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ABSTRACT 

The effects of selected microstructural parameters, e.g., fiber-aspect-ratio, fiber off-axis angle and fiber 

volume fraction, on the damping and stiffness of polymeric fiber-composite systems are first examined. 

Quasi-static models are, then, developed by using a "Forced Balance Approach" to determine the mechanical 

response properties of a class of polymeric short fiber-reinforced composites, whereby the material is 

assumed to behave in a linear viscoelastic manner. Subsequently, simultaneous optimization of damping, 

stiffness and specific weight is carried out by using the so-called "Inverted Utility Function Method\ The 

obtained results show that polymeric composites reinforced with short aligned-fibers have superior design 

flexibility as compared with those reinforced with long aligned-fibers. 

1. INTRODUCTION 

It is well known that lightweight fibre reinforced polymeric composites have higher specific strength and 

stiffness when compared with conventional materials, such as metals. Much effort has been devoted to the 

improvement and optimisation of these properties in various composite structures. Good vibration damping 

properties are also particularly important for composite structures used under dynamic loading, such as in 

aerospace structures, rotor blades, circuit boards, high-speed printer components, etc. Due in part to the 

extensive use of conventional structural materials, which in general have poor internal damping 

characteristics, the potential for significant improvement and optimisation of damping in advanced fibre 

reinforced composites has not been yet fully realized. Meanwhile, the realization of short fibre reinforcement 
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in composite structures is still quite limited. This may be primarily due to a much wider involvement, from 

scientists and engineers, with the development and use of long aligned (continuous) fibre composites. 

In the conventional damping theory, the damping factor is often assumed to vary comparatively little with 

frequency for a large class of polymers, at temperatures near their glass-transition temperature (Nashif et al. 

I \ l ) . Consequently, a large number of researchers considered the damping factor for this class of materials to 

be constant. However, in the case of fiber-reinforced polymeric composites, and in particular short-fiber 

composites, the damping factor is not only a frequency dependant, but it also varies considerably with the 

micro-structural characteristics, e.g., fiber-aspect-ratio, fiber volume fraction and fiber off-axis angle, e.g. 

Gibson and Yau 121, Gibson et al. 131, Sun et ai 141 and Suarez et αϊ 151. 

The damping properties of long aligned-fiber polymeric composites have been studied by a number of 

researchers, e.g., Bert and Clary 161 and Bert 111. There are, however, relatively few reports concerning the 

damping of short-fiber composites. In this context, studies reported, for instance, by McLean and Read /8/ 

and Gibson et al. 131, indicate that vibration damping properties of fiber-reinforced composites with 

polymeric matrix may be significantly improved and may be readily optimized by using, as a reinforcement, 

short rather than long (continuous) fibers. 

A possible explanation for the above-mentioned advantages concerning the damping of short-fiber 

composites is the presence of shear stress concentration at the ends of fiber-segments, and, thus, the resulting 

shear loading transfer mechanism between the reinforcement and the matrix material. The research work of 

Gibson and Yau 121 and Gibson et al. 131 indicates that by varying the fiber-aspect-ratio and fiber orientation, 

superior damping and stiffness properties could be achieved separately. This observation implies that the 

optimum conditions, in terms of microstructural parameters, for damping may not be necessarily the same for 

stiffness. Consequently, it is important to study the influence of the various governing microstructural 

variables as pertaining to both damping and stiffness. The optimization, in terms of the microstructure, of this 

trade-off between damping and stiffness is the main intention of this paper. 

It is obvious that the most ideal situation for designing a short fiber-reinforced polymeric composite is to 

optimize the damping and stiffness simultaneously with respect to the microstructure controlling parameters. 

In this context, the general procedure of the "Force-Balance Approach", e.g., Sun et αϊ IAI, is used in this 

paper to formulate an analytical model pertaining to the optimization of the damping and stiffness of a class 

of short fiber-reinforced composites. Here, a multi-objective optimization functional is established to 

optimize these two properties simultaneously. 

2. I N F L U E N C E O F SELECTED M I C R O S T R U C T U R A L P A R A M E T E R S 

There appear to be two primary sources of enhanced damping in a polymeric matrix composite: 

(i) the viscoelastic nature of the bulk matrix, and 
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(ii) the friction mechanism at the fiber/matrix interface as caused by the relative motion between the matrix 

and the fiber. 

