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ABSTRACT

The effects of selected microstructural parameters, e.g., fiber-aspect-ratio, fiber off-axis angle and fiber
volume fraction, on the damping and stiffness of polymeric fiber-composite systems are first examined.
Quasi-static models are, then, developed by using a “Forced Balance Approach” to determine the mechanical
response properties of a class of polymeric short fiber-reinforced composites, whereby the material is
assumed to behave in a linear viscoelastic manner. Subsequently, simultaneous optimization of damping,
stiffness and specific weight is carried out by using the so-called “/nverted Utility Function Method”. The
obtained results show that polymeric composites reinforced with short aligned-fibers have superior design

flexibility as compared with those reinforced with long aligned-fibers.

1. INTRODUCTION

It is well known that lightweight fibre reinforced polymeric composites have higher specific strength and
stiffness when compared with conventional materials, such as metals. Much effort has been devoted to the
improvement and optimisation of these properties in various composite structures. Good vibration damping
properties are also particularly important for composite structures used under dynamic loading, such as in
aerospace structures, rotor blades, circuit boards, high-speed printer components, etc. Due in part to the
extensive use of conventional structural materials, which in general have poor internal damping
characteristics, the potential for significant improvement and optimisation of damping in advanced fibre

reinforced composites has not been yet fully realized. Meanwhile, the realization of short fibre reinforcement
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in composite structures is still quite limited. This may be primarily due to a much wider involvement, from
scientists and engineers, with the development and use of long aligned (continuous) fibre composites.

In the conventional damping theory, the damping factor is often assumed to vary comparatively little with
frequency for a large class of polymers, at temperatures near their glass-transition temperature (Nashif et al.
/17). Consequently, a large number of researchers considered the damping factor for this class of materials to
be constant. However, in the case of fiber-reinforced polymeric composites, and in particular short-fiber
composites, the damping factor is not only a frequency dependant, but it also varies considerably with the
micro-structural characteristics, e.g., fiber-aspect-ratio, fiber volume fraction and fiber off-axis angle, e.g.
Gibson and Yau /2/, Gibson ef al. /3/, Sun et al. /4/ and Suarez et al. /5/.

The damping properties of long aligned-fiber polymeric composites have been studied by a number of
researchers, e.g., Bert and Clary /6/ and Bert /7/. There are, however, relatively few reports concerning the
damping of short-fiber composites. In this context, studies reported, for instance, by McLean and Read /8/
and Gibson et al. /3/, indicate that vibration damping properties of fiber-reinforced composites with
polymeric matrix may be significantly improved and may be readily optimized by using, as a reinforcement,
short rather than long (continuous) fibers.

A possible explanation for the above-mentioned advantages concerning the damping of short-fiber
composites is the presence of shear stress concentration at the ends of fiber-segments, and, thus, the resulting
shear loading transfer mechanism between the reinforcement and the matrix material. The research work of
Gibson and Yau /2/ and Gibson e al. /3/ indicates that by varying the fiber-aspect-ratio and fiber orientation,
superior damping and stiftness properties could be achieved separately. This observation implies that the
optimum conditions, in terms of microstructural parameters, for damping may not be necessarily the same for
stiffness. Consequently, it is important to study the influence of the various governing microstructural
variables as pertaining to both damping and stiffness. The optimization, in terms of the microstructure, of this
trade-off between damping and stiffness is the main intention of this paper.

It is obvious that the most ideal situation for designing a short fiber-reinforced polymeric composite is to
optimize the damping and stiffness simultaneously with respect to the microstructure controlling parameters.
In this context, the general procedure of the “Force-Balance Approach”, e.g., Sun et al. /4/, is used in this
paper to formulate an analytical model pertaining to the optimization of the damping and stiffness of a class
of short fiber-reinforced composites. Here, a multi-objective optimization functional is established to

optimize these two properties simultaneously.

2. INFLUENCE OF SELECTED MICROSTRUCTURAL PARAMETERS

There appear to be two primary sources of enhanced damping in a polymeric matrix composite:

(i) the viscoelastic nature of the bulk matrix, and
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(ii) the friction mechanism at the fiber/matrix interface as caused by the relative motion between the matrix
and the fiber.

