2 ( T ) E(T) 

£ > c „ ( T , C ) - £ , (T) | 1 

( l - e " i ( " ) for 0 < t < t , and ta < tb 

E 2 C „ ( T , C ) E(T) 

ε Α , Τ ) + c f n k ( t h ) - e s ( t h , T ) X l - e " 

- e (T.C) j (32) 

for t , < t < t „ 

for t > t„ 

where ta (see the first of Equation 32) is the time during the loading process when the creep strain in the S M P 

attains the value, ε, (Τ), and can be solved f rom the identity 

ε ^ Ο ^ ε , ( T ) . (33) 
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This identity will also be invoked to determine ta for the models discussed in Sections 5.2 and 5.3 below. 

The damping capacity of the SMP can be determined from its loss angle 

1 -
tan 5SMI '(T, C , o ) = 

ω 
M Q 
E ( T ) (34) 

μ ( Τ ) ω2 1 
Ε (Τ) με(, (Τ, C) λ ί ( ( (Τ, C) 

Eqs. 32 and 34 were originally given by Bhattacharyya and Tobushi (2000), and correspond to their Eqs.8 

and 25 respectively. The specific values, 6S M P(T,0,(ü) and 5SMP(T, C,(ü), will correspond to the situation 

when the friction element is inactive and active respectively. This is also true for the damping capacity of the 

models given in Sections 5.2 and 5.3 below. 

5.2 The Spring-SMP series hybrid 

The creep strain of the spring-SMP series hybrid model turns out to be 

M t ) = ( i - v A K M ' ( t ) , (35) 

where ε*ΜΡ ( t ) follows from Equation 32. The residual shape memory strain of the spring- SMP series 

hybrid is lower than that of the SMP itself. On the other hand, the loss angle is 

tan δ ( Τ , C , ω ) 

tan 5SMP ( T , C , o o ) 

1 

1 + 
V1A E , c n ( T , C ) μ,„ ( Τ , Ο λ ι ( [ (Τ ,C) E , „ ( T , C ) 

νΛ 1 ω ' 

μ ί ( ( ( Τ , 0 ) λ π (Τ, C) Ε(Τ) 

(36) 

and for 0 < V A < 1 , it is easy to see that the damping due to the SMP is higher than that of the spring-SMP 

series hybrid, i.e. tan6S M P ( T , C , ( ü ) > t a n 5 ( T , C , c o ) > 0 . 

5.3 The Spring-SMP parallel hybrid 

The creep strain of the spring-SMP parallel hybrid model is 
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ec ( 0 : 

1 1 

V A E 2 ( T ) + V , E V a E ( T ) + V , F 
1 - e 

VA + V,A -— _1_ Λ ι:· 2 C'l") ( 

λ<Τ)' ν ,ν -ϋϊ-ι·:(Τ) 

ε , ( t a ) + σ 0 

£ , , „ ( T , C ) £ ( t , ) | 1_ 

ν Λ +ν , Λ 
σ . E ^ C T . C ) 

f o r O c t < ta and t, < t 
\ 

ν Λ + ν Ι Λ 

E 2 , „ ( T , C ) 

Γ·2..ί> (T.C) 
>•„, (T.C) 0- . ) 

1 - e 

E 2 , „ ( T , C ) J 

f o r t . < t < t k 

ε£ ( t „ ) + σ 0 - e . ( t k , T ) - E « ( t J 

ν Λ +ν, Λ 
E 2 ( T ) 

ι " t-:2(T) 
1<T> BP 

0 - ' J 

1 - e for t > t„ 

( 3 7 ) 

The damping capacity is given by 

tan δ ( Τ , C , ω ) 

tan 6SMP ( T , C , a > ) 

V Ε 
1 + ' Λ " 

VA Ε (Τ) 

V F 1Λ ρ {E2C„(T,C) Ε(Τ) 

V . + V,. 

