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ABSTRACT 

This work introduces a predictive method in which the fatigue crack propagation is treated in terms of 

cumulative damage of volume elements along the crack path. The development of the work includes 

considerations about the stress distribution in the cracked body and the stress-life and strain-life relations to 

be used in the computational procedure. It is assumed that the scattering of the stress-life data can be 

reproduced in the volume elements ahead of the crack, thus allowing probabilistic predictions to be 

performed. In order to check the reliability of the model, constant amplitude fatigue crack growth tests with 

load ratios of R = 0.1 and R = 0.5 were carried out in two sets of 15 commercial purity titanium sheet 

samples and the results were compared to the computational simulations. 

K e y w o r d s : fatigue crack propagation, cumulative damage, fracture mechanics, titanium. 

1. INTRODUCTION 

The study of fatigue crack propagation (FCP) is aimed at residual life estimations in order to apply the 

fail-safe criterion. Usual approaches include the concepts of fracture mechanics in the form of semi-empirical 

models based on the well-known "Paris law" of FCP /I / , which considers the stress intensity range, AK, as 

the governing driving force for crack growth. However, these models can lead to a weak correlation between 

predictions and the actual lifetime of components. Although the crack closure concept 121 explains some 

effects, like variations on crack growth rate due to load ratio, the difficulties inherent to its measurement 

inhibit its employment in a wide range of situations /3/. A unified approach 74/ was proposed, in which load 
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ratio effects were recognized as intrinsic to fatigue. Thus, the load dependence arises because of the presence 

of two driving forces for fatigue: one represented by the stress intensity range and the other by the peak stress 

intensity factor, Kmax. 

Despite these improvements, a significant restriction to this methodology is related to the prediction of 

the material 's behavior in a wide range of actual loading conditions, as well as in the presence of variable 

amplitude loading. Furthermore, it is known that most metallic materials have a polycrystalline 

microstructure of random orientation, described by various parameters, which may seriously affect crack 

growth. As a result, the deterministic theories of FCP could be accepted only as an approximation of the 

phenomenon 15-11. 

On the other hand, the local approach of fracture /8/, in the f ramework of damage mechanics, may point 

at a way to overcome such limitations. In this case, the crack is considered as a set of representative volume 

elements in which critical damage conditions were achieved. Various predictive models of FCP were 

proposed, using different failure criteria, e.g. absorbed energy 191 and low cycle fatigue data /10/. Although 

they have not achieved a reliability level high enough to be used in design, these models allow for the 

intelligent ranking of alloy systems in terms of fatigue crack growth resistance prior to a more specific 

fracture mechanics documentation of the selected system. However, there is a lack in the development of 

stochastic cumulative damage models /11/, due mainly to the scarcity of experimental data for the validation 

of such models. 

The aim of this work is to develop a predictive model of FCP that considers the growth of a main crack as 

a sequence of failures of damage accumulating volume elements along the crack path. Considerations about 

the stress distribution in the cracked body and the stress-life and strain-life relations to be used in the 

computational procedure are included. It is assumed that the scattering of the stress-life data can be 

reproduced in the volume elements ahead of the crack, thus allowing probabilistic predictions to be 

performed. In order to check the reliability of the model, constant amplitude fatigue crack growth tests with 

load ratios of R = 0.1 and R = 0.5 were carried out in two sets of 15 commercial purity titanium (ASTM 

grade II) sheet samples and the results were compared to the computational simulations. 

2. M O D E L L I N G S C H E M E 

The modelling of fatigue crack growth by methods of continuum damage mechanics is based on three 

main keystones: analysis of stress and strain in the cracked body; equation of lifetime reduction as a function 

of the stress-strain state and crack advance criterion. In this work, a method for the stress analysis ahead of 

the crack is proposed. The stress and strain-life relations are obtained from basic fatigue data and the linear 

rule of damage summation is assumed. The fatigue state is described by a scalar damage parameter d, whose 

value changes from 0 (undamaged state) to 1 (final fracture). The damage accumulation process is not 

restricted to the cyclic plastic zone. 
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2.1 Stress field ahead of the crack 

The available analytical expression for a mode I crack, given by Eq. (1), is based on the elastic asymptotic 

deduced for an infinite plate and valid only in the neighbourhood of the crack tip /12/. In this expression, Κ) 

is the stress intensity factor, as shown by Eq. (2), and r is the distance from the crack tip. 

where σ0 is the stress in the uncracked section, G is a geometric function in which the parameter λ is 

defined as λ = a / w for plane cracked specimens whose width is w. 