Both of these effects may prove to be significant in the case of short-fiber composites whereas high shear
stresses are developed at the fiber-matrix interface. When a short-fiber composite is subjected to a cyclic
loading, the matrix surrounding the fiber-segment undergoes high cyclic shear strains, thus, producing
significant viscoelastic energy loss. Shear stress concentration may also induce partial debonding at the
fiber/matrix interface that would result in a slip between the fiber and the matrix and in accompanying
frictional losses. Such a fiber/matrix debonding would, however, affect adversely the strength and stiffness of
the composite. [t is, thus, often argued that it may be desirable to have a strong interfacial bond so that slip at
the interface would not occur. Thus, the most viable mechanism of enhanced dissipation appears to be the
shear deformation in the matrix caused by shear stress concentration near the fiber ends. Based on the stress
transfer mechanism between the fiber and the matrix, it is obvious that there are several microstructural
parameters that might influence the shear stress distribution at the interface. The situation becomes further
complicated when the interaction between neighboring fibers, in the composite laminate, is taken into
account. As indicated earlier, the “Force-Balance Approach” is used in this presentation to predict the
damping and stiffness for this class of materials.

The basic assumptions for the “Force Balance Approach”, as adopted in this paper, are:

- The structural element is composed of an individual round fiber surrounded by a cylindrical matrix, and is
under a uniaxial tensile loading (Figure 1).

- Both the fiber and matrix are isotropic.

- The mechanical response of the matrix is linear viscoelastic.

- The fiber contributes, to a certain extent, to energy dissipation.

- There is a perfect bonding between the fiber and the matrix. Further, the fiber/matrix interface is assumed
to have the same viscoelastic properties of the bulk matrix.

- The transfer of load between the fiber and the matrix depends upon the difference between the actual
displacement at a point on the fiber/matrix interface and the displacement that would exist if the fiber

were not present.

In the force-balance approach. the expression for the elastic stiffness of the short-fiber composite is
derived from the average fiber stress as based upon using Cox’s analytical model concerning fiber stress
distribution /9/. Subsequently, the elastic-viscoelastic correspondence principle, e.g., Hashin /10/ and Haddad
/11-13/, is used to obtain the expression for the complex modulus of the assumed linear viscoelastic
composite laminate. This involves the replacement of the elastic moduli of the fiber, matrix and composite in
the expressions resulting from the linear elastic analysis, with the corresponding viscoelastic moduli. In the
case of sinusoidal loading, the expression for the complex modulus would involve both the storage modulus

and the associated-with loss modulus.
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Fig. I: Representative volume element: (a) Aligned case, (b) Off-axis case.

For a typical representative volume element, Figure 1, the expression of the modulus, E,, of the

composite along the loading axis may be expressed as, e.g., Agarwal and Broutman /14/,

__| _ COS40 -I- 5in40 n | _ 2VLT
E Ep Er \Gir E

jsinzé’coszé’ (1
%

where E;, £, and G, are the longitudinal, transverse, and in-plane shear moduli, respectively. These moduli
can be expressed, in the case of long-fiber composites, in terms of both the fiber and matrix material
parameters, i.e., £, E, G, G,, etc, and the fiber volume fraction ¥}, by using, for instance, the rule-of-
mixtures. For short-fiber composites, however, one cannot use the rule-of mixtures to represent the
longitudinal modulus E;. For short-fiber composites, the longitudinal modulus E; depends also on the fiber
aspect ratio, //d. Based upon the shear-lag model (Cox /9/), the longitudinal modulus E; may be expressed for

the case of short-fiber composite by; see Feng /15/,
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tanh(y/2)
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The ratio R/d, where R is as illustrated in Figure 1 and d is the diameter of the fiber, is related to the fiber

volume fraction ¥}, for the particular packing array under consideration. For instance,

”5\2 =% for a square arra 4

Ld ) e, . d @

[ R ;

L ] = T — for a hexagonal array )
d 83Vy,) °

Based upon the work of Gibson er al. /3/, the packing geometry has an insignificant effect on the
magnitude of damping. Therefore, we adopt, in the subsequent analysis, expression (4) corresponding to the

square packing array. Combining, then, equations (3) and (4), it follows that

2 _oGm (W)
Ef In(z/4av,)'?

(6)

Equation (6) above shows that the parameter y is essentially a function of fiber/matrix stiffness ratio
E/G,, fiber-aspect-ratio //d, and fiber volume fraction V.