Both of these effects may prove to be significant in the case of short-fiber composites whereas high shear 

stresses are developed at the fiber-matrix interface. When a short-fiber composite is subjected to a cyclic 

loading, the matrix surrounding the fiber-segment undergoes high cyclic shear strains, thus, producing 

significant viscoelastic energy loss. Shear stress concentration may also induce partial debonding at the 

fiber/matrix interface that would result in a slip between the fiber and the matrix and in accompanying 

frictional losses. Such a fiber/matrix debonding would, however, affect adversely the strength and stiffness of 

the composite. It is, thus, often argued that it may be desirable to have a strong interfacial bond so that slip at 

the interface would not occur. Thus, the most viable mechanism of enhanced dissipation appears to be the 

shear deformation in the matrix caused by shear stress concentration near the fiber ends. Based on the stress 

transfer mechanism between the fiber and the matrix, it is obvious that there are several microstructural 

parameters that might influence the shear stress distribution at the interface. The situation becomes further 

complicated when the interaction between neighboring fibers, in the composite laminate, is taken into 

account. As indicated earlier, the "Force-Balance Approach" is used in this presentation to predict the 

damping and stiffness for this class of materials. 

The basic assumptions for the "Force Balance Approach", as adopted in this paper, are: 

The structural element is composed of an individual round fiber surrounded by a cylindrical matrix, and is 

under a uniaxial tensile loading (Figure 1). 

- Both the fiber and matrix are isotropic. 

- The mechanical response of the matrix is linear viscoelastic. 

- The fiber contributes, to a certain extent, to energy dissipation. 

- There is a perfect bonding between the fiber and the matrix. Further, the fiber/matrix interface is assumed 

to have the same viscoelastic properties of the bulk matrix. 

- The transfer of load between the fiber and the matrix depends upon the difference between the actual 

displacement at a point on the fiber/matrix interface and the displacement that would exist if the fiber 

were not present. 

In the force-balance approach, the expression for the elastic stiffness of the short-fiber composite is 

derived from the average fiber stress as based upon using Cox's analytical model concerning fiber stress 

distribution /9/. Subsequently, the elastic-viscoelastic correspondence principle, e.g., Hashin /10/ and Haddad 

/11-13/, is used to obtain the expression for the complex modulus of the assumed linear viscoelastic 

composite laminate. This involves the replacement of the elastic moduli of the fiber, matrix and composite in 

the expressions resulting from the linear elastic analysis, with the corresponding viscoelastic moduli. In the 

case of sinusoidal loading, the expression for the complex modulus would involve both the storage modulus 

and the associated-with loss modulus. 
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For a typical representative volume element, Figure 1, the expression of the modulus, Ex, of the 

composite along the loading axis may be expressed as, e.g., Agarwal and Broutman /14/, 

1 _ c o s 4 f l | sinA0 
Ex El Et 

1 2VLTΛ 

GLT EL J 
sin2<?cos20 (1) 

where EL, Er and G L I are the longitudinal, transverse, and in-plane shear moduli, respectively. These moduli 

can be expressed, in the case of long-fiber composites, in terms of both the fiber and matrix material 

parameters, i.e., Et, E„„ G/t G„„ etc, and the fiber volume fraction V/, by using, for instance, the rule-of-

mixtures. For short-fiber composites, however, one cannot use the rule-of mixtures to represent the 

longitudinal modulus £ / . For short-fiber composites, the longitudinal modulus EL depends also on the fiber 

aspect ratio, l/d. Based upon the shear-lag model (Cox 191), the longitudinal modulus EL may be expressed for 

the case of short-fiber composite by; see Feng /15/, 
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E,_ = Ef 

where 

2 _ ο G m 

tanh ( / y /2 ) 

W 2) 
V f + E m ( \ - V f ) (2) 

Ef \n(2R/d) 
(3) 

The ratio Ä/tf, where is as illustrated in Figure 1 and d is the diameter of the fiber, is related to the fiber 

volume fraction Vj, for the particular packing array under consideration. For instance, 

' R \ 2 

\6Vf 

8(3 Ky) 

for a square array (4) 

for a hexagonal array (5) 

Based upon the work of Gibson et al. /3/, the packing geometry has an insignificant effect on the 

magnitude of damping. Therefore, we adopt, in the subsequent analysis, expression (4) corresponding to the 

square packing array. Combining, then, equations (3) and (4), it follows that 

(6) 
E f \ η ( π / 4 Κ / ) " 2 

Equation (6) above shows that the parameter χ is essentially a function of fiber/matrix st iffness ratio 

E/G„„ fiber-aspect-ratio l/d, and fiber volume fraction Vj. 

