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ABSTRACT

This work introduces a predictive method in which the fatigue crack propagation is treated in terms of
cumulative damage of volume elements along the crack path. The development of the work includes
considerations about the stress distribution in the cracked body and the stress-life and strain-life relations to
be used in the computational procedure. It is assumed that the scattering of the stress-life data can be
reproduced in the volume elements ahead of the crack, thus allowing probabilistic predictions to be
performed. In order to check the reliability of the model, constant amplitude fatigue crack growth tests with
load ratios of R = 0.1 and R = 0.5 were carried out in two sets of 15 commercial purity titanium sheet

samples and the results were compared to the computational simulations.
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1. INTRODUCTION

The study of fatigue crack propagation (FCP) is aimed at residual life estimations in order to apply the
fail-safe criterion. Usual approaches include the concepts of fracture mechanics in the form of semi-empirical
models based on the well-known “Paris law” of FCP /1/, which considers the stress intensity range, AKX, as
the governing driving force for crack growth. However, these models can lead to a weak correlation between
predictions and the actual lifetime of components. Although the crack closure concept /2/ explains some
effects, like variations on crack growth rate due to load ratio, the difficulties inherent to its measurement

inhibit its employment in a wide range of situations /3/. A unified approach /4/ was proposed, in which load
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ratio effects were recognized as intrinsic to fatigue. Thus, the load dependence arises because of the presence
of two driving forces for fatigue: one represented by the stress intensity range and the other by the peak stress
intensity factor, K.

Despite these improvements, a significant restriction to this methodology is related to the prediction of
the material’s behavior in a wide range of actual loading conditions, as well as in the presence of variable
amplitude loading. Furthermore, it is known that most metallic materials have a polycrystalline
microstructure of random orientation, described by various parameters, which may seriously affect crack
growth. As a result, the deterministic theories of FCP could be accepted only as an approximation of the
phenomenon /5-7/.

On the other hand, the local approach of fracture /8/, in the framework of damage mechanics, may point
at a way to overcome such limitations. In this case, the crack is considered as a set of representative volume
elements in which critical damage conditions were achieved. Various predictive models of FCP were
proposed, using different failure criteria, e.g. absorbed energy /9/ and low cycle fatigue data /10/. Although
they have not achieved a reliability level high enough to be used in design, these models allow for the
intelligent ranking of alloy systems in terms of fatigue crack growth resistance prior to a more specific
fracture mechanics documentation of the selected system. However, there is a lack in the development of
stochastic cumulative damage models /11/, due mainly to the scarcity of experimental data for the validation
of such models.

The aim of this work is to develop a predictive model of FCP that considers the growth of a main crack as
a sequence of failures of damage accumulating volume elements along the crack path. Considerations about
the stress distribution in the cracked body and the stress-life and strain-life relations to be used in the
computational procedure are included. It is assumed that the scattering of the stress-life data can be
reproduced in the volume elements ahead of the crack, thus allowing probabilistic predictions to be
performed. In order to check the reliability of the model, constant amplitude fatigue crack growth tests with
load ratios of R = 0.1 and R = 0.5 were carried out in two sets of 15 commercial purity titanium (ASTM

grade 1) sheet samples and the results were compared to the computational simulations.

2. MODELLING SCHEME

The modelling of fatigue crack growth by methods of continuum damage mechanics is based on three
main keystones: analysis of stress and strain in the cracked body; equation of lifetime reduction as a function
of the stress-strain state and crack advance criterion. In this work, a method for the stress analysis ahead of
the crack is proposed. The stress and strain-life relations are obtained from basic fatigue data and the linear
rule of damage summation is assumed. The fatigue state is described by a scalar damage parameter d, whose
value changes from 0 (undamaged state) to 1 (final fracture). The damage accumulation process is not

restricted to the cyclic plastic zone.
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2.1 Stress field ahead of the crack

The available analytical expression for a mode I crack, given by Eq. (1), is based on the elastic asymptotic
deduced for an infinite plate and valid only in the neighbourhood of the crack tip /12/. In this expression, K;

is the stress intensity factor, as shown by Eq. (2), and r is the distance from the crack tip.

