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ABSTRACT

This paper has addressed the issue of isothermal uniaxial mechanical response of a shape memory
polymer (SMP) in series and parallel arrangements with a spring, dashpot, a Maxwell solid and a Kelvin
solid. It is shown analytically that four models — the SMP- spring series hybrid, SMP-spring parallel hybrid,
SMP-Kelvin solid series hybrid and the SMP-Maxwell solid parallel hybrid — demonstrate an effective
response analytically identical to that of a shape memory polymer. Explicit expressions for the creep strain
and damping capacity are provided for the SMP-spring hybrids. Parametric studies for the SMP-spring series
hybrid and the SMP-spring parallel hybrid are then used to suggest design strategies for SMP-based

composite laminates and aligned fiber composites.
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1. INTRODUCTION

Smart materials research encompasses a wide variety of materials; some of these are shape memory
alloys, piezoelectric materials, ferroelectric materials, magnetostrictive materials, polymeric gels. A recent
addition to that list is shape memory polymers (SMP). The SMPs are a class of polyurethanes that are
capable of undergoing significant deformations when subjected to a thermomechanical input. The
deformations are recoverable, although with some hysteresis. This class of deformations is commonly

referred to in the literature as the shape memory effect (SME), and in that sense, the response of the SMP is
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very similar to those of shape memory alloys (SMAs). Representative contributions in SMP research are
those due to Tobushi et al. (1997), Liang, Rogers and Malafeew (1991), Tobushi, Hayashi and Lin (1994),
Gordon (1994), Tobushi et al. (1996) and Bhattacharyya and Tobushi (2000).

A linear viscoelastic model including a friction element was proposed for the SMP by Tobushi et al.
(1997), see Figure 1. While the SME is no doubt a notable feature of SMPs, these materials also possess
significant damping properties. In fact, Bhattacharyya and Tobushi (2000), in their analysis of the isothermal
mechanical response of the SMP viscoelastic model proposed by Tobushi et al. (1997), proved analytically
that above a certain threshold frequency, the damping seemed to be independent of the shape memory effect.
Further, Fhey also demonstrated that above this threshold frequency, the SMP damping capacity vs.

temperature relation is non-monotonic, with the damping capacity reaching a maximum at the glass transition

temperature.

n(T) E (T)
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Fig. 1: The schematic of the shape memory polymer (SMP) rheological model.

The current work is motivated by several issues. For example, if the SMP is used along with an inactive
constituent in a two-phase composite, to what extent would the properties of the SMP translate to that of the
composite? A specific example is a glass fiber-reinforced SMP composite that will potentially demonstrate a
significant SME and an excellent damping property (due to the SMP) as well as benefit from the reinforcing
effects of an inactive but a stiff second phase (due to the glass fibers). An ideal approach to design such
composites is to combine modeling with corresponding experiments. This of course implies that the
multiaxial constitutive response of the SMP needs to be developed for input into any analysis of the SMP-
based composite response. On the other hand, one-dimensional (ID) constitutive models may be used to gain
some insight into the response of SMP-based composites before multiaxial constitutive models for the SMP
are developed.

In a situation as described above, it is often of interest to consider the classical approach of “constructing”
hybrid rheological models that are 1D in stress and strain. The new ingredient, which has not been considered
before, is the SMP rheological element as a model component. Thus, for example, an SMP-spring series

hybrid may be used to study the response of a SMP-elastic composite laminate subjected to uniaxial loading
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perpendicular to the plane of the laminate (see Figure 2a). On the other hand, a spring-SMP parallel hybrid
may be used to study the uniaxial loading (along the fiber direction) of an aligned elastic fiber-reinforced
SMP composite (see Figure 2b). Hybrid models are also useful from a practical standpoint. The response of
the SMP-based composites as obtained from experiments may seek to be simulated by different SMP-based
hybrid models, and whichever model matches the experimental resuits “best” may be used in engineering
design to represent the particular composite response it simulates. In this paper, we focus on several hybrid
models, which follow by combining an SMP element with, in turn, (i) an elastic element, (ii) a dashpot, (iii) a
Maxwell solid, and (iv) a Kelvin solid (see Figure 3). For each hybrid model, both series and parallel
combinations are considered. General expressions for the loss angle and the creep response to a constant
stress input are given for all the hybrid models, and analytical observations made on their effective response.
As well, explicit expressions are given for some selected models and, finally, parametric studies are carried
out for the SMP-spring hybrid models. It is worthwhile to note that these results are based on the specific
linear viscoelastic model proposed by Tobushi et al. (1997). These results can only be applied to SMPs with
low strain. While that is indeed a limitation, the analytical results are quite useful in studying the trends in the
mechanical response of the SMP-based hybrid models and composites. However, for large strain
applications, the linear model may be replaced by the nonlinear constitutive model proposed recently by
Tobushu, Okumura, Hayashi and Ito (2001). We propose to study the impact of the non-linearity and large
strain on SMP-based hybrid models in the future.