Meanwhile, the transverse modulus E, and the transverse in-plane shear modulus Gu, of the short- fiber 

composite may be considered as independent of fiber aspect ratio l/d. Therefore, one may adopt the 

formalism pertaining to long-fiber composites. In this context, we adopt here the following Halpin-Tsai 

expressions; see Agarwal and Broutman / 14/, 

Er = E„, (1 +2lhVt)/(\-n,Vj) (7) 

GLT=Gm(\ + n 2 V f ) / { \ - n 2 V f ) (8) 

where the coefficients and η2 of the above two equations can be expressed, respectively, as 

nx = [ { E f l E j - m { E I E m ) + 2\ (9) 
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Π 2 = [ ( G / / G m ) - 1][(G// G n ! ) + 1] (10) 

At the same time, the Poisson's ratio vLT of the short-fiber composite, that is assumed to be insensitive 

to fiber length, may be expressed, using a 'rule-of-mixture' form, as 

VLT =vfVf+vmQ~Vf) ( 1 1 ) 

According to the previous assumptions, both fiber and matrix are considered to be linear viscoelastic 
materials. This permits us to use the elastic-viscoelastic correspondence principle to redefine the basic 
material properties within the realm of linear viscoelasticity. Thus, one has 

Ex = Ex = E'x + lEX 

E.i =Ef = E'f+iEf 

Em ~ Em ~ Em + >Em 

Gm = Gm = G'm + iGm 

(12) 

Here, the over-prime designates the storage modulus and the double over-prime identifies the loss 

modulus. Meantime, the damping (loss) factor is defined as the ratio between the loss modulus and the 

storage modulus, i.e., 

He = Ex 1 E'x 
ηf =Ef! E'f 

Um ~ Em ' Em 
iGm = Gm 1 G'm 

(13) 

Upon using Eq. (12), equations (2), (7) and (8) may be written, respectively, as 

E] =(Ej+iE}) 
tanh | 

1 I * 1 
Vf+(E'm+iE:„)( \-Vf) (14) 

1+2 n\V f 
E*T =(E'm +/£;,) 

1" Ί\ v { 
(15) 

I + //2 Vf 
GLT = (G'm + iGm ) 

1-72 Vf 
(16) 
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where 

( 4 - > 

(G'm+iG'J(l/dr 

(E'j + / £ ) ) 1 η ( τ τ / 4 Κ / ) 1 / 2 
(17) 

?7i 
[(E'f+iE"f)/(E'm+iE"m)] + 2 

(18) 

τ;2 = 
[(G'f+iG'f)/(G'm+iG'm)]-\ 

[(G'f+IGy)/(G'm+iG"m)] + \ 
(19) 

Substituting El, £-*• and G*j- from equations (14) to (16) for Eh £ , a n d Gu, respectively, into Eq. (1), and 

also Ex for Ex into the same equation, it follows that 

cos 4 # . s in 4 ^ ^ 

E'x + iE"· El Er 

2VLT 

GLT EL 
s in 2 öcos 2 ö (20) 

Equation (20), above, can then be solved by separating its real and imaginary parts to determine E'x and 

E" for the composite. 

Since the loss moduli are generally small, one may neglect the higher order terms of loss factors such as 

η 2 and ηGm^f • Subsequently, one may obtain the following expression by combining the above-mentioned 

set of equations (17) to (19). 

_ X_ 
Ί Ί ι + -i{nGm -*1f) (21) 

Further, one may use a Taylor 's series approximation and similarly neglect any resulting higher order 

terms in the loss factors to obtain 

. χ* , χ .χ (iGm ~>lf) 
tanh — = tanh — + / -

4 c o s h 2 { χ ! 2 ) 
(22) 

Thus, by combining equations (14) to (22), one determines analytical representations of E'x, E" and ηΧ . 

Among the many microstructural parameters, of the dealt with composite laminate, that may be 

considered for the optimization process, we narrowed down our attention to three parameters, namely, Θ, Vt 

and l/cl, representing, respectively, the fiber off-axis angle with respect to the longitudinal axis χ of the 

laminate (the loading direction), the fiber volume fraction and the fiber aspect ratio. While the optimization 
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model is presented below in a generalized manner, the particular case of E-glass/epoxy composite, Table 1, is 

being dealt with as an illustration. 

For a large class of composite materials used in industry, the fiber volume fraction varies within the range 

of 50% to 70%. Meanwhile, the observation made by Cox 191 shows that, for short-fiber reinforced composite 

materials, the reduction of the effective longitudinal modulus due to the load transfer from fiber to fiber is 

considered significant only for fiber aspect ratios, l/d, less than 100. Therefore, one could set the fiber 

volume fraction to vary within the range from 50% to 70% and the fiber-aspect-ratio to vary within the range 

from 1 to 100. 

Table 1 

Selected material properties of Scotchply 1002 matrix epoxy and Ε-glass fibers at room temperature; 

adapted after Gibson and Plunkett /16/. 