K
ult)= AL "
K; = G(E)O'O\/E 2)

where o, is the stress in the uncracked section, G is a geometric function in which the parameter A is

defined as A = a / w for plane cracked specimens whose width is w.

The plastic zone, as defined by Irwin /13/ or Dugdale /14/, limits the stress on the singularity represented
by the crack tip, but it does not take into account the finite width of the body and its effect on the stress
distribution far from the crack. In order to achieve a better description of the stress field ahead of the crack,
an analytical expression is proposed, based on the numerical analysis performed by the finite element method
(computer program ANSYS®), which showed a smooth transition between the classical asymptotic near the
crack and the external load level along the side boundaries of the sample. Moreover, this approach of the
stress distribution is based on the fundamental hypotheses of continuity and equilibrium, and was developed
in two steps. For the first step, a purely elastic material was assumed, and the stress distribution normal to the

crack path is given by:

o(r)= oy +ou(r)| 1 —( A ]’" 3)

w—a

where m is an adjustment parameter.
The parameter m is calculated by imposing the equilibrium condition given by Eq. (4). The solution for m

can be written as Eq. (5), in which m " is given by Eq. (6), showing that m is a function of A.

w—-a
woy = [o(r)dr 4
0
. — (5)

(6)
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The second step considers a limiting value for the stress, o, in order to take into account the crack tip

plasticity. Hence, the stress distribution is described by the expressions given below, in which r, is the plastic

zone size and @ is a local-stress coefficient.

oy, 0<r<r,

— - m 7
L P T S ’

w—a g

An expression for ¢ is obtained making r = r, and equalizing both parts of the function o'(r) given in

Eq. (7). If B and y are defined according to Eqgs. (8) and (9), then @ can be written in terms of 3, A and v, as
shown in Eq. (10).

B== (8)
w
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The equilibrium condition given by Eq. (4) is then imposed to Eq. (7), leading to:

,Bm+ 0.5

eG(A)yNA|
y(A —fm————Im -1 -2 =0 (1
V ( +ﬁ) P V2 " pe (m+0.5)(l - l)'”

Equation (11) defines a function f{B) = 0, whose solution, that is, the value of B is obtained numerically,

e.g. by the bisection method. In order to use this calculation procedure when a cyclic loading is considered,

O max (Maximum stress of the load cycle) is adopted as . The unloading stress distribution is calculated

by subtracting the elastic stress distribution corresponding to ¢, . (minimum stress of the load cycle) from

min

cr(r) . The first one is obtained by multiplying Eq. (7) by (7 - R). Also in this case, it is necessary to limit the

minimum stress by — ¢, defining the cyclic plastic zone.
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2.2 Discretization of the cracked body

In order to simulate FCP from an initial size a,, a linear path is assumed, which is discretized in a set of ¢
elementary steps with length da. Each one of these steps corresponds to a material’s volume element whose

stress-strain state is considered as uniform. The maximum stress of a load cycle in the volume element
number / after the failure of j elements is written as O, ;, as shown in Fig. 1, and the corresponding stress ratio

isR,,.

ag jda

Fig. 1: Discretization of the cracked body.

2.3 Probabilistic criterion

The discretization procedure allows for the performance of computer simulations of FCP. In each
simulation, a random number generator is employed with the Monte Carlo technique in order to attribute to
each volume element a deviation parameter x;. This parameter is related to the statistical distribution of
fatigue life curves obtained from smooth specimens, as shown in a previous work /15/. Thus, each set of x,

values (i = /, ..., 1) leads to a different crack growth history under the same loading regime.