1 + -
Ε ( Τ ) 

1 + ω : 
μ . „ ( Τ , 0 λ ι Π ( Τ , 0 

Ε ( Τ ) 

( 3 8 ) 

where it is clear that for 0 < V IA < 1, tan 5S M P (T,C,co) > tan δ (T,C,o)) > 0. 

6. PARAMETRIC STUDIES OF THE SMP-BASED COMPOSITES 

In Sections 6.1 and 6.2 , we give parametric studies on the creep strain and damping capacity of the S M P -

spring hybrid models. In fact, recall that since the SMP-spring series model and the SMP-spring parallel 

1 2 1 
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model can represent a composite laminate and an aligned fiber composite respectively (both loaded 

uniaxially as shown in Figures 2a and b), the parametric studies shall focus on the effect of the volume 

fraction, V iA , and the Young ' s modulus, Ep, of the inactive elastic phase on the overall composite response. 

The specific material properties of the S M P that we shall use are those of a shape memory polyurethane 

of the polyester polypole series characterized by Tobushi et al. (1997). The material properties of the 

polymer show a significant temperature dependence in a narrow temperature range around its glass transition 

temperature,Tg . The lower and upper values of this range are taken as TL and T H respectively, i.e. T, < Tg < 

TH . The temperature dependence of the properties outside this range is not as significant and will be 

neglected (see Figure 4a, Tobushi et al., 1997). For the purpose of modeling, it was found that within the 

range, an exponential temperature dependence of all material properties was a reasonable approximation. In 

particular, the specific form of E(T) is taken as 

E ( T ) = E g e 
A g 

f i 
l Τ 

E ( T H ) 

E ( T L ) 

f o r T L < T < T „ 

f o r Τ > T H 

(39) 

where all temperature parameters are taken in Kelvin. The temperature dependence of the remaining 

parameters, i.e. μ ( Τ ) , λ ( Τ ) , C ( Τ ) , ε, ( Τ ) follow from Equation 39 by replacing the letter " E " with μ, λ, 

C and ει, respectively. This replacement is also done for the subscript "E" of AF in the second of Equation 39. 

The specific numerical values of the parameters of the shape memory polyurethane tested by Tobushi et al. 

(1997) are given in Table 1, and are used for the parametric studies in the sequel. 

6.1 Creep strain ratio of SMP- based Composites 

In this section, we study the effect of the inactive elastic phase on the creep response of the SMP-based 

composite. For brevity, we focus on the residual creep strain in the composite at t —> qo. For the S M P itself. 

Equation 32 may be used to show that ε*ΜΡ(αο) = 8 s ( t b , T ) · With this result. Equation 35 reduces to 

SMP , ν 
Ec (<») 

= l - v „ (40) 

for the composite laminate whereas Equation 37 reduces to 

£ c ( ° ° ) 
„SMP 

ν | + > 

VA Ε , ( Τ ) 
(41) 
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for the aligned fiber composite. The ratio, ε (οο)/ε^Μ | ,(οπ), as a function of VIA and Ep is the residual creep 

strain of the composite relative to the SMP; we shall refer to it as the creep strain ratio. In either case, it is 

clear that as long as there is an inactive elastic phase (VIA Φ 0), the creep strain ratio is less than 1. 

Equation 40 clearly states that the creep strain ratio for the composite laminate is linearly dependent on 

the volume fraction of the inactive elastic phase, and is independent of its stiffness, Ep. In Figure 6, we have 

plotted the creep strain ratio for the aligned fiber composite (Eq.41) at Τ = Tg with respect to VIA at different 

values of Ep/E(Tg). With the focus on examining the effect of a stiffer inactive elastic phase, we have 

restricted Ep to Ep /E(Tg)>l . We shall adhere to this restriction in the entire parametric study. It is quite 

apparent that even a moderately stiffer inactive elastic phase (e.g. Ep/E(Tg) = 10) results in a significant drop 

in the creep strain, and that too when the volume fraction of the inactive phase is quite small (less than 10%). 