Material Properties Epoxy E-glass 

Young's modulus GPa 3.79 72.40 

Shear modulus GPa 1.38 30.30 

Damping factor 0.015 
1 

0.0014 

Shear damping factor 0.018 0.0014 

Poisson's ratio, ν 0.36 0.2 

Specific gravity, g 1.23 2.54 

Figures 2 to 6 are obtained by setting, respectively, the fibre of-axis angle θ as 0°, 40°, 60°, 80° and 90°, 

and plotting the ratios ηχ / a n d E'x / E'm against the fibre volume fraction Vf and the fibre aspect ratio l/d. 

In these figures, it is clear that with the increase of fibre off-axis angle, the values of the ratio ηχ / η„, are 

increasing, while those for E'x / E'm are decreasing. When the fibre off-axis angle reaches a value between 

40° to 60°, both ηχ / r]m and E'x / E'm curves change their directions, which demonstrate that for a fibre off-

axis angle θ within the range of 40° to 60°, both the ratios ηχ and E'x / E'm reach their extreme values 

(maximum and minimum, respectively) almost simultaneously. 

Figures 7 to 11, which are plotted by setting the fibre aspect ratio l/d as 5, 20, 40, 80 and 100, 

respectively, present the ratios ηχ /η„, and E'x / E'm against the fibre volume fraction Vt and the fibre off-axis 

angle Θ. In these figures, one observes that the value ηχ / ηηι decreases monotonously as the fibre aspect ratio 

l/d increases and for value of l/d> 15, the rate of decrease in value slows down until the fibre aspect ratio l/d 

reaches 20, whereby the value of the ratio ηχ maintains a constant value afterwards. The ratio E'x / E'„, 

also increases sharply until the fibre aspect ratio l/d reaches a value of about 20. With the fibre-aspect-ratio 

ranging from 20 to 60, the ratio E'x / E'm increases slowly with the increase of the fibre-aspect-ratio l/d and 

seems to have a constant value from l/d= 60 upwards. 
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0.50 0 

VjVn, 

1.2 

0.50 0 

Fig. 2: Non-dimensional ratios E'x / E'm and ηχ I η„, vs. fiber volume fraction Vj and fiber aspect ratio l/d. 

Off-axis angle θ of desired composite materials, with material properties of each component as 

shown in Table 1, is set to be 0°. 
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θ = 4 0 " 

n J n m 

1.10 ^ 

1.05 „ 

1.00 

Fig. 3: Non-dimensional ratios E'x / E'm and ηχ!ηηι vs. fiber volume fraction Vj and fiber aspect ratio l/d. 

Off-axis angle θ of desired composite materials, with material properties of each component as 

shown in Table 1, is set to be 40°. 
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θ = 6 0 ° 

0.50 0 

VxlVm 

Fig. 4: Non-dimensional ratios E'x /E'm and ηχ / η η , vs. fiber volume fraction Vj and fiber aspect ratio !/d. 

Off-axis angle θ of desired composite materials, with material properties of each component as 

shown in Table 1, is set to be 60°. 
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vjv, 
0.90 -

0.85 

0.80 

0.75 

0.70 
0.70 

0.50 

Fig. 5: Non-dimensional ratios E'xl E'm and ηχΙηη\ vs. fiber volume fraction Vj and fiber aspect ratio l/d. 

Off-axis angle θ of desired composite materials, with material properties of each component as 

shown in Table 1, is set to be 80°. 
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>lJ>L 

Fig. b: Non-dimensional ratios E'x / E'm and η χ / η Μ vs. fiber volume fraction Kr and fiber aspect ratio l/d. 

Off-axis angle 0 of desired composite materials, with material properties of each component as 

shown in Table 1, is set to be 90°. 
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I / d = 5 

v J v m 

1.2*» 

I.(K 

0.8^ 

0.6-

0 . 4 -

0.2;, 

0.70 
0.65 

l l l r 
WW 

0 . 6 0 " 80 
100 

v . 0.55 
0.50 0 

20 
40 

60 

Fig. 7: Non-dimensional ratios E'x / E'm and ηχ /η„, vs. fiber volume fraction V, and off-axis angle 0. Fiber 

aspect ratio l/d of desired composite materials, with material properties of each component as shown 

in Table 1, is set to be 5. 
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l/d = 20 

0.50 0 

vJn,„ 

Fig. 8: Non-dimensional ratios E'x / E'm and ηχ /ηηι vs. fiber volume fraction Vt and off-axis angle Θ. Fiber 

aspect ratio l/d of desired composite materials, with material properties of each component as shown 

in Table 1, is set to be 20. 
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l/d = 4 0 

Ε,ΊΕ: 

Fig. 9: Non-dimensional ratios E'x / E'm and ηχ / η„, vs. fiber volume fraction F/ and off-axis angle Θ. Fiber 

aspect ratio l/d of desired composite materials, with material properties of each component as shown 

in Table 1, is set to be 40. 
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Ijd = 80 

100 

0.50 

100 

0.50 0 

Fig. 10: Non-dimensional ratios E'x!E'm and ηχ/ηηι vs. fiber volume fraction Vt and off-axis angle Θ. 