2.4 Algorithm of FCP calculation

After the initial conditions are established, the logarithimic number of cycles to fracture of the first

volume element is calculated using an appropriate function of the stress-strain state, f{o, R), in the following

form:

n; =[0g(N/):f(al.(J:R/_nlerx.') - (12)
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The damage accumulated in the remaining elements during this period is given by:

d'l = ]0["/—f(U, ,,.R,_,,)(1+x, )] (13)
i ’

for i=2 ... I

The logarithmic number of cycles to each crack increment, An; corresponds to the accumulation of

critical damage in the subsequent volume element, beginning from the damage already accumulated under

the previous increments. According to the linear rule of damage summation, one has:

=1
dj.j =1“Zdj,1 (14)
1=l
leading to:
— f(o"r,‘I»I'Ri.r’—l)(“xj)
AN, =d, 10 (15)

During this period, the remaining elements accumulate the damage:

1. ~ ~ \rs Al
d:_ .= 10["""_1_-/ \ui.,/—l""-J-l/\’T*lll’ (16)

fori=@G+1),..1t

The process is repeated until the total failure of the cracked element.

3. MATERIAL PROPERTIES

Commercially pure (ASTM grade II) titanium was chosen for this work. The basic mechanical properties
of this material are the following: Yield strength oy, = 349 MPa, ultimate tensile strength o, = 488 MPa,

Young’s modulus E = 102.7 GPa, elongation to fracture AL = 26.6%.

The cyclic stress-strain curve at room temperature is given by Eq. (17) /16/.
04
o, =379(100¢,) (17)

where o, is the stress amplitude and ¢, is the total strain amplitude.

By means of low cycle fatigue tests of grade Il titanium samples /17/, the Coffin-Manson equation was

determined, as shown below:
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£,y =0.083(2N) " (18)

where €, is the plastic strain amplitude and 2/ is the number of reversals to fracture.
The Morrow-Landgraf approach /18, 19/ was adopted in order to describe the fatigue behavior under
different stress ratios. A numerical regression was made from experimental stress-life data obtained from

smooth samples /20/, leading to:

-10.408
N=[ O (1= R) ] (19)
1397 = e (1 + R) |
where 0, . is the maximum stress of the load cycle and R is the stress ratio.

4. NUMERICAL SIMULATIONS

Computer simulations of FCP under constant-amplitude loading were performed. The discretized domain
simulated a center-notched specimen with 50 mm in width. Two load ratios were adopted: R = 0.1 and R =
0.5. For each one, 15 FCP curves starting from an initial crack size a, = 7.5mm were generated.

The computer program used Eq. (7) for calculation of the stress field ahead of the crack, where the

coordinate of the volume element number i after the fracture of j elements is given by:
r=(i-j)da (20)

The so-called effective yield strength, given by Eq. (21), was adopted as the value for g,
(21)

In order to specify the functions f{o, R) used by Egs. (12), (13), (15) and (16), the material ahead of the
crack is divided into three parts, as shown in Fig. 2. For the cyclic plastic zone (» < r.), R = -1 and the Coffin-

Manson approach is adopted. In this case, Eq. (17) is used to calculate the total strain amplitude from which
the plastic strain is obtained. If r; < r < r,, the Morrow-Landgraf approach is adopted and thus Eq. (19) is

used. Beyond the plastic zone (r > r,), S/N curves can be used when available, remembering that it is also

possible to adopt the Morrow-Landgraf approach in this case.
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Fig. 2: Stress diagrams and the adopted fatigue life approaches.

5. EXPERIMENTAL PROCEDURE

Fatigue crack growth tests of the titanium sheet (thickness = 1.5 mm) samples were performed in a MTS
servo-hydraulic machine under conditions similar to those adopted for the computer simulations. Stationary
cyclic loading (frequency = 10 Hz) was applied, the maximum load in a cycle being 8.0 kN. A number of 30
center-notched specimens (width = 50 mm, notch length = 12 mm) were tested, 15 of them with a load ratio
R =0.1 and the other 15 with R = 0.5. Initial crack measurements were made from a total crack length of 24,

= 15 mm. Crack size was measured using a travelling microscope (precision = = 0.01 mm).