This paper is organized in seven sections. The rheological model of the SMP is recapitulated in Section 2.
The governing equations for the SMP-based hybrid models are given in Section 3. The solution for the
isothermal constant stress creep response (that demonstrates the shape memory strain acquired at a given

temperature) as well as the damping are addressed in Section 4. In Section 5, explicit expressions for the

c
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(a) The active phase I‘_l The inactive phase

(SMP)

Fig. 2: Schematic of a two-phase composite with an active (SMP) and an inactive phase, in a (a) laminate

arrangement, (b) parallel fiber-matrix arrangement.
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Fig. 3: A schematic of (a) a spring, (b) a dashpot, (c) a Maxwell solid, and (d) a Kelvin solid, with their

associated parameters.

creep strain and loss angle for the spring-SMP hybrid models are given. Results and parametric studies are
given in Section 6 whereas conclusions are given in Section 7. In the entire study, inertia effects will not be
considered and the theory will be developed within the context of small deformations and deformation

gradients.
2. THE RHEOLOGICAL MODEL OF A SHAPE MEMORY POLYMER

A rheological model for a shape memory polymer (SMP) was proposed by Tobushi ez al. (1997) and is
shown in Figure 1. The model was developed based on tensile tests of SMP thin films, and consists of two
springs, a dashpot and a friction element. In absence of the friction element, the resulting 3-element model is
a linear viscoelastic solid that has been categorized as a member of Group I models, all exhibiting a solid-like
character with retarded elasticity (Findley, Lai and Onaran, 1976). The friction element is used to capture the
shape memory effect of the polymer. This model has certain interesting features, uncovered in the analysis of
Bhattacharyya and Tobushi(2000).

Consider the SMP to be subjected to a stress, o>™'(t) (where “t” is time). The SMP will have a creep

strain, €M (t), defined as
eMP () = SMP(n . ih:"’_@. , N
2 (1) B

where e3MP(t) is the total SMP strain and E(T) is the Young’s modulus of the SMP (defined later). A
component of this creep strain is irrecoverable and is denoted as ¢_(t, T)(strain in the friction element). The

value of this strain during t > t was proposed to have the following form (Tobushi et al., 1997)
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0 when eM(t) <, (T)
T MM ©) =, (T)) when eMP(t)> e (T) , eM(T)>0 during 151 ,(2)
e (t,t) eV (1)>0

where C(T) and e(t) are positive temperature-dependent parameters, 0 < C(T) <1, g,(T)>0 (Tobushi et
al., 1997), and the superimposed time derivative, i.e. ¢ =de*/dt. The irrecoverable creep strain,
g,(t,T), is responsible for the shape memory effect in the SMP. Since the differential equation relating the
total SMP stress, o*(t), to the total SMP strain, ¢S (t), as suggested by Tobushi er al. (1997) involves

g.(t,T) (see Equation 2), there are three possible expressions for the differential equation. All three

expressions may be summarised as

sy 0B MO O eaTO 3
BT pa(TO)  Ag(T.O) Ay (T.C)

where the parameters, R (T,C), A 5 (T,C) and g, . (T,C), are defined as

~1

R (T,C) = p(T)[l = Eé((?)c] , A (T, =AD[I-C]" , t>t- “4)
. (t,T) when &M@ <o 5

Eeon (T,C) = . ©)
- C—ISL(CIZ otherwise

and
0 when &M (t) <&, (T) or when & (1) <0
Ce= ()

C(T) when e (D) > (T), e @) >0

Finally, the parameters, E(T), (T) and X(T) (used in Equations 1-5), are the elastic modulus, coefficient

of viscosity and the retardation time respectively of the SMP, defined as

_ _ n(DE(T) _um (7
E(M=E(M+E/(T) u(T) TET) ] AMT) M

where the parameters, E (T),E,(T) and (T) are positive temperature-dependent values of the SMP

rheological model parameters.
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3. THE GOVERNING EQUATIONS FOR THE SMP-BASED HYBRID MODELS

The governing equations for the SMP-based hybrid models will be derived based on the composite
laminate and the aligned fiber composite arrangements as shown in Figure 2. We denoted the active phase
(SMP) with the subscript “A” and the inactive phase (any of Figure 3) with the subscript “IA”. The
composite laminate suggests a SMP-inactive phase series hybrid model where the stress and strain in the

constituents are related as

6=0, =06, , E=V, €, +V €0 - (8)

The aligned fiber composite suggests a SMP-inactive phase parallel hybrid model with stress and strain

components related as

6=V,6,+V,06, , E=€,=¢g, . %

Equations 9 and 8 are subject to the restriction that

V, +V, =1 : (10)

The total stress-total strain relation for each hybrid model may now be derived using Equation 3, either of
Equation 8 or 9 and the appropriate constitutive response of the inactive phase (see Fig. 3 and refer to
Findley, Lai and Onaran, 1976). The governing equations for all SMP-based hybrid models can be cast into
the following differential form

P(T,C, D) o(t) = Q(T,C, D) fet) - £ (T, C)| (1
where p Edi is the time operator, while P(T,C,D) and Q(T,C.D) are differential operators relating the
t

stress, o(t) , to the expression, g(t)-£° (T,C). Specifically,

P(T,C,D)=a,(T,C)D* + a,(T,C)D +a,(T,C) ,
Q(T’ C’ D) = BI (Tv (:)I)2 + BZ(T’C)D + BI(T’ C) 9

(12)

where the parameters, o, (T,C), ; (T.C) (i= 1,2, 3) and £ (T,C) (collectively referred to hereafter as the

“model parameters™) have expressions specific to the model that is being considered.
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3.1 The Shape Memory Polymer

The specific expressions of the model parameters for the shape memory polymer (SMP) follow by

rearranging Equation 3 in the form of Equation 11 where

a(T,O)=0 , o,(T,C)=—— ] - a,(T,C) = ]

E(T) e (T,C)

] ) L (13)
B(T.O)=0 , B(T,O)=1 , B(T,0) Ag(T,C)

b

e (T,C)=¢, (T,C) .

3.2 SMP-based hybrid models

In this section, we shall consider a linear spring, a dashpot, a Maxwell solid and a Kelvin solid (all shown
in Figure 3 with their components), in turn, connected with a SMP element in series (appropriately weighted
with volume fractions; see Equation 8) and in parallel (see Equation 9). For each of these SMP-based hybrid
models, the overall model parameters and the creep strain of the SMP have been derived. We have also
derived the expression for the creep strain of the SMP as it is needed to determine ¢ (t,T) (see Equation 2).
The expressions for the spring-SMP models are given below whereas the expressions for the dashpot-SMP,
Maxwell-SMP and Kelvin-SMP models are given in Appendix Al.