Fiber aspect ratio l/d of desired composite materials, with material properties of each component 

as shown in Table 1, is set to be 80. 
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l/d = 100 

100 

0.50 0 

nJrL 

0.50 0 

Fig. 11: Non-dimensional ratios E'x / E'm and ηχ / η η , vs. fiber volume fraction Vf and off-axis angle Θ. 

Fiber aspect ratio l/d of desired composite materials, with material properties of each component 
t 

as shown in Table 1, is set to be 100. 
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By setting the fibre volume fraction Vf at 50%, 60% and 70%, the ratios ηχ / η,„ and E'x / E'm against the 

fibre aspect ratio l/d and the fibre off-axis angle # a r e plotted as shown in Figures 12 to 14. In these figures, 

one can identify that with the increase of the fibre volume fraction, both the ratios ηχ/η„, and E'x / E'„, 

change almost linearly, with the values of the ratio rjx / ηη, are monotonously decreasing and those for 

E'x / E'm are monotonously increasing. 

It is apparent from the obtained results that among the three considered independent variables, the fibre 

off-axis angle 0 has the most significant influence on the damping and stiffness of short fibre-reinforced 

composites. The obtained numerical results appear to be in good agreement with the observations made by 

Gibson et al. /3/, Sun et al. 141, and Suarez et al. 151. 

From the above numerical results, one can observe that in order to increase the damping of a short-fibre-

reinforced composite, it is necessary to sacrifice the stiffness of this material. The analysis of the trade-off 

between damping and stiffness will gain more and more attention from researchers and design engineers, due 

to the high-volume use of composite materials in both aerospace and automotive industries. Therefore, the 

simultaneous optimization of these two properties for the design of high performance short-fibre reinforced 

composite structures becomes remarkably important in the development of structural materials and structural 

dynamics technology. As it is well recognized, one of the most important advantages of a fibre-reinforced 

composite material over its metallic counterparts is its light specific weight. Thus, it is necessary to include 

this property in the dealt-with optimization problem. Thus, the optimization problem will involve the 

maximization of both damping and stiffness and, on the other hand, minimization of the composite specific 

weight. That is, three objective functions are involved in the optimization problem. In this context, the 

"inverted utility function method", e.g., Rao /17/, is adopted in this research to deal with this multi-objectives 

optimization problem. 

3 .1 T h e I n v e r t e d U t i l i t y F u n c t i o n M e t h o d 

In this method, a utility function U, ( f ) is defined for each objective function as 

where f,(X), the rth objective function, with weighing factor as w, ( i= l ,2 , . . . ,k), is to be minimized. In the 

process of optimization, one inverts each utility function and attempts to minimize or reduce the total 

undesirability, whereby 

3. O P T I M I Z A T I O N 

u,=-w,f,(X) (23) 

(24) 
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0 

Fig. 12: Non-dimensional ratios E'x / E'm and ηx I η„, vs. fiber aspect ratio l/d and off-axis angle Θ. Fiber 

vo lume fraction V, of desired composi te materials, with material propert ies of each component as 

shown in Table 1, is set to be 50%. 
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nJnm 

Fig. 13: Non-dimensional ratios E'x / E'm and ηχ / η Μ vs. fiber aspect ratio l/d and off-axis angle Θ. Fiber 

volume fraction V/ of desired composite materials, with material properties of each component as 

shown in Table 1, is set to be 60%. 
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Vf = 7 0 % 

0 0 

0 0 

100 

Fig. 14: N o n - d i m e n s i o n a l r a t ios E'x IE'm and ηχΙη„, vs. f i be r a spec t ra t io l/d and o f f - a x i s a n g l e Θ. F iber 

v o l u m e f r ac t i on Vt o f des i red c o m p o s i t e mate r i a l s , wi th ma te r i a l p r o p e r t i e s o f e a c h c o m p o n e n t as 

s h o w n in T a b l e 1, is set to be 7 0 % . 
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in which the scalar weighing factors a, are defined by 

3 , = — ; Y a , = 1 
W: 

Thus, in this paper, the solution of the optimization problem is established by minimizing U, ' subject to 

the imposed constraints. In this, the selection of the magnitudes of the scalar weighing factors a, would 

depend on the importance of each objective function to the overall optimization problem. 