The plot of the creep strain ratio with respect to Ep/E(Tg) at various volume fractions of the inactive phase has 

been given in Figure 7 and it is seen that the creep ratio tends to approach a certain asymptotic value beyond 

which an increase in the inactive phase stiffness does not produce a noticeable change in the composite creep 

strain ratio. 

6.2 Damping capacity ratio of SMP-based Composites 

In this section, we present the results of the analysis of the damping capacity ratio, 
tan δ (Τ ,Ο,ω) / tan 6SMI' ( T , C , o ) for the composite laminate (see Equation 36) in Figures 8 and 9. The 

damping capacity ratio has been plotted in Figure 8 with respect to V1A at three different temperatures, Τ = 

323 Κ , 328 Κ and 333 Κ (Recall that Tg= 328 Κ). In all these cases, the stiffness of the inactive phase has 

been set such that Ep/E(Tg) = 10, the frequency is fixed at ω = 1 Hz and C = 0 (no evolving irrecoverable 

, SMP. . 

Fig. 6: The creep strain ratio as a function of the volume fraction of the inactive elastic phase, for the 

aligned fiber composite. 
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, s , SMP , V e c (°°) / e c (qo) 

1 12 2 3 34 4 5 56 67 78 89 100 

E p / E ( T g ) 

Fig. 7: The damping capacity ratio as a function of the relative stiffness of the inactive elastic phase, for the 

aligned fiber composite. 
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Fig. 8: The damping capacity ratio as a function of the volume fraction of the inactive elastic phase, for the 

composite laminate. 

creep strain). While in all these cases, the presence of the inactive phase results in a reduction of the damping 

capacity ratio, an increase in the temperature increases the ratio. Another notable feature is that the reduction 

is relatively modest for a wide range of the volume fraction, up to about VIA ~ 0.6. The damping ratio has 

been plotted in Figure 9 with respect to the s t i ffness of the inactive phase at the three aforementioned 

124 



A. Bhattacharyya Journal of the Mechanical Behavior of Materials 

temperatures. In all these cases, the frequency has been set at 1 Hz and the volume fraction of the inactive 

phase at 50%, and C = 0 (no evolving irrecoverable creep strain). Notice that as the inactive elastic phase 

becomes less stiff, the damping capacity ratio decreases. In the limit, when the inactive phase is a void (with 

Ep = 0; not shown in the figure), Equation 36 states that the damping capacity ratio vanishes (and therefore 

the damping capacity of the SMP-based voided laminate vanishes). This is because for a given strain input, 

Equation 28, the resultant stress that the voided phase is able to sustain vanishes. Therefore, due to the 
laminate arrangement, the overall stress, Equation 29, vanishes too, i.e. σ„ - > 0 · Thus, the dissipation also 

vanishes. Beyond this limiting case, as Ep is increased, there is an increase in the damping capacity ratio also. 

Note that the composite laminate quickly attains a substantial portion of the SMP damping capacity as 

Ep/E(Tg) increases from 1 to 12. Further, an increase in temperature at any given value of Ep/E(Tg) increases 

the damping capacity ratio of the composite. Note that the results in Figures 8 and 9 have been plotted at C = 

0. We have numerically checked and found that the creep strain ratio and the damping capacity ratio do not 

visibly change even when there is an evolving creep strain (i.e. C = C(T) ) . We have also repeated the 

calculations at a low frequency, w = 0.012 Hz and have found the ratios to have marginally higher values for 

all the different cases reported in Figures 8 and 9. 