3.2.1 The spring-SMP series hybrid

WA I E2.fr (T.C)
TC)=0 [C)=—A_ , T.C)= Vp + Vg —= 7
a)(T,C) a2(T.C) = E(T) E, a3(T,C) (O A +Via -
! (14)
T,C =0 N T,C =1 . T,C [ —
B1(T,C) B2(T,C) B3(T,C) o (T.0)
tolal (T.C) = VASS eff(T C .,
[0 when V,=0
: 15
g:MP(t) o E(l) ( ) G(t) when VA 20 . ( )
Vi E(T)
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3.2.2 The spring-SMP parallel hybrid

-1
= _ I 1 ,
o,(T,C)=0 , az(T,C)—m. a3(T,C)-—m|:VA+VM—E(ﬁ]
VA+VML (16)
BT,O=0 , BTO=1 , B(T.0=— ZEIUL)
)‘eH(T’C) xr 7 Ep
A VlAE(—T)’
e*(T,C) = Vi £, (T,C) ,
V,+V E

A

S 1
" E, (T, C)

when \"

e (1) = [I+L By ]s(t)- i) when V, %0 - {1
V. E(T) V,E(T)

Note that among the eight models considered in this section, four of those can follow directly by
replacing the SMP model parameters (Equation 13) by the corresponding hybrid model parameters. These
four models are: (i) spring-SMP series hybrid, (ii) Kelvin solid- SMP series hybrid, (iii) spring-SMP parallel
hybrid, and (iv) Maxwell solid-SMP parallel hybrid. Therefore, these four hybrid models have an effective
response analytically identical to that of a shape memory polymer. Before closing this section, we point out
that in addition to simulating the uniaxial response of two-phase composites, the hybrid models can also be
used to simulate experimental results for two-phase composites with a SMP and an inactive phase with
arbitrary phase distribution. In that case, the model parameters will simply represent the” composite”
parameters, once we drop the restriction imposed by Equation 10 and set V4 = 1 and V,4, = 1 in Equations 8

and 9 respectively.

4. ISOTHERMAL, CONSTANT STRESS CREEP RESPONSE AND PERIODIC LOADING

In general, it is of interest to know to what extent the properties of the SMP carry over to the overall
response of the hybrid models. In particular, the two principal fundamental SMP properties — shape memory
strain and damping — are of interest. The analytical solutions for the isothermal constant stress creep response
and isothermal periodic loading for the SMP-based hybrid models will yield information on the overall shape
memory strain and overall damping respectively. These solutions are given next. In either case, we shall

consider the following initial conditions for the overall stress and strain

gt)y=0 . o(t)=0 at t=0. (18)

114



A. Bhattacharyya Journal of the Mechanical Behavior of Materials

Also, in order to exclude residual stress states, we shall assume that the stress and strain of the constituent
elements of the SMP-based hybrid models (including the friction element) are zero at t = 0 . Note that due to

the assumption of an isothermal response, Equation 11 is a linear differential equation having an analytical
solution.

4.1 Isothermal, constant stress creep response

A constant tensile stress input, gy, is applied over the duration, 0 <t <t,; thus

O<t<t. , 6, >0

oo
¢ o t>t,

The total creep strain, £.(t), is defined as
g.(D=¢et)—g, (1), (20)

where £(t) and g,(t) the total strain and the total elastic strain respectively. The total strain, (t), will follow
from the solution of Equation 11. Therefore, the solution for the SMP response and that of four hybrid
models (Sections 3.2.1,3.2.2, A1.3, and A1.5) is given by

&(t) = £ (T, C) + [e" ) — £ (T,0)  HT O

21
LAY {158 u(t)[‘ _ e~BJ(T.cm-€)] = D
B,(T,C)

whereas for two other models (Sections Al.1 and A1.2), we have

0,(T,C) N 4(T.C) o B2 (TOX-D ~ (22)
W=+ 5 w0 N C){( "75,1.0 (t)}[l o 025

and for the remaining two models (Sections A1.4 and A1.6), we have

é(t) —w;(T,C)[s:(?*) —eH(T,C) - wc(n]
() =619 (T.C) + a3(T,C) olt) + B3(T.C) S(TOHE-1) (23)
B3(T5C) \VI(T»C)—\VZ(T>C)
= = T
a(t*)—wl(T,C)(e(t*) _glouler oy - 9(L.O) ()]
_ B3(1,0) W2(TOX-D) -

t>1
ViI(T,C) —y2(T,C)
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—B,(T,C) + /B3(T,C) - 4B, (T,C)B,(T,C)

nies 26,(T.0) | (24)
—B,(T,C) - B2(T,C) - 4B,(T,C)B,(T,C
v,(T.Cy = PaTO) VB3(T,0) ~ 4B, (T,0)B, (T,0)
2B,(T,0)

Note that the initial conditions, g(t*)and g(t*), used in Equations 21, 22 or 23 are at t=t", where we

define g(t*)=lim&(t +A) and &) =1limé& +A). A being a very small positive quantity (i.e. 0 <A <<1).
A0 A0

In that context, an alternative definition is
et =e®)+Ae(t) , &) =)+ A&D) (25)

where Ag(t) and Aé(t) are the jump in the total strain and the total strain rate respectively during the time

interval, t <t <t* (possible due to a change in the piecewise constant stress input and/or the friction element
becoming active/inactive). The procedure to determine Ag(t) and Ag(t) has been demonstrated for the

dashpot-SMP series model in the Appendix A2. An identical approach may be used for the similar models,

For later use (Section 5), we provide the following specific results

As(f)=%r’%ms(f) . AdD=0 , (26)

for the SMP, spring-SMP series and parallel hybrid models.
The elastic strain, g (t) (see Equation 20), for the stress input given in Equation 19 may be written as

e () =e,(") = e, (0 +Ae, ) =¢, @[+ Ac(d) . t>1. 7)

For the specific stress input given in Equation 19, the total strain, £(t), over the entire time range can be
developed from either Equations 21, 22 or 23 (depending on the model under consideration), and the creep
strain will follow from Equation 20. The details of the approach have been summarized in the flowchart
given in Figure 5. The resulting specific expressions for the spring-SMP models will be given in Section 5.