3.2. Multivariable Non-linear Optimization 

In the present work, the corresponding utility functions of each objective function are set as 

U ι = μ Ί 
rim 

(25) 

Vi = W2 — (26) 

U 3 = -W3 
' W_ (27) 

where W is the specific weight for the dealt-with short-fiber reinforced composite, which is defined in terms 

of the fiber volume fraction Vt as 

W =WfVf +Wm{\-Vf) (28) 

In equations (25) to (28) above, Wf , Wm , E'm and ηm are set in accordance with the material properties of 

the considered E-glass/epoxy short-fiber reinforced composite (Table 1). 

Substituting equations (25) to (27) into Eq. (24), the total undesirability of this design problem becomes 

U~ =a\ 
E'x , 

•
 ai 

Wm 

w 
(29) 

In the present optimization problem, both damping and stiffness are considered to be of about the same 

importance; meantime, each is of more significance, to the optimization problem than the specific weight. 

Thus, in this paper, the weighing factors are taken as a\ = 0.513 , a 2 = 0.387 and a 3 = 0.1. Further, for the 
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reasons stated earlier in the paper, the constraints for the optimization problem are set as 

0.5 <Vf < 0 . 7 

1 < / / ί / < 1 0 0 

0° <θ < 90° 

(30) 

3.3 Implementation of Non-Linear Programming 

The optimization of this design work takes now the following format: 

Minimize 

Subject to 

0.5 <Vf < 0 . 7 

\ < I / d <\00 

0° <θ< 90° 

(31) 

This is a typical constrained non-linear optimization problem. In order to simplify this problem, one can 

adopt the mapping technique (variable transformation technique) to deal with the parametric constraints 

referred to above, e.g., Rao /17/. By using this technique, the constrained optimization problem could be 

solved by a non-constrained optimization technique. 

In the mapping technique, one assumes that there is a minimization problem f ( X ) where χ ' = [ x j ] 

with the parametric constraints set as 

Therefore, the objective function f ( X ) changes to f(X*,Y), where } ' 7 = [>>,] and X* would include 

all the components of variable vector X except x,. If m = n, f ( X ,Y) becomes/(Χ). 

In this context, the mapping procedure can thus be utilized based upon the above-mentioned parametric 

constraints, Eq. (31), as 

/ , < Xj < Uj (32) 

with j = 1, 2, 3,. . . , w; i = 1, 2, 3,.. . , m. 

In this context, one can use the general mapping procedure as 

Xi = /, + ( « / - / / ) s i n 2 ^ , (33) 

1 1 0 
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0 = 90°s\n-y\ 

1 / d = \ + 99sin 2y2 (34) 

K / = 0.5 + 0 .2 s i n 2 W 

τ 1 2 3 

where γ' =[y ,y ,y ] represent the mapping variables in the dealt with procedure. Therefore, one can 

convert this constrained non-linear optimization problem l/d, Vf ) , as Eq. (31), to non-

constrained non-linear optimization y\, yi, yj ) and solve this problem by using a non-constrained 

optimization technique. 

The "Simplex Method", see Rao /17/, seems to be suitable for this non-constrained non-linear 

optimization problem with a relatively small number of variables. In the referred-to method, the movement of 

the "Simplex" of n+1 points in n-dimensional space towards an optimal point is achieved by using three 

operations known as the " R e f l e c t i o n " , "Contraction" and " E x p a n s i o n " techniques. 

Following the algorithm of the "Simplex Method", we implement a Fortran program to solve this 

i t imization problem (see Fig. 15 for the pertaining flowchart). 

Before running the Fortran program, we have to set a few parameters, namely, a starting point, desired 

accuracy of this problem, and a probe length which are used to construct the initial "Simplex", as well as 

"Reflect ion", "Expans ion" and "Contract ion" coefficients, as shown in the "Simplex" flowchart (Fig. 15). By 

setting the starting point as χ ' = [ 0 , 0 , 0 ] , the accuracy of this problem as ACCUR = 0.001 , the probe 

length, which is used to construct the initial "Simplex", as PIE = 0.1, the "Reflect ion" coefficient as A = 1.0, 

the "Expansion" coefficient as Y = 2.0, and the "Contract ion" coefficient as Β = 0.5, the final result is given 

out as: the optimal fibre off-axis angle θ= 44.4°, the optimal fibre volume fraction Vf = 60 .60% and the fibre 

aspect ratio l/d= 1.50. 