The damping capacity ratio for the aligned fiber composite (see Equation 38) has been plotted in Figure 

10 with respect to V|A. Three plots corresponding to three different temperatures - 323 K, 328 Κ and 333 Κ -

have been given, all at Ep/E(Tg)=10, ω = 1 Hz and C = 0. In contrast to the composite laminate (Figure 8), it 

is seen that the damping capacity ratio decreases with a higher temperature. Another feature of contrast is that 

beyond a certain amount of the inactive phase, e.g. V|A~ 0.05, there is a substantial reduction of the damping 

capacity of the composite. Finally, the evolution of the damping capacity ratio as a function of Ep/E(Tg) has 

been given in Fig. 11 at the three different aforementioned temperatures. All the three plots are at V,A = 0.5, 

ω = 1 Hz and C = 0. In contrast to the composite laminate (Figure 9), the damping capacity ratio for the 

aligned fiber composite approaches 1 in the limiting case of a void, Ep - > 0. This is because even if the 

inactive elastic phase in the aligned fiber composite cannot sustain any stress in the limiting case of vanishing 

stiffness, the geometrical arrangement of the two phases does not in any way hinder the capacity for the SMP 

to sustain an oscillatory stress in response to an oscillatory strain imposed on the entire composite. The 

composite, in that case, has a damping capacity identical to that of the SMP itself. As Ep/E(Te) increases, 

there is a reduction in the damping capacity ratio, and a significant reduction occurs fairly quickly, as 

Ep/E(Tg), for example, attains a value of 12. 

6.3 Design Strategies of SMP-based Composites 

The stiffness of shape memory polymers is usually low. Thus, for example, the Young's modulus, ETj,), 

of the SMP at its glass transition temperature follows from Eq. 39 and Table 1 as 146 MPa. The low stiffness 

may be compensated if the SMP is combined with a stiffer material (e.g. an inactive elastic phase). An 

immediate consequence will be that the creep strain and the damping capacity of the composite will be lower 
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Fig. 9: The damping capacity ratio as a function of the relative stiffness of the inactive elastic phase, for the 

composite laminate. 

t a n 5(T,C,co) / t a n 6 S M P (T ,C ,co) 

t a n δ (Τ 9 ,C,co) / t a n 5 S M P ( T g ,C,co) 

Fig. 10: The damping capacity ratio as a function of the volume fraction of the inactive elastic phase, for the 

aligned fiber composite. 

than the corresponding values for the SMP; the question is to what extent? We shall partially address this 

question now. 

The overall elastic modulus, Ecomp(T), of the composite laminate and the aligned fiber composite is 

identified from Eq.26 as ß 2 (T,C)/a 2 (T,C) . Then, using Eqs. 14 and 16, we have 
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g comp ^ y s 

E(T) 

VA +V,A 

V A + V I A 

E(T) 

E(T) 

for composite laminate 

for aligned fiber composite 

(42) 

E P / E ( T g ) 

Fig. 11: The damping capacity ratio as a function of the relative stiffness of the inactive elastic phase, for the 

aligned fiber composite. 

Consider a composite laminate with ViA = 0.5 and Ep /E(Tg) = 2.64 and an aligned fiber composite with 

V]A
 = 0 05 and Ep/E(Tg) = 10. The composite stiffness for either geometrical arrangement is identical (check 

using Eq.42), i.e. Ecomp (T)/E(T) = 1.45. However , at Τ = Tg , the composite laminate has higher ratios of 

creep strain and damping capacity (50% and 72.53 %) than the aligned fiber composi te (26% and 65.52 %). 

In general, a composi te laminate seems to offer a better retention of the S M P creep strain and damping 

capacity over a wide range of the inactive phase volume fraction and stiffness, and should therefore be 

preferred over the aligned fiber arrangement. A more definitive answer can emerge once an optimization 

problem involving the composite stiffness, creep strain and the damping capacity is addressed. That is 

beyond the scope of this paper. 
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Table 1 

A list of material properties of a shape memory polyurethane of the polyester polypole series 

(Tobushi et α/., 1997). 