4.2 Isothermal, periodic loading

We now consider a periodic strain with an amplitude, ¢?, and a frequency, w, to be superimposed over a

constant strain, s")\ , such that the total strain will have the form, e +&2cos(wt). An alternative approach is

to write the strain as

ety=¢; +e, €, e >e0> 0, (28)
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Fig. 4: A schematic of the SMP-dashpot series hybrid model showing the variables used for the stresses and

strains in the constituent elements. 5. The flowchart for the computational procedure.

where i = v/~ 1; note we have imposed the requirement, sa— > s\? > 0, to guarantee a globally extensional
stress state at all times. It shall be understood that the strain is given by the real part of the expression on the
right of Equation 28. Such a representation allows the use of complex variable techniques to solve for the
periodic part of the stress response (see Findley, Lai and Onaran, 1976). The response of a viscoelastic solid
to a periodic strain input as in Equation 28 will have a stress response with a short-term transient component,
o, (t), and a long term periodic component, 0:'; e'®*®) The total stress then is

oty =0, (t)+o, """ 29

where § is the phase angle (or the loss angle); if 8 is positive (negative), then the periodic component of the
stress leads (lags) the periodic component of the imposed periodic strain. Equations 28 and 29 give us the

relaxation storage modulus, Eg,,., and the relaxation loss modulus, Ey,. These follow respectively as the

real and imaginary components of the ratio, ¢” e'* / £® . We have determined these to be

(3.(T,C) ~ 0B, (T, ). (T, C) - 0’a, (T, C))+ w'a, (T, OB, (T, C)

(0, (T,C) = 0°a, (T, O)) +w?a’(T,C) ' (30)
ol o, (T,C)B. (T, C) — B, (T, ©))+ B,(T, O)fet, (T, ©) - 0’a (T.O))]
(o, (T,0) - 0’a,(T,O)f + 0} (T,C)

E__ (T.C,0)=

storage

E,.(T,Cw =
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START

Input :t, . t, . o, &seti =0, 1=0, assume C =0

ala

Determine €(t") using Eq.38 &
procedure outlined in the Appendix

Y

Determine specific expression for
€(t) using Egs.34 (or any of Egs.35

or 36) & 32, £_(t) from Eq.33 & 41

Expression for ¢ (t) is valid
IsC=0 ? —NO—-—> fort, <t<t,
YES
AN == Expression for €_(t) is valid
for t>t,
i =t;.i=t,, C=C(T) YES ‘
A
Determine expression for STOP
" (t), and solve for t, from
the condition &3 (t,)=¢,(T)
NO Expression for €_(t) is valid
for 0<t<t,

YES

Expression for ¢ _(t) is valid
for0<t<t,

Fig. 5: The flowchart for the computational procedure.
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The loss angle may be determined from the definition, § — (30 L Using Equation 30, it is

storage

P ol-a, (T,Q)B.(T,C) - 0’B.(T,C))+B, (T, O)fe, (T, C) - 0, (T, O)) 31)
(B,(T.C)-0™B,(T, O) )i, (T, C) — w0, (T, C) )+ w’a, (T,C)B, (T, C)

Note that if the friction element is active (the second of Equation 2), then C = C(T)whereas if it is
inactive (the first and third of Equation 2), then C = 0. Therefore, during the periodic loading, the loss angle
will follow from Equation 31 corresponding to either C = C(T) or C = 0. Specific expressions for the loss

angles of some selected models will be given in Section 5.

5. OVERALL SHAPE MEMORY STRAIN AND DAMPING FOR
THE SPRING-SMP HYBRID MODELS

In order to ascertain the interactions of the SMP with a purely elastic inactive material (the linear spring),
we shall focus on the series and parallel combinations of the SMP with the spring. The explicit expressions
are given for overall shape memory strain (generated using Equations 20-27) and damping capacity (in terms
of the loss angle). For completeness, we shall also include the explicit expressions pertaining to the shape

memory polymer.

5.1 The Shape Memory Polymer

The creep strain of the shape memory polymer is determined to be

00[—1——L](1—e"“”’) for O<t<t, and t <t
E.(T) E()
T,C)—¢, (T o
o 8|_(T) + o, sacﬂ( ) sl,( )-I— 1 —= 1 (l—e (-1, 0 g (T )) . (32)
g () =1 o, E,. (T,C) E)
for t, <t<t,
e (,,T) + o‘,[sc(th)—&(th,T)Il—e"“ ‘“"""”) for t>t,

where t, (see the first of Equation 32) is the time during the loading process when the creep strain in the SMP

attains the value, £, (T), and can be solved from the identity

e (t,)=¢, (T). (33)
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This identity will also be invoked to determine t, for the models discussed in Sections 5.2 and 5.3 below.

The damping capacity of the SMP can be determined from its loss angle

LE.(D
tan 6" (T, C, @) := @ : E(T) . 34)
pu(M o N 1

E(M) Ky (T, Ok (T,C)

eff

Eqgs. 32 and 34 were originally given by Bhattacharyya and Tobushi (2000), and correspond to their Eqs.8
and 25 respectively. The specific values, 3" (T,0,w) and & (T, C,w), will correspond to the situation

when the friction element is inactive and active respectively. This is also true for the damping capacity of the

models given in Sections 5.2 and 5.3 below.