These results are in good agreement with the observations made, for instance, by Sun and Gibson /4/ that 

for small off-axis angles θ (say θ < 45° ) , ηχ becomes maximum in the whisker or microfiber composites 

range (i.e. for very small l/d, say l/d < 5) and the stiffness E'x for microfiber and whisker composi tes is also 

relatively high. Therefore, in order to achieve high stiffness E'x and high damping ηχ, microfiber and 

whisker composites seem to be the ideal candidates. There is no comment available, in the searched 

references, on the influence of fiber volume fraction Vf on the damping, stiffness and specific weight. 

If the starting points, Y\ are set at various points within the range from [0,0,0] to [95,95,95] and with the 

various increments (0.5 or 5.0), and the same input parameters that were used in the above case, one could 

get outputs as shown in Table 2. In this case, it is obvious that we get multiple local minima. For each case of 

these local minima, the off-axis angle remains almost the same, i.e., approximately 43.75°, and fiber volume 

fraction and fiber aspect ratio change in opposite directions and could be catalogued into two groups, i.e., 

(l/d » 1 .38, Vf = 6 2 % ) and (l/d χ 8 5 , Vf « 5 4 % ) . It is obvious that this interesting observation gives 

more flexibility in the design of high performance fiber reinforced composites by using fibers with either 

lower fiber aspect ratio, i.e., / / J = 1.38 and relatively higher fiber volume fraction, i.e., Vf « 6 2 % , or a 

higher fiber-aspect-ratio, i.e., l/d ~ 8 5 and relatively a lower fiber volume fraction, i.e., Vf » 54% . 
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INPUT 
A C C U R the Accuracy 

Κ the Probe Length 
A a Reflection Coeff ic ient 

Y an Expansion Coeff ic ient 
Β a Contract ion Coeff ic ient 

INITIALIZATION 
X( 1 ,J) a Initial Point 

S(1,J) Coordinate Directions 
Ε Convergence Criteria 

1=1,2,3, Ν - Ι , Ν 
J = 1,2,3, N-1,N 

IM = 1 

Fig. 15: F l o w c h a r t o f " S i m p l e x O p t i m i z a t i o n M e t h o d " . 
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Table 2 
Τ 

Optimization results for various starting points Y . 

Starting Point Fibre Off-Axis 

Angle θ (°) 

Fibre Aspect Ratio 

lid 

Fibre Volume 

Fraction V, (%) 

Local Minima 

[0, 0, 0] 44.4 1.49 60.6 0.5833 

[ 0 . 5 , 0 . 5 , 0 . 5 ] 43.9 83.6 54.2 0 .5827 

[1.0, 1.0, 1.0] 43.9 66.7 54.6 0 .5828 

[ 2 . 5 , 2 . 5 , 2 . 5 ] 44.1 1.46 60.8 0.5832 

[5.0, 5.0, 5.0] 43.9 97.4 54.3 0 .5827 

[7.5, 7.5, 7.5] 44.3 38.2 55.2 0 .5830 

[10, 10, 10] 43.7 49.7 54.3 0 .5829 

[15, 15, 15] 44.0 1.47 60.8 0 .5832 

[20, 20, 20] 43.7 100.0 54.1 0 .5827 

[ 2 5 , 2 5 , 2 5 ] 43.0 1.05 65.0 0.5837 

[30, 30, 30] 43.7 99.8 54.2 0 .5827 

[35, 35, 35] 43.5 97.0 54.0 0 .5827 

[40, 40, 40] 44.2 1.44 60.6 0.5832 

[ 4 5 , 4 5 , 4 5 ] 43.8 99.1 54.0 0 .5827 

[50, 50, 50] 43.7 57.9 54.8 0 .5828 

[55, 55, 55] 43.7 72.6 53.8 0 .5828 

[60, 60, 60] 43.3 97.2 53.6 0 .5827 

[65 ,65 , 65] 43.4 95.3 53.8 0 .5827 

[70, 70, 70] 43.7 96.4 54.2 0 .5827 

[75, 75, 75] 43.4 99.1 53.9 0 .5827 

[80, 80, 80] 44.8 88.0 54.2 0.5827 

[85, 85, 85] 43.8 75.1 54.1 0.5827 

[90, 90, 90] 43.5 84.8 54.1 0.5827 

[ 9 5 , 9 5 , 9 5 ] 43.2 89.4 53.7 0.5827 

Thus, it could be concluded from the above results that, at the small fiber off-axis angle θ ® 43.75° and 

by approximately setting fiber aspect ratio at l/d& 1.38 or l/d<* 8 5 , the corresponding fiber volume 

fraction Vf reaches about 62% or 54% respectively, we could get maximum damping ηχ, relatively high 

stiffness E[ and relatively low specific weight W . 
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4. C O N C L U S I O N S 

The following conclusions may be drawn of the results obtained in this research: 

(i) Analytical predictions which were determined by the "Force-Balance Method" show that damping and 

stiffness are functions of fiber off-axis angle, fiber volume fraction and fiber-aspect-ratio. In order to 

increase the damping, it is necessary to sacrifice the stiffness, and vice versa. 