The plastic zone, as defined by Irwin /13/ or Dugdale /14/, limits the stress on the singularity represented 

by the crack tip, but it does not take into account the finite width of the body and its effect on the stress 

distribution far from the crack. In order to achieve a better description of the stress field ahead of the crack, 

an analytical expression is proposed, based on the numerical analysis performed by the finite element method 

(computer program ANSYS®), which showed a smooth transition between the classical asymptotic near the 

crack and the external load level along the side boundaries of the sample. Moreover, this approach of the 

stress distribution is based on the fundamental hypotheses of continuity and equilibrium, and was developed 

in two steps. For the first step, a purely elastic material was assumed, and the stress distribution normal to the 

crack path is given by: 

where m is an adjustment parameter. 

The parameter m is calculated by imposing the equilibrium condition given by Eq. (4). The solution for m 

can be written as Eq. (5), in which m is given by Eq. (6), showing that m is a function of λ. 

(1) 

(2) 

(3) 

(4) 
0 

m (5) m = 

* λ4ϊ (6) m 
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The second step considers a limiting value for the stress, c r / , in order to take into account the crack tip 

plasticity. Hence, the stress distribution is described by the expressions given below, in which r p is the plastic 

zone size and φ is a local-stress coefficient. 

i r ) = 

σ h 

w-a 

0 < r < r, 

r>r„ 
(7) 

An expression for φ is obtained making r = rp and equalizing both parts of the function c r ( r ) given in 

Eq. (7). If β and ψ are defined according to Eqs. (8) and (9), then φ can be written in terms of β, λ and ψ, as 

shown in Eq. (10). 

w 

Ψ = σ 0 

(8) 

(9) 

φ = 

ψ0{λ)«Γλ 1-(,'J m 
(10) 

The equilibrium condition given by Eq. (4) is then imposed to Eq. (7), leading to: 

m + f3-
>m + 0.5 

= 0 (Π) 

Equation (11) defines a function f($) = 0, whose solution, that is, the value of β is obtained numerically, 

e.g. by the bisection method. In order to use this calculation procedure when a cyclic loading is considered, 

O m a x (maximum stress of the load cycle) is adopted as σ 0 · The unloading stress distribution is calculated 

by subtracting the elastic stress distribution corresponding to G m i n (minimum stress of the load cycle) from 

c r ( r ) . The first one is obtained by multiplying Eq. (7) by (1 - R). Also in this case, it is necessary to limit the 

minimum stress by — CT/, defining the cyclic plastic zone. 
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2.2 Discretization of the cracked body 

In order to simulate FCP from an initial size a„, a linear path is assumed, which is discretized in a set o f / 

elementary steps with length da. Each one of these steps corresponds to a material 's volume element whose 

stress-strain state is considered as uniform. The maximum stress of a load cycle in the volume element 

number i after the failure of j elements is written as O u , as shown in Fig. 1, and the corresponding stress ratio 

is R,j. 

A-

Fig. 1: Discretization of the cracked body. 

2.3 Probabilistic criterion 

The discretization procedure allows for the performance of computer simulations of FCP. In each 

simulation, a random number generator is employed with the Monte Carlo technique in order to attribute to 

each volume element a deviation parameter x,. This parameter is related to the statistical distribution of 

fatigue life curves obtained from smooth specimens, as shown in a previous work /15/. Thus, each set o f x , 

values (i = 1, ..., t) leads to a different crack growth history under the same loading regime. 

2.4 Algorithm of FCP calculation 

After the initial conditions are established, the logarithimic number of cycles to fracture of the first 

volume element is calculated using an appropriate function of the stress-strain state, f(o, R), in the following 

form: 

+ (12) 
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The damage accumulated in the remaining elements during this period is given by: 

( 1 3 ) 

for / = 2 t. 