5.2 The Spring-SMP series hybrid

The creep strain of the spring-SMP series hybrid model turns out to be
e.(O=(1-V,)e (1), (35)

where ¢™" (t) follows from Equation 32. The residual shape memory strain of the spring- SMP series

hybrid is lower than that of the SMP itself. On the other hand, the loss angle is

1 o’
tan & ( T'HE, (1)) ~|1+ VM Ez.cn (T’C) Mg (T’C))\'u" (Tv C) EZ.cll (T, C) (36)
tan 5™ (T,C,0) V. E, 1 o '

i, (T.OM, (T.C) | E(T)

and for 0<V, <1, it is easy to see that the damping due to the SMP is higher than that of the spring-SMP
series hybrid, i.e. tan §*"" (T,C,w)>tan 8(T,C,®)>0.

5.3 The Spring-SMP parallel hybrid

The creep strain of the spring-SMP parallel hybrid model is
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.
e At IAHI(.[.)I
MTY [
- 1 _ 1 _ =
"\ V.E,(T)+V,,E V,E(T)+V,E,
forO<t<t andt, <t
e . (T,C 1 |
e, (1,)+0, Yo P GO ), L (vA+vm —t ) "
VA +v“\ P oﬂ 00 Z.cﬂ( k4 ) Z.cﬂ( ? )
E,.(T,0)
8c(t)::4 Fp
] M B (1.0)
Lo (T.C) Y FP, A l.)
1-e s fort, <t<t,
LY PRV 'P
Ve
v = — ',;‘p (-1)
g (t,)+0, . 3 g, (t,,T)—¢e. (1, ) | 1-¢ R fort>t,
VvV, +V, 2
E,(T)
(37
The damping capacity is given by
[ 1 ik
V..E, - )
E,.(T,C) E(T)
1 V.+V, r
tand(T,C,0) 1+h_ : i+ E(T) (38)
“tan 8° (T,C,w) V, E(T) Lo P (DO, (T,C) '
E(T)

where it is clear that for 0 < V,, <1, tan &*MP (T,C,0) > tan & (T,C,0) > 0.

6. PARAMETRIC STUDIES OF THE SMP-BASED COMPOSITES

In Sections 6.1 and 6.2, we give parametric studies on the creep strain and damping capacity of the SMP-

spring hybrid models. In fact, recall that since the SMP-spring series model and the SMP-spring parallel
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model can represent a composite laminate and an aligned fiber composite respectively (both loaded
uniaxially as shown in Figures 2a and b), the parametric studies shall focus on the effect of the volume
fraction, V4, and the Young’s modulus, E,, of the inactive elastic phase on the overall composite response.
The specific material properties of the SMP that we shall use are those of a shape memory polyurethane
of the polyester polypole series characterized by Tobushi et al. (1997). The material properties of the
polymer show a significant temperature dependence in a narrow temperature range around its glass transition
temperature, T, The lower and upper values of this range are taken as T and Ty respectively, i.e. T, < T, <
Ty. The temperature dependence of the properties outside this range is not as significant and will be
neglected (see Figure 4a, Tobushi ef al., 1997). For the purpose of modeling, it was found that within the
range, an exponential temperature dependence of all material properties was a reasonable approximation. In

particular, the specific form of E(T) is taken as

l_l E(Ty)
E(T)={E,e °* T forT, <T<T,

E(T,) forT>Ty

(39)

where all temperature parameters are taken in Kelvin. The temperature dependence of the remaining
parameters, i.e. p(T),A(T),C(T),g_(T) follow from Equation 39 by replacing the letter “E” with p, A,
C and g, respectively. This replacement is also done for the subscript “E” of Ag in the second of Equation 39.
The specific numerical values of the parameters of the shape memory polyurethane tested by Tobushi er al.

(1997) are given in Table I, and are used for the parametric studies in the sequel.

6.1 Creep strain ratio of SMP- based Composites

In this section, we study the effect of the inactive elastic phase on the creep response of the SMP-based
composite. For brevity, we focus on the residual creep strain in the composite at t — a. For the SMP itself,

Equation 32 may be used to show that ¢3* () = ¢_(t,,T) . With this result, Equation 35 reduces to

£, ()

sfMP (0)

= l e VH_ D (40)
for the composite laminate whereas Equation 37 reduces to

£ () Vv, e ;
— ) |y m e | 41)
() [ 'V, E,(T)] (
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for the aligned fiber composite. The ratio, ¢ (o) /¢*™" (®), as a function of Vi, and E, is the residual creep

strain of the composite relative to the SMP; we shall refer to it as the creep strain ratio. In either case, it is
clear that as long as there is an inactive elastic phase (V;, # 0), the creep strain ratio is less than 1.

Equation 40 clearly states that the creep strain ratio for the composite laminate is linearly dependent on
the volume fraction of the inactive elastic phase, and is independent of its stiffness, E,. In Figure 6, we have
plotted the creep strain ratio for the aligned fiber composite (Eq.41) at T = T, with respect to Vi, at different
values of E /E(T,). With the focus on examining the effect of a stiffer inactive elastic phase, we have
restricted E, to E/E(T,)>1. We shall adhere to this restriction in the entire parametric study. It is quite
apparent that even a moderately stiffer inactive elastic phase (e.g. E,/E(T,) = 10) results in a significant drop
in the creep strain, and that too when the volume fraction of the inactive phase is quite small (less than 10%).
The plot of the creep strain ratio with respect to E /E(T,) at various volume fractions of the inactive phase has
been given in Figure 7 and it is seen that the creep ratio tends to approach a certain asymptotic value beyond
which an increase in the inactive phase stiffness does not produce a noticeable change in the composite creep

strain ratio.