Symbol Value 

TB 328 Κ 

T, 313 Κ 

T„ 343 Κ 

E8 146 MPa 

Hg 14 GPa.s 

\ 521 s 

c 8 
0.112 

0.3% 

A , 38.1 

Αμ 44.2 

Αλ 35.4 

Κ 38.7 

Ae, -58.2 

CONCLUSIONS 

This paper has provided a generalized methodology for the analytical determination of the isothermal 

uniaxial mechanical response of a shape memory polymer (SMP) in series and parallel arrangements with a 

spring, dashpot, a Maxwell solid and a Kelvin solid. We have shown analytically that four models - the SMP-

spring series hybrid, the SMP-spring parallel hybrid, the SMP-Kelvin solid series hybrid and the SMP-

Maxwell solid parallel hybrid - demonstrate an effective response similar to that of a SMP itself. Explicit 

expressions for the creep strain and the damping capacity are provided for the SMP-spring and SMP-dashpot 

hybrids. Parametric studies of the SMP-spring series and parallel hybrids yield information about the 

effective response of SMP-based composite laminates and aligned fiber composites respectively. 
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A l . APPENDIX: 

Model parameters for the dashpot-SMP, Maxwell solid-SMP and Kelvin solid-SMP models. 

A1.1 The dashpot-SMP series hybrid 

V V V 
a i (T ,C) = —TT- , a 2 (T,C) = - ^ + ^ a 3 (T,C) = 

E(T) ' — ' ηρ Mefr (T, C) ' η ρ μ ^ ( Τ , 0 

1 
ß,(T,C) = l , ß2(T,C) = 

e;oul(T,C) = 0 , 

λ ^ ( Τ ^ ) 
ß3(T,C) = 0 , (43) 

6 ^ ( 0 = e ( t ) - - ^ ί σ ( t ) d t 
nP ο 

σ(0 
E(T) 

when 

when 

V A = 0 

V A * 0 
(44) 

A1.2 The Maxwell solid-SMP series hybrid 

V V V 
a. (T, C) = — + — , a 2 (T,C) = * — + VIA 

' ' E(T) Ε Λ μ ^ ( Τ ^ ) 

1 1 

ν η Ρ E p x e f f (T ,c ) 

a3(T,C) = 
ηΡμ«ίτ(τ>ε) 

ß,(T,C) = l , ß2(T,C) = 

e'°"'(T,C) = 0 , 

1 
λ^(Τ ,Ο) 

ß3(T,C) = 0 , 

(45) 

ε Γ ( 0 = £ ( t ) - ^ - j a ( T ) d t - ^ o ( t ) 
ηΡ ο ΕΡ 

when 

σ ( 0 
Ε(Τ) 

V A = 0 

when V A # 0 
(46) 
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Al.3 The Kelvin solid-SMP series hybrid 

a,(T,C)=0 , a2(T,C) = 
1 

a5(T,C) 
1 1 

a,(T,C) = 
1 

E(T) VAXeff(T, C) 

V,An 

ν Α λ ^ ( τ , ο · ν,ΑηΡ 

E(T) 
a,(T,C) 

VAa s(T,C)Xe f f(T,C) 

ßi(T, C) = 0 , ß2(T,C) = l , P,(T,C) = 

V A X e f r ( T , C ) — ^ a 2 (T ,C)+-A + 
E(T) J - ' ' Ep E2efr (T, C) 

1 

1 
8 , o u l ( T C ) = γ A · f 

1- v A x e f f ( T , c ) - ^ 
E(T) 

VAa5(T,C)Xe f f(T,C) 

E,eff(T,C), 

ι - ν Α λ Λ ( τ , ο - ν,ΑηΡ 

Ε(Τ) 
a4(T,C) 

ε Γ ( 1 ) = 

a4(T,C) 

when v A = o 

1 

EP VA 
VAEp E(T) 

σ(0 

1 + V *a 4 (T ,C) 
Ep 

' + V1A — a4(T,C) a 5(T,CK e f f(T,C) 

Ep VA 
[a 3 (T, C) έ(0 + a 2 (Τ, C) o(t)] , when V A * 0 

where the parameters a,(T,C), a2(T,C), a3(T,C), a4(T,C) and a5(T,C) are 

(47) 