Meanwhile, the transverse modulus £, and the transverse in-plane shear modulus G4, of the short- fiber
composite may be considered as independent of fiber aspect ratio //d. Therefore, one may adopt the
formalism pertaining to long-fiber composites. In this context. we adopt here the following Halpin-Tsai

expressions; see Agarwal and Broutman /14/,
Ey=E, (1 +2q3,V/(0-mV) : (7
Grr =G, (1+ 0,V ) [(1=-nyV,) (8)
where the coefficients 77, and 7, of the above two equations can be expressed, respectively, as
m=WE s/ Ex)-NI(E!Ey)+2] 9)
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’72 = [(G[ /Gm)_ 1][(Gf/Gn1)+ 1] (10)

At the same time, the Poisson’s ratio Vv, of the short-fiber composite, that is assumed to be insensitive

to fiber length, may be expressed, using a ‘rule-of-mixture’ form, as

Vir :Vfo-f'Vm(l—Vf) (11)

According to the previous assumptions, both fiber and matrix are considered to be linear viscoelastic
materials. This permits us to use the elastic-viscoelastic correspondence principle to redefine the basic

material properties within the realm of linear viscoelasticity. Thus, one has

E,=E,=E, +E]
Ep=Ey=Ef +iEj (12)
Em - Em - E/'n +1E,

m
Gy =G, = G/'n +iGy,

Here, the over-prime designates the storage modulus and the double over-prime identifies the loss
modulus. Meantime, the damping (loss) factor is defined as the ratio between the loss modulus and the

storage modulus, i.e.,

e = E.('/E;(
n,sz}/E,’f 03

T = Em ! Em
ey
Nom =Gm /Gy,

Upon using Eq. (12), equations (2), (7) and (8) may be written, respectively, as

. [ tanh(,z' 2) ’ o )
E; =(E_'f+iE_';-) I - Vy +(Ey +IEQ)1=V ) (14)
(x"72)
. , 2V,
ET :(Elln +iEi11) P ()
-V
- W Emby (16)
(’/.'I" =((’m +’(’m) P
I=aply
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where

(1* )2 _q_ (G riG ) dY
(Ey +iE})In(z/4v )2

(17)

o [Ef +iEY)(Ep +iEp)) -1

m = 1
N E, I KE), +iEp)]+2 (18)

n n

. Gy +iGH NG, +iGp)] -1

]7 = N Yald ~ 19
PG +iG) Gy, +iGh)]+] )

+iG

Substituting £7, E7- and G"7 from equations (14) to (16) for £, E; and G,;, respectively, into Eq. (1), and

also Ey for E, into the same equation, it follows that

- |sin®0cos 0 (20)

I _cos™0 sin®0 +[ I 2vir )
Gir EL

Ex +iE" E; Er

Equation (20), above, can then be solved by separating its real and imaginary parts to determine £y and

E} for the composite.

Since the loss moduli are generally small, one may neglect the higher order terms of loss factors such as

2
"'’

and 7Gm7 7 . Subsequently, one may obtain the following expression by combining the above-mentioned

set of equations (17) to (19).

*

i 1 -
/i) —§{|+EI(77(IHI_’U)‘ h

Further, one may use a Taylor’s series approximation and similarly neglect any resulting higher order
terms in the loss factors to obtain
»*

NGm —1
tanh IT —tanh £ + ilM (22)

2 2 4 cosh?(y/2)

Thus. by combining equations (14) to (22). one determines analytical representations of E,, E{ and 7y .

Among the many microstructural parameters, of the dealt with composite laminate, that may be
considered for the optimization process, we narrowed down our attention to three parameters, namely, 6, V,
and /d, representing. respectively. the fiber off-axis angle with respect to the longitudinal axis x of the

laminate (the loading direction), the fiber volume fraction and the fiber aspect ratio. While the optimization
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model is presented below in a generalized manner, the particular case of E-glass/epoxy composite, Table 1, is
being dealt with as an illustration.

For a large class of composite materials used in industry, the fiber volume fraction varies within the range
of 50% to 70%. Meanwhile, the observation made by Cox /9/ shows that, for short-fiber reinforced composite
materials, the reduction of the effective longitudinal modulus due to the load transfer from fiber to fiber is
considered significant only for fiber aspect ratios, //d, less than 100. Therefore, one could set the fiber
volume fraction to vary within the range from 50% to 70% and the fiber-aspect-ratio to vary within the range
from 1 to 100.