6.2 Damping capacity ratio of SMP-based Composites

In this section, we present the results of the analysis of the damping capacity ratio,
tan &(T,C,w)/ tan 8°*"(T,C,w) for the composite laminate (see Equation 36) in Figures 8 and 9. The
damping capacity ratio has been plotted in Figure 8 with respect to 'V, at three different temperatures, T =
323 K, 328 K and 333 K (Recall that T,= 328 K). In all these cases, the stiffness of the inactive phase has

been set such that E /E(T,) = 10, the frequency is fixed at ® = 1 Hz and C = 0 (no evolving irrecoverable

ey 5™ @) -=-
\ -

_ =g
y | \ E/E(Ty) =1

L\

il \
s | N\ / reaa=1o

{
04 \\  Ep/ E(Tg) = 100
02 \ \‘\\

\\ T— —

0 < ¥ T~ —_— “ a
0 02 0.4 oe N |
Vi

Fig. 6: The creep strain ratio as a function of the volume fraction of the inactive elastic phase, for the

aligned fiber composite.
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SMP

€ () /g™ (e0) i =

0.8 T=T,

45 56 67 78 89 100
Ep /1 E(T)

Fig. 7: The damping capacity ratio as a function of the relative stiffness of the inactive elastic phase, for the

aligned fiber composite.

tan 8(T,C,0) / tan "™ (T ,C,0) =
e—————
i - i
08
T=333K
06 T=328 }/
T=323
04
E/E(T)=10
= ow=1Hz,C=0
0
0 0.2 04 0.6 0.8 1

Via
Fig. 8: The damping capacity ratio as a function of the volume fraction of the inactive elastic phase, for the

composite laminate.

creep strain). While in all these cases, the presence of the inactive phase results in a reduction of the damping
capacity ratio, an increase in the temperature increases the ratio. Another notable feature is that the reduction
is relatively modest for a wide range of the volume fraction, up to about V,, ~ 0.6. The damping ratio has

been plotted in Figure 9 with respect to the stiffness of the inactive phase at the three aforementioned
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temperatures. In all these cases, the frequency has been set at 1 Hz and the volume fraction of the inactive
phase at 50%, and C = 0 (no evolving irrecoverable creep strain). Notice that as the inactive elastic phase
becomes less stiff, the damping capacity ratio decreases. In the limit, when the inactive phase is a void (with
E, = 0; not shown in the figure), Equation 36 states that the damping capacity ratio vanishes (and therefore
the damping capacity of the SMP-based voided laminate vanishes). This is because for a given strain input,
Equation 28, the resultant stress that the voided phase is able to sustain vanishes. Therefore, due to the
laminate arrangement, the overall stress, Equation 29, vanishes too, i.e. o:,’ —» 0 . Thus, the dissipation also
vanishes. Beyond this limiting case, as E, is increased, there is an increase in the damping capacity ratio also.
Note that the composite laminate quickly attains a substantial portion of the SMP damping capacity as
E,/E(T,) increases from 1 to 12. Further, an increase in temperature at any given value of E,/E(T,) increases
the damping capacity ratio of the composite. Note that the results in Figures 8 and 9 have been plotted at C =
0. We have numerically checked and found that the creep strain ratio and the damping capacity ratio do not
visibly change even when there is an evolving creep strain (i.e. C=C(T) ). We have also repeated the
calculations at a low frequency, w = 0.012 Hz and have found the ratios to have marginally higher values for
all the different cases reported in Figures 8 and 9.

The damping capacity ratio for the aligned fiber composite (see Equation 38) has been plotted in Figure
10 with respect to V4. Three plots corresponding to three different temperatures — 323 K, 328 K and 333 K -
have been given, all at E/E(T,)=10, ® = 1 Hz and C = 0. In contrast to the composite laminate (Fighre 8), it
is seen that the damping capacity ratio decreases with a higher temperature. Another feature of contrast is that
beyond a certain amount of the inactive phase, e.g. Via~ 0.05, there is a substantial reduction of the damping
capacity of the composite. Finally, the evolution of the damping capacity ratio as a function of E/E(T,) has
been given in Fig. 11 at the three different aforementioned temperatures. All the three plots are at V4 = 0.5,
® = 1 Hz and C = 0. In contrast to the composite laminate (Figure 9), the damping capacity ratio for the
aligned fiber composite approaches 1 in the limiting case of a void, E, — 0. This is because even if the
inactive elastic phase in the aligned fiber composite cannot sustain any stress in the limiting case of vanishing
stiffness, the geometrical arrangement of the two phases does not in any way hinder the capacity for the SMP
to sustain an oscillatory stress in response to an oscillatory strain imposed on the entire composite. The
composite, in that case, has a damping capacity identical to that of the SMP itself. As E/E(T,) increases,
there is a reduction in the damping capacity ratio, and a significant reduction occurs fairly quickly, as

E/E(T,), for example, attains a value of 12.