(48) 

' ( T ' C ) = - V A p m C ) ' a2(T.C) = - ^ ( T . C ) (E2 ff (T,C) + VAE ) , 
E(T) E(T) μεΙΤ (Τ, C) 

a3(T,C) = Meff(T,C) 

a«(T,C) = 
1 

λ ^ σ , ο 

VA np+V,A M e f f ( T , C ) - - ^ - ( v i A E 2 e f r ( T , C ) + VAEp) 
b( 1) 

a3(T,C) , a5(T,C) = VAa4(T,C) . 

(49) 
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A1.4 The dashpot-SMP parallel hybrid 

a , ( T , C ) = 0 , a 2 ( T , C ) = - i - , a 3 ( T , C ) = 

ß , (T ,C ) = V I / 
E(T) 

E(T) 

, ß 2 ( T , C ) = V A + V I A 

μ ^ ( Τ , Ο ) 

μ ^ σ , Ο ) , ß 3 ( T , C ) = 

ε , ( T , C ) = ε ^ ί Τ , Ο , 
λ Λ ( Τ , 0 ) 

(50) 

ε Γ ω = ν η e(t) + — — — σ(1) 
VA Ε (Τ) V A E ( T ) 

έ(Ι) 

when 

when 

V A = 0 

V A * 0 (51) 

Al .5 The Maxwell solid-SMPparallel hybrid 

a , ( T , C ) = 0 , a 2 ( T , C ) = V ^ ( T ' C ) + ψ ( Τ ' € ) f i ^ ) - ^ ] 
2 φ(Τ, C) E(T) φ ( Τ , Ο Ε ( Τ ) [ E(T) Ε 

1 + - v I A ηΡ 

v A μ ^ σ , ο ^ 

a , ( T , C ) = l + Ψ ( τ , ο Γ ν 1 Α η„ 
ν Α φ ( Τ ( 0 μ ^ ( Τ , 0 I Ε(Τ) Ε ρ 

1 + -
ν ΐ Α η ρ 

VA μ ^ σ . Ο ) 
β , ( Τ , C ) = 0 , ß 2 ( T , C ) = 1 , 

ß 3 ( T Q = V A E , e f f ( T , C ) , ψ ( τ , ο ' V ^ d . C ) V I A n p W 

φ ( Τ . Ο φ(Τ, C)Xeff (Τ, C) Ε(Τ) 

ε Γ ' ( Τ , 0 = e s , e f f (T ,C) , 

ρ / 
1 + -

V,A ηΡ 

ν Α μ ^ ( Τ , 0 

(52) 

ε Γ ( 0 = 

8( t ) -

when 

1 

V A = 0 

V A E ( T ) V A E(T ) 

V ( T , C ) = 
1 

V ^ e f r ( T , C ) . 

V A + V1A 

E „ E(T) 

V A E(T )E p 

σ(t) + a( t ) ) 1 
U e f f ( T , C ) E ( T ) J VA X e f f (T ,C) 

- ( ε ί ο - ε ^ σ , ο ) 

when V A * 0 

V I A n p 
and 

μ ^ σ , ο 

φ ( Τ , Ο = ν ΐ Α η ρ + ν Α μ ^ ( Τ , 0 ) + ψ ( Τ , Ο 
' v ^ e f f ( T , C ) ν ΐ Α η Λ 

Ε(Τ) ρ y 

(53) 
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Al.6 The Kelvin solid-SMPparallel hybrid 

α , ( Τ , Ο = 0 , a 2 ( T , C ) = - i - , a 3 ( T , C ) = ' , 
E(T) μ ^ ί τ , ε ) 

ß , ( T , C ) = ^ , ß 2 ( T , C ) = v A + v1A 
E(T) 

ηρ , + A 
Me f f(T,C) E(T) 

ßs (T ,C) = 
V Ε ΙΑ ρ 

λ ^ σ , ο μ ε ( Γ ( τ , ο 

„total / χ ^ A 

V A E P + V 1 A E 2 , E F F ( T , C ) 

® r ( t ) = 

when V A = 0 

1 + -
V 1 4 E ΙΑ ρ 

V A E ( T ) 

1 

V A E ( T ) V A E ( T ) 
cr(t) when 

(54) 

(55) 

A 2 . A P P E N D I X : 

Determination of Δ ε ( ί ) and Δ έ ( ί ) for the dashpot-SMP series hybrid model. 

