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ABSTRACT

The purpose of this work is to outline a systematic strategy for the analysis of damaged composite
materials using the homogenization method. It is noted that this work does not provide specific models for
the analysis of damaéed composites. However, it provides guidelines with schematic diagrams based on a
sound systematic strategy envisioned by the authors. A framework is built using special generalized
equations that can be used by researchers to derive specific formulations and models based on their needs. It
should be emphasized that the models derived must fit within the framework outlined in this work. Three
types of homogenization methods are proposed to analyze damaged composite materials — overall

homogenization, local homogenization, and mixed homogenization.

1. INTRODUCTION

The homogenization method has been used extensively in the literature to analyze undamaged composite
materials /1-3/. Originally, the homogenization method was formulated to solve equations with differential
operators with periodically and rapidly oscillating coefficients /4,5/. It was applied later to composite
materials because of their periodic structure. However, the method does not seem to have been applied to
damaged composite materials yet — this is exactly the subject of this work.

Continuum damage mechanics has been used extensively in the past to analyze both damaged metals and
composite materials /6-10/. The formulation of damage mechanics is usually based on the concept of

effective stress originally introduced by Kachanov /11/. In this work, it is proposed to use a new general
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method for damage mechanics based on homogenization in which the concept of effective stress would be
utilized only as a special case.

The homogenization method can be used theoretically with modifications to analyze damaged materials
with voids, cracks, microvoids, and microcracks. However, because the distribution of these defects is
usually random with a nonperiodic structure, the homogenization method as it is available today cannot be
used directly to solve these problems. The homogenization method needs to be modified in order to use it to
solve problems with nonperiodic structures like damaged and fissured materials. In this work, it is assumed
that such a method can be devised and will be available for use. It is noted that formulating the exact details
of this modified homogenization method is a mathematical problem that is beyond the scope of this work.

The concept of effective stress as used in continuum damage mechanics can be viewed as a special model
or case of the modified homogenization method. Since a modified homogenization method has not yet been
developed for randomly damaged media, damage mechanics can be used in its place in this work but only as
a special case.

The homogenization method can be used in different ways to attack the problem of damaged composite
materials. First, an overall homogenization method is outlined where the damage in the composite material is
homogenized as one medium. This is followed by a local homogenization method where each of the
composite constituents (matrix, fibers, and interface) is homogenized separately. Finally, a mixed
homogenization method is outlined in which only one or two of the composite constituents is homogenized
separately. It turns out that mixed homogenization can be performed in several ways — a total of six mixed

homogenization approaches are proposed.

2. HOMOGENIZATION OF UNDAMAGED COMPOSITES

The method of homogenization of undamaged composites has been studied extensively in the literature
/12-14/. The method is used to determine what are called effective material parameters for the composite.
However, in this work the word “homogenized” material parameters will be used instead. The word
“effective” material parameters will be reserved for parameters associated with the effective configuration of
undamaged material (see the next section for more details).

The process of homogenization of undamaged composite media is illustrated in Figure 1. The
homogenizing transformation H' is used to represent the homogenization of the composite material where
the superscript C is used to denote the composite material. The composite material is assumed to be
composed of three constituents — matrix, fibers, and interface, denoted by the superscripts M, F, and /
respectively. It should be noted that the composite material is exactly the union of M, F, and /, that is,
Co=MUF Ul , where C, denotes the undamaged composite configuration. In Figure 1-a, the undamaged
composite configuration is shown where all three constituents are assumed to be undamaged. The

homogenized composite configuration, denoted by C, is shown in Figure 1-b.
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Fig. 1: Homogenization of Undamaged Composites
Next, the following generalized framework relation can be obviously written:
C=H"“(M,F,I) ey

where I represents a general homogenization procedure from the constituents M, F, and  to C. The nature
of K and the exact details are available in the literature on homogenization of undamaged periodic structures
/1-3/. The interested researchers may pick the method of homogenization of their choosing to insert in this
part of the formulation. It is again emphasized that no specific model will be utilized in this work — only a
general framework and guidelines will be provided. It should be emphasized that the function H is always a
function of three arguments in this work.