6.3 Design Strategies of SMP-based Composites

The stiffness of shape memory polymers is usually low. Thus, for example, the Young’s modulus, ET,),
of the SMP at its glass transition temperature follows from Eq. 39 and Table 1 as 146 MPa. The low stiffness
may be compensated if the SMP is combined with a stiffer material (c.g. an inactive clastic phase). An

immediate consequence will be that the creep strain and the damping capacity of the composite will be lower
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tan (T,C,») / tan SSMP(T,C,co)

Via=0.5 0
n= l HZ N C=0

04 1

0.2 1

0.0

1 12 23 34 45 56 67 78 89 100
E,/E(Ty)
Fig. 9: The damping capacity ratio as a function of the relative stiffness of the inactive elastic phase, for the
composite laminate.

tan §(T, ,C,) / tan ESSWP(Tg ,C,®) - -
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Fig. 10: The damping capacity ratio as a function of the volume fraction of the inactive elastic phase, for the
aligned fiber composite.

than the corresponding values for the SMP; the question is to what extent? We shall partially address this

question now.
The overall elastic modulus, E™(T), of the composite laminate and the aligned fiber composite is

identified from Eq.26 as f,(T,C)/a,(T,C). Then, using Eqs. 14 and 16, we have
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-1
E(T : .
{VA +Via —E(—)] for composite laminate

P

E“™(T) _ | 42)

E(T)

E
A+ Vi, E(”:' for aligned fiber composite
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tan 5T,C,)/tan 5> (T,C.0) &= -
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1 12 23 34 45 56 67 78 89 100
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Fig. 11: The damping capacity ratio as a function of the relative stiffness of the inactive elastic phase, for the

aligned fiber composite.

Consider a composite laminate with Vi, = 0.5 and E/E(T,) = 2.64 and an aligned fiber composite with
Via = 0.05 and E,/E(T,) = 10. The composite stiffness for either geometrical arrangement is identical (check
using Eq.42), i.e. E“™ (T)/E(T) = 1.45. However, at T = T,, the composite laminate has higher ratios of
creep strain and damping capacity (50% and 72.53 %) than the aligned fiber composite (26% and 65.52 %).
In general, a composite laminate seems to offer a better retention of the SMP creep strain and damping
capacity over a wide range of the inactive phase volume fraction and stiffness, and should therefore be
preferred over the aligned fiber arrangement. A more definitive answer can emerge once an optimization
problem involving the composite stiffness, creep strain and the damping capacity is addressed. That is

beyond the scope of this paper.
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Table 1

Shape Memory Polymer Based Hybrid Models

A list of material properties of a shape memory polyurethane of the polyester polypole series

(Tobushi et al.,1997).

Symbol Value
T, 328K
T, 313K
Ty 343K
ES 146 MPa
Ky 14 GPa.s
A 521s
C, 0.112
€l 0.3%
A 38.1
A, 442
A, 35.4
A, 38.7
Ag, -58.2

CONCLUSIONS

This paper has provided a generalized methodology for the analytical determination of the isothermal

uniaxial mechanical response of a shape memory polymer (SMP) in series and parallel arrangements with a

spring, dashpot, a Maxwell solid and a Kelvin solid. We have shown analytically that four models - the SMP-

spring series hybrid, the SMP-spring parallel hybrid, the SMP-Kelvin solid series hybrid and the SMP-

Maxwell solid parallel hybrid - demonstrate an effective response similar to that of a SMP itself. Explicit

expressions for the creep strain and the damping capacity are provided for the SMP-spring and SMP-dashpot

hybrids. Parametric studies of the SMP-spring series and parallel hybrids yield information about the

effective response of SMP-based composite laminates and aligned fiber composites respectively.
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Al. APPENDIX:

Model parameters for the dashpot-SMP, Maxwell solid-SMP and Kelvin solid-SMP models.

Al.1 The dashpot-SMP series hybrid

V. Vi V. - Vi
a,(T,C) = (—T) , o(T,C)= p +—,ﬁ T.0) a,(T,C)= ————p i (T.0)
Bl(T’C) - 1 ’ BZ(T’ C) xeﬂ‘ (T, C) ’ BJ (T’ C) 0 ’
6*(T,0) =0 ,
0 when V,=0
SMP /oy _ M __(t_)_ ) 44)
e (1) = = [ ®- ,, uI' o(t )dt] = when V, #0
A1.2 The Maxwell solid-SMP series hybrid
V. V.. v, i 1
a ( ,C)= —EW-FTSV_ s 2( ,O) = eﬁ-(T O VM(T]p +__EPXCE(T,C)} »
a,(T,C) = VY , (45)
NoHer (T,C)
1
= = =0
Bi(T,.O)=1 , B,(T,C) 3 (1.C) B:(T,C) )
e (T,C)=0 ,
0 when Vv, =0
o(t) (46)

when V,#20 -

£ () = [m>$juum B o(t) |-

p O

E(T)
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Al3 The Kelvin solid-SMP series hybrid

~ o 1 1 Vn,
,(T,C)=0 , az(T,C)-as(T’C)[Em+VAM(T,C)(VAACE(T,C) ol Ja,(T,C)]

1
V, a,(T,C) A 4(T,C)

V,n ) AV
a,(T,C) := [[VAM (T,C)——"ﬂJaz(T,cn—A +

le
E(T) E, E,(T.C

p

. _ _ 1 | AN
B(T,.C)=0 , B,(T,O)=1 , By(T,0O)= VAaS(T,C))»,,T(T,C)[l 'kVAMﬂ(T,C) E(T)Ja4(T,C)]~

VIAT]p
V,E(T)
VlAnp
E(T)

1-(XcH(T,C)— ]aS(T, C)

£*(T,C)= V,. £,.(T,0),

I [v,\xe,,r (T,C)~ )a4 (T,C)

(47)

0 when VvV, =0

nP VIA VIA 1
=8 (T.0) — =2 ———(o(1)
[Ep v, ’ V,E, E(T)

o | . E . (48)
g (=1 +V_ 1+V,. Ep_a«a(TaC) g(t)- V| 1+ Vi, —a,(T,C) | a(T,Cle, (T,C)
A p M

+ gi—\\;'—ﬂ[a,(T,C) §(0)+a,(T,C)6()] , when V,#0

p

where the parameters a, (T,C), a,(T,C), a,(T,C), a,(T,C) and a,(T,C) are

__Vv,a,(T.,0) ___ a(T,C) T
8(T,C) == A2, a,(T,O) —E(T)NCN(T’C)(EZ_CA ,0)+V,E, ),

" (49)

=)
b-_(—I—)(leEZeIT (T,O) +VAEp):| ’

a,(T,C) = p,q (T,C)[vA M, + Vi B (T,C) -

1 pa—
a,(T,C)—ma,(T,C) , a,(T,C)=V,a,(T,C) .