The jumps, Δ ε ( ΐ ) and Δ έ ( ΐ ) (see comment in the last paragraph of Sec.4.1) will now be determined for 

the dashpot-SMP series hybrid model. A schematic of the model has been shown in Fig.4; also included are 

variables (or parameters) that represent the stresses and strains in the constituent elements. Note that the 

increments in stresses and strains over any time increment will be related through the usual constitutive 

relations for each component in the model. For the vanishingly small time interval under consideration, we 

have the following results 

Δ ε 2 ( ΐ ) = 0 , Δε 3 ( ϊ ) = 0 , Δσ(1) = 0 , Δε 5 ( ϊ ,Τ ) = 0 , (56) 
Ϊ+ΔΪ 

where the first identity follows from Δε 2 ( ΐ ) = lim | a ( T ) d T > which vanishes as long as o ( t ) is finite during 
i 

the time interval under consideration. The jump, Δε 3 ( ϊ ) , also vanishes for the same reason. For the 

piecewise-constant stress input, the j ump in the stress rate, Δσ( ΐ ) , is zero. Finally, the last condition follows 

from the fact that the irrecoverable creep strain cannot change during a vanishingly small time interval (as 

long as stress and strain rates are finite). With the identities in Eq.56, and the constitutive relations of the 

model components, the following relations can be written 
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Δε(ϊ ) = ν Α Δ ε , ( ϊ ) = ν Α Δε 4 ( ϊ ) , 
Δ σ ( t ) = Δ σ , ( ί ) + Δ σ 2 ( ϊ ) , 

Δσ,( t ) = η(Τ)Δέ3( t ) , 

Δσ, ( t ) = Ε, (Τ) Δε 4 ( t ) , 

Δ έ 2 ( ί ) = Δ σ ( ϊ ) / η ρ , 

Δσ 2 ( t ) = Ε 2 (Τ) Δε,( t ) , 

Δ έ ( t ) = VA Δ έ , ( t ) + ν ΐ Α Δ έ 2 ( t ) 

= νΑΔέ3(ϊ) + νΑΔέ4(ί) + νΐΑΔέ2(ϊ), 
0 = Δ ά | ( ΐ ) + Δ σ 2 ( t ) . 

(57) 

Note from the first, second, fourth and sixth of Eq.57 that 

Δε(ΐ) = V 
Δσ(ϊ) 

= V, 
Δσ(ϊ) 

a e , ( T ) + E 2 (T) a E(T) 
(58) 

where the first of Eq. 7 has been used. The third, fourth, fifth and eighth in the seventh of Eq. 57 lead to 

Δε(ΐ) = V, 
Δ σ , ( 0 _ ν Ao 2 ( t ) | Δσ(ϊ) 

η(Τ) Ε, ( Τ ) 
(59) 

The first and fourth of Eq.57 along with Eq. 58 give Δσ (t) = Ao(t) · Using this result, Eq. 59 can 
1 E(T) 

be rewritten as below once we use the fifth, sixth and seventh of Eq. 57 

Δέ(ϊ) = 
V V V1A ι 

η(Τ) 
'MD. Τ 

E(T) j 
Δσ(1) (60) 

where the first of Eq. 7 has been used. Eqs. 58 and 60 are the desired jumps in the total strain and total strain 

rates respectively in terms of the material parameters of the model and the total stress input. 
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