Table 1
Selected material properties of Scotchply 1002 matrix epoxy and E-glass fibers at room temperature;
adapted after Gibson and Plunkett /16/.

Material Properties Epoxy E-glass
Young’s modulus GPa 379 72.40
Shear modulus GPa A 1.38 30.30
Damping factor 0.015 0.0014
Shear damping factor 0.018 ] 0.0014
~_ Poisson’s ratio, v 0.36 0.2
Specific gravity, g 1.23 | 2.54

Figures 2 to 6 are obtained by setting, respectively, the fibre of-axis angle & as 0° 40°, 60°, 80° and 90°,
and plotting the ratios 7 /7, and Ex/E;, against the fibre volume fraction V;and the fibre aspect ratio //d.
In these figures, it is clear that with the increase of fibre off-axis angle, the values of the ratio 7y /1, are
increasing, while those for Ey/E, are decreasing. When the fibre off-axis angle reaches a value between
40° to 60°, both ny/n, and Ex/Ep, curves change their directions, which demonstrate that for a fibre off-
axis angle 4 within the range of 40° to 60°, both the ratios 7y /n, and Ex/Ey reach their extreme values
(maximum and minimum, respectively) almost simultaneously.

Figures 7 to 11, which are plotted by setting the fibre aspect ratio //d as 5, 20, 40, 80 and 100,
respectively, present the ratios 7, /7, and Ex/E, against the fibre volume fraction ¥, and the fibre off-axis
angle @. In these figures, one observes that the value 7, /7, decreases monotonously as the fibre aspect ratio
I/d increases and for value of //d >15, the rate of decrease in value slows down until the fibre aspect ratio //d
reaches 20, whereby the value of the ratio 7, /7,, maintains a constant value afterwards. The ratio Ex/Ep,
also increases sharply until the fibre aspect ratio //d reaches a value of about 20. With the fibre-aspect-ratio
ranging from 20 to 60, the ratio £y /E,, increases slowly with the increase of the fibre-aspect-ratio //d and

seems to have a constant value from /d = 60 upwards.
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Fig. 2: Non-dimensional ratios Ey /Ey and 7y /7, vs. fiber volume fraction V; and fiber aspect ratio /d.

Off-axis angle @ of desired composite materials, with material properties of each component as

shown in Table 1, is set to be 0°.
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Fig. 3: Non-dimensional ratios Ex/Ep and nx/nm vs. fiber volume fraction V; and fiber aspect ratio //d.

Off-axis angle @ of desired composite materials, with material properties of each component as

shown in Table 1, is set to be 40°.
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Fig. 4: Non-dimensional ratios Ey/E; and 77y /7y, vs. fiber volume fraction ¥, and fiber aspect ratio //d.

Off-axis angle 8 of desired composite materials, with material properties of each component as

shown in Table 1, is set to be 60°.

97



Vol. 14, Nos. 2-3, 2003

0.70 |
070 Tt~

0.65

[/

i

Viscoelastic Short Fiber Composites — Optimization

/1/100
R0
< 60
" 40 ljd

Fig. 5: Non-dimensional ratios Ey/Ep and 7y /7y vs. fiber volume fraction ¥, and fiber aspect ratio /d.

Off-axis angle & of desired composite materials, with material properties of each component as

shown in Table 1, is set to be 80°.
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Fig. 6: Non-dimensional ratios Ey/Ey and 774 /17, vs. fiber volume fraction ¥, and fiber aspect ratio //d.

Off-axis angle & of desired composite materials, with material properties of each component as

shown in Table 1, is set to be 90°.
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Non-dimensional ratios Ex/E;, and 7y /7y, vs. fiber volume fraction ¥, and off-axis angle 6.

Fiber aspect ratio //d of desired composite materials, with material properties of each component

as shown in Table 1, is set to be 80.
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Fiber aspect ratio //d of desired composite materials, with material properties of each component

as shown in Table 1, is set to be 100.
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By setting the fibre volume fraction V; at 50%, 60% and 70%, the ratios 7, /7,, and E;/Ej, against the
fibre aspect ratio //d and the fibre off-axis angle @ are plotted as shown in Figures 12 to 14. In these figures,
one can identify that with the increase of the fibre volume fraction, both the ratios 7y /7, and E./E,
change almost linearly, with the values of the ratio 7, /7, are monotonously decreasing and those for
Ey / Ej, are monotonously increasing.