The logari thmic number of cycles to each crack increment, Δη,·, corresponds to the accumulat ion of 

critical damage in the subsequent volume element, beginning f rom the damage already accumulated under 

the previous increments. According to the linear rule of damage summation, one has: 

d j j = 1 - { L d j j <14> 
1=1 

leading to: 

Δ N j ^ d j j l O ^ - ' · ^ - ' ^ (15) 

During this period, the remaining elements accumulate the damage: 

d (16) 

for i = 0+ 1), •••· <• 

The process is repeated until the total failure of the cracked element. 

3. M A T E R I A L P R O P E R T I E S 

Commerc ia l ly pure ( A S T M grade II) t i tanium was chosen for this work. The basic mechanical propert ies 

of this material are the following: Yield strength a y , = 349 MPa , ultimate tensile strength σ„ = 4 8 8 MPa , 

Y o u n g ' s modulus E = 102.7 GPa , elongation to fracture AL = 26 .6%. 

The cyclic stress-strain curve at room temperature is given by Eq. (17) /16/. 

σα=379(ΐ00εα)"4 (17) 

where aa is the stress ampli tude and za is the total strain ampli tude. 

By means of low cycle fat igue tests of grade II t i tanium samples /17/, the Cof f in -Manson equat ion was 

determined, as shown below: 
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εαρ= 0.083(2Ν)'0 42 (18) 

where zap is the plastic strain amplitude and 2N is the number of reversals to fracture. 

The Morrow-Landgraf approach /18, 19/ was adopted in order to describe the fatigue behavior under 

different stress ratios. A numerical regression was made from experimental stress-life data obtained from 

smooth samples /20/, leading to: 

2 Ν = 

~\-l 0.408 

1397 - σmax(l + R) _ 

where CTmax is the maximum stress of the load cycle and R is the stress ratio. 

(19) 

4. NUMERICAL SIMULATIONS 

Computer simulations of FCP under constant-amplitude loading were performed. The discretized domain 

simulated a center-notched specimen with 50 mm in width. Two load ratios were adopted: R = 0.1 and R = 

0.5. For each one, 15 FCP curves starting from an initial crack size a0 = 7.5mm were generated. 

The computer program used Eq. (7) for calculation of the stress field ahead of the crack, where the 

coordinate of the volume element number i after the fracture o f j elements is given by: 

r = {i- j)da (20) 

The so-called effective yield strength, given by Eq. (21), was adopted as the value for σ ; 

σ - 1 J Ü UJ. (21) 
' 2 

In order to specify the functions f(o, R) used by Eqs. (12), (13), (15) and (16), the material ahead of the 

crack is divided into three parts, as shown in Fig. 2. For the cyclic plastic zone (r <; rc), R = -1 and the Coffin-

Manson approach is adopted. In this case, Eq. (17) is used to calculate the total strain amplitude from which 

the plastic strain is obtained. If rc < r <. rp, the Morrow-Landgraf approach is adopted and thus Eq. (19) is 

used. Beyond the plastic zone (r > rp), S/N curves can be used when available, remembering that it is also 

possible to adopt the Morrow-Landgraf approach in this case. 
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Fig. 2: Stress diagrams and the adopted fat igue life approaches . 

5. E X P E R I M E N T A L P R O C E D U R E 

Fatigue crack growth tests of the titanium sheet ( thickness = 1.5 mm) samples were per formed in a M T S 

servo-hydraulic machine under condit ions similar to those adopted for the computer simulations. Stationary 

cyclic loading ( f requency = 10 Hz) was applied, the maximum load in a cycle being 8.0 kN. A number of 30 

center-notched specimens (width = 50 mm, notch length = 12 mm) were tested, 15 of them with a load ratio 

R = 0.1 and the other 15 with R = 0.5. Initial crack measurements were made f rom a total crack length of 2an 

= 15 mm. Crack size was measured using a travell ing microscope (precision = ± 0.01 mm). 