6. COMPARISON OF RESULTS

The results of the numerical simulations were found to depend on the discretization step da. Thus, a value
for da was chosen, small enough to lead the numerical simulations for both R-ratios to reasonable and stable
results. This value was da = '/,s mm. The numerical results are given in plots of “crack length versus number
of cycles”, as shown in Figs. 3 and 4. The experimental results of FCP tests are presented in the same manner
in Figs. 5 and 6. The simulated and experimental curves have similar shapes, although simulations present
the serrate feature typical for discrete procedures.

Tables 1 and 2 allow for analysis of the numerical results when compared to experiments. These tables
present the mean values (), standard deviation (SD) and coefficient of variation (C,) corresponding to 2.5

mm intervals of crack growth. It can be seen that the simulations predict an initial crack growth faster than
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Fig. 3: Numerical simulations of FCP, R = 0.1.

18 .
Computational Simulations R=0.5 /

Crack Length (mm)

0 15000 30000 45000 60000 75000
Number of Cycles

Fig. 4: Numerical simulations of FCP, R =0.5.

the tests, and this tendency is inverted in the second half of the curves. This may indicate that it is necessary
to perform a more detailed consideration of the complex stress state on the volume elements, leading to
calculations of equivalent stresses. However, the predicted number of cycles to achieve the critical crack

length is very close to the experimental results, especially if the intervals defined by the standard deviation
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Fig. 5: Experimental results, R = 0.1.
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Fig. 6: Experimental results, R = 0.5.
are considered.
Besides, Tables 1 and 2 show that the predicted scattering is lower than that observed in the experiments.

One possible reason for this behaviour is due to the drawing technique employed for the deviation parameter

x. It is known, for example, that if a crack starts growing faster than the average, this tendency is maintained
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Table 1
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Comparison of results for R = 0.1

Simulations Tests
Interval (mm) u+S.D. C, (%) u+S.D. C, (%)
7.5 —>10.0 8588 +207 2.41 9485 £ 245 2.58
10.0 —» 12.5 5373 £113 2.10 5731+ 129 2.25
12.5 > 15.0 3687 + 101 2.74 3519+ 108 3.06
15.0 > 17.5 2539+ 112 4.41 1910+ 119 6.25
Table 2
Comparison of results for R = 0.5
Simulations Tests
Interval (mm) n+S.D. Cv (%) n+S.D. Cv (%)
7.5 > 10.0 32419 +536 1.65 36144 £ 1395 3.86
10.0 — 12.5 18668 +292 1.56 19213 £ 618 &)
12.5 > 15.0 | 12378 +240 1.94 10901 + 232 2.13
15.0 > 17.5 8273+ 179 2.16 6192 +£254 4.10

during the test. Thus, the value of parameter x, for a given volume element should not be fully independent of
the previous elements. Although the drawing of the deviation parameters by the Monte Carlo technique
reproduces the scattering parameters of the fatigue life, this local dependency is ignored, reducing the

scattering of the simulated FCP curves.

7. CONCLUSIONS

The modelling approach developed in this work allowed the obtaining of probabilistic calculations of

FCP, based on the scattering of the fatigue life data for titanium smooth specimens. Considerations about
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equilibrium and the finite width of the body lead to a new equation describing the stress field ahead of the
crack. which is in accordance with FEM calculations. Experimental results of the crack growth tests in
commercial purity titanium showed good agreement with those obtained from computer simulations for the
adopted conditions. These results show that it is possible to obtain reasonable predictions of crack growth
without previous knowledge of FCP data, although a certain dependence on the discretization step was
observed. Further improvements may include generalizations for damage accumulation model, as well as for
stress-strain behaviour of the material. Other materials should also be investigated. in order to check the

proposed model.
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