It is apparent from the obtained results that among the three considered independent variables, the fibre
off-axis angle & has the most significant influence on the damping and stiffness of short fibre-reinforced
composites. The obtained numerical results appear to be in good agreement with the observations made by

Gibson er al. /3/, Sun et al. /4/, and Suarez et al. /5/.

3. OPTIMIZATION

From the above numerical results, one can observe that in order to increase the damping of a short-fibre-
reinforced composite, it is necessary to sacrifice the stiffness of this material. The analysis of the trade-off
between damping and stiffness will gain more and more attention from researchers and design engineers, due
to the high-volume use of composite materials in both aerospace and automotive industries. Therefore, the
>imultaneous optimization of these two properties for the design of high performance short-fibre reinforced
composite structures becomes remarkably important in the development of structural materials and structural
dynamics technology. As it is well recognized, one of the most important advantages of a fibre-reinforced
composite material over its metallic counterparts is its light specific weight. Thus, it is necessary to include
this property in the dealt-with optimization problem. Thus, the optimization problem will involve the
maximization of both damping and stiffness and, on the other hand, minimization of the composite specific
weight. That is, three objective functions are involved in the optimization problem. In this context, the
“inverted utility function method”, e.g., Rao /17/, is adopted in this research to deal with this multi-objectives

optimization problem.

3.1 The Inverted Utility Function Method
In this method, a utility function U, (f;) is defined for each objective function as
Uy =-w /i(X) (23)

where f,(X). the ith objective function, with weighing factor as w, (i=1,2, ....k), is to be minimized. In the
process of optimization, one inverts each utility function and attempts to minimize or reduce the total
undesirability, whereby

L 1 __s \ 1 ‘ (24)

k ¢ 1 1 k
=1 r= 1 — g _
U =dU7" =) |—|=)-———=) -4
-~ \Ui} & w0 2 (f0))
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Fig. 13: Non-dimensional ratios Ey/E,;, and 7y /nm vs. fiber aspect ratio //d and off-axis angle 6. Fiber

volume fraction ¥, of desired composite materials, with material properties of each component as

shown in Table 1, is set to be 60%.
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volume fraction ¥, of desired composite materials, with material properties of each component as

shown in Table 1, is set to be 70%.
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in which the scalar weighing factors g, are defined by

Thus, in this paper, the solution of the optimization problem is established by minimizing ! subject to
the imposed constraints. In this, the selection of the magnitudes of the scalar weighing factors a, would

depend on the importance of each objective function to the overall optimization problem.

3.2. Multivariable Non-linear Optimization

In the present work, the corresponding utility functions of each objective function are set as

/ N

x|
Ui =wy [ = 25
m ) )
( E} "
Uy =wyj — (26)
\Em,
W )
Us =—W3( = | (27
\ W )

where W is the specific weight for the dealt-with short-fiber reinforced composite, which is defined in terms

of the fiber volume fraction I, as

W=WV5+Wu(l=Vy) (28)

In equations (25) to (28) above, Wf , W, E and n,~ are set in accordance with the material properties of

the considered E-glass/epoxy short-fiber reinforced composite (Table 1).
Substituting equations (25) to (27) into Eq. (24), the total undesirability of this design problem becomes

N\

'}IH J_+ “2 ‘ km'J"'ﬂ}l WI}.I_} (29)
B W

\Ws ) \ B

u =da

In the present optimization problem, both damping and stiffness are considered to be of about the same

importance; meantime, each is of more significance, to the optimization problem than the specific weight.
Thus, in this paper, the weighing factors are taken as a; = 0.513, ay =0.387 and a3 =0.1. Further, for the
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reasons stated earlier in the paper, the constraints for the optimization problem are set as

0.5<Vf <0.7
1<1/d <100 (30)
0° <8 <90°

3.3 Implementation of Non-Linear Programming

The optimization of this design work takes now the following format:

Minimize u-!
0.5<Vr<0.7

Subject to 1<1/d <100 (€1))]
0° <0 <90°

This is a typical constrained non-linear optimization problem. In order to simplify this problem, one can
adopt the mapping technique (variable transformation technique) to deal with the parametric constraints
referred to above, e.g., Rao /17/. By using this technique, the constrained optimization problem could be

solved by a non-constrained optimization technique.
In the mapping technique, one assumes that there is a minimization problem f(X) where x' =[x ;]

with the parametric constraints set as

I <xi<u; (32)
with j=1,2,3,..,n, i=12,3,..,m

In this context, one can use the general mapping procedure as

xi=1+(u;-1)sin?y, (33)

Therefore, the objective function f(X) changes to f(X*,Y), where y! =[y,] and X" would include
all the components of variable vector X exceptx,. If m = n, f(X",Y) becomes (V).