6. C O M P A R I S O N O F R E S U L T S 

The results of the numerical simulations were found to depend on the discretization step da. Thus , a value 

for da was chosen, small enough to lead the numerical s imulations for both R-ratios to reasonable and stable 

results. This value was da = '/7S mm. The numerical results are given in plots of "crack length versus number 

of cycles", as shown in Figs. 3 and 4. The experimental results of FCP tests are presented in the same manner 

in Figs. 5 and 6. The simulated and experimental curves have similar shapes, al though s imulat ions present 

the serrate feature typical for discrete procedures. 

Tables 1 and 2 allow for analysis of the numerical results when compared to experiments . These tables 

present the mean values (μ), standard deviation (SD) and coeff ic ient of variation (Cv) cor responding to 2.5 

mm intervals of crack growth. It can be seen that the simulations predict an initial crack growth faster than 

80 



C.A.R.P. Baptistaand V.A. Pastoukhov Journal of the Mechanical Behavior of Materials 

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 

Number of Cycles 

Fig. 3: Numerical simulations of FCP, R = 0.1. 

15000 30000 45000 

Number of Cycles 

60000 75000 

Fig. 4: Numerical simulations of FCP, R = 0.5. 

the tests, and this tendency is inverted in the second half of the curves. This may indicate that it is necessary 

to perform a more detailed consideration of the complex stress state on the volume elements, leading to 

calculations of equivalent stresses. However, the predicted number of cycles to achieve the critical crack 

length is very close to the experimental results, especially i f the intervals defined by the standard deviation 
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Number of Cycles 

Fig. 5: Experimental results, R = 0.1. 

Number of Cycles 

Fig. 6: Experimental results, R = 0.5. 

are considered. 

Besides, Tables 1 and 2 show that the predicted scattering is lower than that observed in the experiments. 

One possible reason for this behaviour is due to the drawing technique employed for the deviation parameter 

x. It is known, for example, that if a crack starts growing faster than the average, this tendency is maintained 
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Table 1 

Comparison of results for R = 0.1 

Simulations Tests 

Interval (mm) μ ± S.D. Cv (%) μ ± S.D. Cv (%) 

7.5 10.0 8588 + 207 2.41 9485 ± 245 2.58 

10.0-» 12.5 5373 ± 113 2.10 5731+129 2.25 

12.5 -> 15.0 3687 + 101 2.74 3519+108 3.06 

15.0 —» 17.5 2539 ±112 4.41 1910+119 6.25 

Table 2 

Comparison of results for R = 0.5 

Simulations Tests 

Interval (mm) μ ± S.D. Cv (%) μ ± S.D. Cv (%) 

7.5 10.0 32419 + 536 1.65 36144+ 1395 3.86 

10.0-> 12.5 18668 + 292 1.56 19213 ± 618 3.22 

12.5 -> 15.0 12378 + 240 1.94 10901 +232 2.13 

15.0 —» 17.5 8273 ±179 2.16 6192 ±254 4.10 

during the test. Thus, the value of parameter*, for a given volume element should not be fully independent of 

the previous elements. Although the drawing of the deviation parameters by the Monte Carlo technique 

reproduces the scattering parameters of the fatigue life, this local dependency is ignored, reducing the 

scattering of the simulated FCP curves. 

7. C O N C L U S I O N S 

The modell ing approach developed in this work allowed the obtaining of probabilistic calculations of 

FCP, based on the scattering of the fatigue life data for titanium smooth specimens. Considerat ions about 
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equil ibrium and the finite width of the body lead to a new equation describing the stress field ahead of the 

crack, which is in accordance with FEM calculations. Experimental results of the crack growth tests in 

commercia l purity titanium showed good agreement with those obtained from computer s imulat ions for the 

adopted condit ions. These results show that it is possible to obtain reasonable predict ions of crack growth 

without previous knowledge of FCP data, al though a certain dependence on the discretization step was 

observed. Further improvements may include general izat ions for damage accumulat ion model , as well as for 

stress-strain behaviour of the material. Other materials should also be investigated, in order to check the 

proposed model . 
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