130



A. Bhattacharyya

Al.4 The dashpot-SMP parallel hybrid

1 1

Journal of the Mechanical Behavior of Materials

a,(T,C)=0 , az(T,C)=?T) , a,(T,C):m ,
-v, b - _ M —_Va (50)
B|(T’C)— Vu E(T) ’ ﬁz(T,C) VA +VIA P,ﬂ-(T,C) s ﬁa(T,C) XQH(T,C) s
g, (T,C) = g, 4(T,C),
0 when VvV, =0
M=) +via TS0 . when V, #0 G
v, ET) V,ET)
ALS The Maxwell solid-SMP parallel hybrid
_ _Viba(TO . WO [ pe(T,C) M, Via 1, ]
a(T,0)=0 , 0, (T,0)= T e E(T)[ 50 EPJ(H_——VA O
V,o(T, Cp (T, C) l\ E(T) E, Vi B (T,C) (52)
B(T,C)=0, B,(T,O)=1,
8,10y = 2B 1O | WO [ Vapea(T,O) _ Vun, (H Via M ] ,
o(T,C) @(T,OR (T, C) E(T) E, Vi b (T,C)
G:MI (T,C)= L (T,C),
0 when V,=0
(1) - 1 off) 4+ Vi, é(t)_VIAnp\V(T,C)x
V,E(T) V,E(T) V,E(TE,
e (1) = Van, Y[ o0 )1 1
(1) - - e — (e(t)-¢, (T.C
{e(t) (HVAu,ﬂ(T,C)J [[H,E(T,C)+E( AR (60)- £, (T, )
t when V.20
VA VIA B
A+
C)= l ——E° EM and
IS Vi m, (53)
PV, +
“el’r (T9 C)

(P (T’ C) = lenp + vApeﬂ‘ (T’ C) + W(T’ C){

V1 (T,C) _ len.n
E(T) E
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Al.6 The Kelvin solid-SMP parallel hybrid
1 1

a,(T,0)=0 , a,(T,C)=——, o,(T,C)=———,
| 2( ) E(T) 3( ) P-eﬁ- (T, C)
Vian n E
B(T,O)=—"-2 , By(T,O)= V, +V, | —2—+—2_|,
' E(T) ¢ AT M p g (T,C)  E(T) (54)
V,E
By(T,C)=—A 4 TH7e
Lg(T,C) u4(T,C)
V,E, .(T,C
™NT,C) = 2 B2 (T,O) &, (T,C),
V,E, +V, E, +(T,C) *
0 when vV, =0
V,E v
2O =11+ 22 fery+ 2" s 5() when V, #0 (59)
V,E(T) V,E(T) V,E(T)

A2. APPENDIX:
Determination of Ag(t) and A€(t) for the dashpot-SMP series hybrid model.

The jumps, Ag(t) and Aé(f) (see comment in the last paragraph of Sec.4.1) will now be determined for

the dashpot-SMP series hybrid model. A schematic of the model has been shown in Fig.4; also included are
variables (or parameters) that represent the stresses and strains in the constituent elements. Note that the
increments in stresses and strains over any time increment will be related through the usual constitutive
relations for each component in the model. For the vanishingly small time interval under consideration, we

have the following results

Ae,(H)=0 , Ae,(H)=0 , Ao(ty=0 Ae (1, T) =0, (56)
t+At

where the first identity follows from Ag_ () = lim J' o(1)dT » which vanishes as long as o(t) is finite during

At o

t
the time interval under consideration. The jump, Ass(f), also vanishes for the same reason. For the
piecewise-constant stress input, the jump in the stress rate, Ac(t), is zero. Finally, the last condition follows
from the fact that the irrecoverable creep strain cannot change during a vanishingly small time interval (as
long as stress and strain rates are finite). With the identities in Eq.56, and the constitutive relations of the

model components, the following relations can be written
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Ae(t) =V, A (T)=V,Ae, (1),
Ao(t)=Ac,(t)+Ac,(1),
Ac,(t)=n(T)AE,(t),
Ac,(t)=E (T)Ag,(t), (57)
Ag,(t)=Ac(t)/m,,
Ac,(t)=E,(T)Ag (1),
A& (F)=V, A& (T)+V,Aé,(T)
=V, A&,(1)+V, Aé,(T)+V, AL, (1),
0=46,(1)+A6,(T) .

Note from the first, second, fourth and sixth of Eq.57 that

As) =V, Ao) _ _ v, O (58)
E (T)+E,(T) E(T)

where the first of Eq. 7 has been used. The third, fourth, fifth and eighth in the seventh of Eq. 57 lead to

Ac\(t) _,, A0,()  \, Ac(D) (59)

As(i) = V, . .
W Sm T Em T,

The first and fourth of Eq.57 along with Eq. 58 give Aq, (i) = B Ac(t) - Using this result, Eq. 59 can
E(T)

be rewritten as below once we use the fifth, sixth and seventh of Eq. 57

Aé(H) - y_@_-..L(E_@) Ast) (60)
n, nMLET,

where the first of Eq. 7 has been used. Eqs. 58 and 60 are the desired jumps in the total strain and total strain

rates respectively in terms of the material parameters of the model and the total stress input.
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