In this context, the mapping procedure can thus be utilized based upon the above-mentioned parametric

constraints, Eq. (31), as
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0 = 90°in"y|
[/d =1+99%in%y, (34)
vV 7=05+02sin%y;

where yT =[y],y2,y3] represent the mapping variables in the dealt with procedure, Therefore, one can

convert this constrained non-linear optimization problem U""(\H. ljd, vy ), as Eq. (31), to non-
constrained non-linear optimization U !( M, V2, W3 ) and solve this problem by using a non-constrained

optimization technique.

The “Simplex Method”, see Rao /17/, seems to be suitable for this non-constrained non-linear
optimization problem with a relatively small number of variables. In the referred-to method, the movement of
the “Simplex” of n+1 points in n-dimensional space towards an optimal point is achieved by using three
operations known as the “Reflection”, “Contraction” and “Expansion™ techniques.

Following the algorithm of the “Simplex Method”, we implement a Fortran program to solve this

ntimization problem (see Fig. 15 for the pertaining flowchart).

Before running the Fortran program, we have to set a few parameters, namely, a starting point, desired
accuracy of this problem, and a probe length which are used to construct the initial “Simplex”, as well as
“Reflection”, “Expansion” and “Contraction” coefficients, as shown in the “Simplex” flowchart (Fig. 15). By
setting the starting point as ,\/7‘=[0,0,0], the accuracy of this problem as ACCUR =0.001, the probe
length, which is used to construct the initial “Simplex”, as PLE = 0.1, the “Reflection” coefficient as 4 = 1.0,
the “Expansion” coefficient as ¥ = 2.0, and the “Contraction” coefficient as B = 0.5, the final result is given
out as: the optimal fibre off-axis angle &= 44.4°, the optimal fibre volume fraction ¥;= 60.60% and the fibre
aspect ratio /d = 1.50.

These results are in good agreement with the observations made, for instance, by Sun and Gibson /4/ that
for small off-axis angles 6 (say 6 <45"), r, becomes maximum in the whisker or microfiber composites
range (i.e. for very small //d, say I/d < 5) and the stiffness Ey for microfiber and whisker composites is also
relatively high. Therefore, in order to achieve high stiffness £ and high damping #,, microfiber and
whisker composites seem to be the ideal candidates. There is no comment available, in the searched
references, on the influence of fiber volume fraction ¥, on the damping, stiffness and specific weight.

If the starting points, ', are set at various points within the range from [0,0,0] to [95,95,95] and with the
various increments (0.5 or 5.0), and the same input parameters that were used in the above case, one could
get outputs as shown in Table 2. In this case, it is obvious that we get multiple local minima. For each case of
these local minima, the off-axis angle remains almost the same, i.¢., approximately 43.75°, and fiber volume
fraction and fiber aspect ratio change in opposite directions and could be catalogued into two groups, i.€.,
(//d=138, Vy=62%) and (//d =85, Vs ~54%). It is obvious that this interesting observation gives
more flexibility in the design of high performance fiber reinforced composites by using fibers with either
lower fiber aspect ratio, i.e., //d ~1.38 and relatively higher fiber volume fraction, i.e., ¥y ~62%, or a

higher fiber-aspect-ratio, i.e., //d ~ 85 and relatively a lower fiber volume fraction, i.e., Vs =~ 54% .
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INPUT
ACCUR the Accuracy
K the Probe Length
A a Reflection Coefficient
Y an Expansion Coefficient
B a Contraction Coefficient

e

INITIALIZATION
X(1,)) a Initial Point
5(1,) Coordinate Directions
E Convergence Criteria
1=1,2,3, .....N-ILN