( i i )For a given E-glass/epoxy composite material, the results of optimizing the damping, stiffness and 

specific weight show that, approximately at a fiber off-axis angle θ = 43η5° , by setting the fiber-aspect-

ratio l/d « 1.38 or l/d » 85 , the corresponding fiber volume fraction Vj reaches 62% or 54%, one could 

obtain maximum damping, relatively high stiffness and relatively low specific weight for this class of 

material. 

(iii)The existence of multiple local minima gives more flexibility in the design of high performance short-

fiber reinforced composites, that is, in this research, both the microfiber or whisker composites 

(l/d » 1.38 ) and the short-fiber reinforced composites with longer fiber (l/d « 85 ) can be selected as to 

the predefined design specifications. 

(iv)The " Inver ted Utility Function Method' and "Simplex Method" were found to be suitable to deal with the 

multiobjective optimisation problem with a relatively small number of variables. The use of the " Variable 

Transformation Technique" to convert the constrained non-linear optimisation problem into a non-

constrained non-linear optimisation makes such an optimisation problem much easier to handle. 

A C K N O W L E D G M E N T S 

This research was supported by an operating research grant, to the first author, from Natural Sciences and 

Engineering Research Council of Canada. 

5. R E F E R E N C E S 

1. A.D. Nashif , D.I.G. Jones and J.P. Henderson. Vibration Damping, Wiley, New York, 1965. 

2. R.F. Gibson and A. Yau. "Complex moduli of chopped fiber and continuous fiber composites: 

Comparison of measurements with estimated bounds", Journal of Composite Materials, 14, 155-67 

(1980). 

3. R.F. Gibson, S.K. Chaturvedi and C.T. Sun. "Complex moduli of aligned discontinuous fiber-reinforced 

polymer composites", Journal of Materials Science, 17, 1982, 3499-509 (1982). 

4. C.T. Sun, R.F. Gibson and S.K. Chaturvedi. "Internal materials damping of polymer matrix composites 

under off-axis loading", J. Material Science 20, 2575-85 (1985). 



Υ. Μ. Haddad and J. Feng Journal of the Mechanical Behavior of Materials 

5. S.A. Suarez, R.F. Gibson, C.T. Sun and S.K. Chaturvedi. "The influence of fiber length and fiber 

orientation on damping and stiffness of polymer composite materials", Experimental Mechanics, 6, 175-

84 (1986). 

6. C.M. Bert and R.R. Clary. Composite Materials: Testing and Design, ASTM STP 546-The American 

Society for Testing and Materials, Philadelphia, 1974; pp.250-65. 

7. C.M. Bert. "Damping applications for vibrations controls", ASME AMD-38, The American Society of 

Mechanical Engineers, New York, 1980; pp.53-63. 

8. D. Melean and B.E. Read. "Storage and loss moduli in discontinuous composites", Journal of Materials 

Science, 10 ,481-92 (1975). 

9. H.L. Cox. "The elasticity and strength of paper and other fibrous materials", British Journal of Applied 

Physics, 3, 72-84 (1952). 

10. Z. Hashin. "Complex moduli of viscoelastic composites. I. General theory and application to particulate 

composites", International Journal Solids and Structure, 6, 539-52 (1970). 

11. Y.M. Haddad. Viscoelasticity of Engineering Materials, Kluwer, Dordrecht, 1995. 

12. Y.M. Haddad (Editor). Advanced Multilayered and Fiber-Reinforced Composites, Kluwer, Dordrecht, 

1998. 

13. Y.M. Haddad. Mechanical Behaviour of Engineering Materials, Volumes I & II, Kluwer, Dordrecht, 

2000. 

14. B.D. Agarwal and L.J. Broutman. Analysis and Performance of Fiber Composites, Wiley Interscience, 

New York, 1980 

15. J. Feng. On the Viscoelastic Response of Laminated Composites, Masters Thesis, University of Ottawa, 

Ottawa, Canada, 1999. 

16. R.F. Gibson and R. Plunkett. "Dynamic mechanical behaviour of fiber reinforced composites: 

Measurement and analysis", Journal of Composite Materials, 10, 325-41 (1976). 

17. S.S. Rao. Optimization: Theory and Applications, Wiley Eastern Limited, Second Edition, 1984; 

pp.649-51. 

115 