Construct starting simplex by
X(I+1,0=X(L]) + K*S(LJ)
Evaluate F at each vertices

al

'S

Determine XO(J), XH(J),XL{J) and
their corresponding FO, FH, FL and
FM Determine XO(J), XH(J),

~

Find XR(J) by reflection
Evaluate FR = F(XR(]))

Find XE(J) by expansion
Evaluate FE = F(XE(J))

NO
Is FE<FR

XH(J) = XR(J)

XHQ) = XE(J) XH(J) = XR(J)

1= 1]

NO
IM=IM+1 Converged ? Find XC(J) by contraction
YES Evaluate FC = F(XC(J))
YES NO

X(LJ) = (X(LJ) + XL(J))

XH(J) = XC(J)

YES

Fig. 15:  Flowchart of “Simplex Optimization Method”.
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Table 2

Optimization results for various starting points Y’

Starting Point Fibre Off-Axis Fibre Aspect Ratio Fibre Volume Local Minima
Angle 9 (°) id Fraction V; (%)
[0, 0, 0] 44.4 1.49 60.6 0.5833
[0.5, 0.5, 0.5] 43.9 83.6 54.2 0.5827
[1.0,1.0, 1.0] 43.9 66.7 54.6 0.5828
[2.5,2.5,2.5] 44.1 1.46 60.8 0.5832
[5.0,5.0, 5.0] 43.9 97.4 54.3 0.5827
[7.5,7.5,7.5] 443 38.2 SS2 0.5830
[10, 10, 10] 43.7 49.7 54.3 0.5829
[15, 15, 15] 44.0 1.47 60.8 0.5832
[20, 20, 20] 43.7 100.0 54.1 0.5827
[25, 25, 25] 43.0 1.05 65.0 0.5837
[30, 30, 30] 43.7 99.8 54.2 0.5827
[35, 35, 35] 43.5 97.0 54.0 0.5827
(40, 40, 40] 44.2 1.44 60.6 0.5832
[45, 45, 45] 43.8 99.1 54.0 0.5827
[50, 50, 50] 43.7 579 54.8 0.5828
[55, 55, 55] 43.7 72.6 53.8 0.5828
[60, 60, 60] 43.3 97.2 53.6 0.5827
[65, 65, 65] 43.4 95.3 53.8 0.5827
[70, 70, 70] 43.7 96.4 54.2 0.5827
[75, 75, 75] 43.4 99.1 53.9 0.5827
(80, 80, 80] 44.8 88.0 54.2 0.5827
(85, 85, 85] 43.8 75.1 54.1 0.5827
[90, 90, 90] 43.5 84.8 54.1 0.5827
[95. 95, 95] 43.2 89.4 8.1 0.5827

Thus, it could be concluded from the above results that, at the small fiber off-axis angle 8 = 43.75° and
by approximately setting fiber aspect ratio at //d ~1.38 or //d =85, the corresponding fiber volume
fraction ¥, reaches about 62% or 54% respectively, we could get maximum damping 7, relatively high

stiffness E. and relatively low specific weight 7 .
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4. CONCLUSIONS
The following conclusions may be drawn of the results obtained in this research:

(i) Analytical predictions which were determined by the “Force-Balance Method® show that damping and
stiffness are functions of fiber off-axis angle, fiber volume fraction and fiber-aspect-ratio. In order to
increase the damping, it is necessary to sacrifice the stiffness, and vice versa.

(i) For a given E-glass/epoxy composite material, the results of optimizing the damping, stiffness and
specific weight show that, approximately at a fiber off-axis angle 8 = 43.75?, by setting the fiber-aspect-
ratio //d ~1.38 or I/d =85, the corresponding fiber volume fraction ¥, reaches 62% or 54%, one could
obtain maximum damping, relatively high stiffness and relatively low specific weight for this class ofi
material.

(iii)The existence of multiple local minima gives more flexibility in the design of high performance short-
fiber reinforced composites, that is, in this research, both the microfiber or whisker composites
(1/d =1.38) and the short-fiber reinforced composites with longer fiber (//d = 85) can be selected as to
the predefined design specifications.

(iv)The “Inverted Utility Function Method” and “Simplex Method" were found to be suitable to deal with the
multiobjective optimisation problem with a relatively small number of variables. The use of the “Variable
Transformation Technique” to convert the constrained non-linear optimisation problem into a non-

constrained non-linear optimisation makes such an optimisation problem much easier to handle.
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