In equation (1), homogenized mechanical quantities may be used for C like the effective elastic modulus,
while constituent related quantities may be used for M, F, and / such as the matrix elastic modulus, fiber
elastic modulus, and interface elastic modulus. Other quantities related to the constituents may also be used

such as the matrix stress, matrix strain, fiber stress, fiber strain, interface stress, and interface strain..

3. HOMOGENIZATION OF DAMAGED METALS
The homogenization method can theoretically be modified to be applied to damaged metals with

inclusions like voids, cracks, microvoids, and microcracks. However, the authors are not aware of any

available works in the literature that have used homogenization for damaged metals. It is assumed in this
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work that such a modified procedure is or will be available to the researcher. In case that such a procedure is
not developed mathematically, then the concept of effective stress within the framework of continuum
damage mechanics can be used instead, but only as a special case. Actually, damage mechanics as applied
through the effective stress concept may be regarded as some form of homogenization of the damaged metal.
In this case, the effective undamaged configuration will be identical to the homogenized configuration. It
should be mentioned that Attouch and Murat /15/ performed a study on the homogenization of fissured

elastic materials. For the damage mechanics literature, see references /16-30/.
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Fig. 2: Homogenization of Damaged Metals

The process of homogenization of damaged metals is illustrated in Figure 2. The homogenizing
transformation H'' is used to represent the homogenization of the damaged metal where the superscript D is
used to denote the damaged metal configuration. The damaged metal is assumed to include voids, cracks and
other types of inhomogenities. In Figure 2-a, the damaged metal configuration, denoted by C, is shown. The
homogenized metal configuration, denoted by C , is shown in Figure 2-b.

Next, the following generalized framework relation can obviously be written:

C=HP©) ()

where H” represents a general homogenization procedure from the damage configuration C to the effective

undamaged configuration C . The nature of /" and the exact details may not be available in the literature.

However, a continuum damage mechanics model may be used here where the fourth-order damage effect
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tensor M can be used for H' in equation (2) — see reference /6/. It is again emphasized that no specific model
will be utilized in this work — only a general framework and guidelines will be provided. It is also
emphasized that the function H” is always a function of one argument in this work.

In equation (2), mechanical quantities related to the damaged metal may be used for C like the elastic
modulus, while effective quantities may be used for C like the effective elastic modulus. Other quantities
related to the damaged and effective configurations may be used also like the stress tensor and strain tensor
for C, and the effective stress tensor and the effective strain tensor for C . For the general case of anisotropic
damage, tensors will be used for the stresses and strains — therefore, the transformation H” will be a tensor-

valued function.

4. HOMOGENIZATION OF DAMAGED COMPOSITES

The application of the homogenization method to damaged composite materials has not been
systematically investigated in the literature. Voyiadjis and Deliktas /31/ and Voyiadjis and Park /32/
investigated the coupling of damage and inelastic deformation in metal matrix composites but without using
the homogenization method. It is the purpose of this work to provide a general framework in which damaged
composites can be analyzed by homogenization through the use of a consistent and systematic procedure.
The authors have concluded that this process may be achieved through several approaches that may be
followed. Actually, in this case, a form of double homogenization may be needed — the first homogenization
for the damaged configuration followed by a second homogenization for the composite constituents. The
order of the two homogenizations may also be reversed thus giving rise to another model that should
theoretically be equivalent to the first model. In this section, this order of homogenizations is investigated in

detail where three methods are outlined in the following subsections.

4.1 Overall Homogenization Method

Analysis of damaged composite materials using an overall approach has been studied before in the
literature /33/ but not using homogenization. The overall homogenization method is the simplest method
proposed to analyze damaged composite materials. It utilizes a double homogenization technique as
illustrated in Figure 3. The term “double homogenization” is used to mean that two homogenizing
transformations are used in sequence in the model. Figure 3-a shows the damaged composite configuration
C,, which is composed of the three constituents M, F, and /, denoting the matrix, fibers, and interface
respectively. Figure 3-b shows the damaged homogenized composite configuration C, while Figure 3-c

shows the effective homogenized composite configuration C.
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Fig. 3: Overall Homogenization Method

The overall homogenization of the damaged composite configuration is performed in two steps in sequence

as follows:

1. The homogenizing transformation H“ is used to obtain the damaged homogenized composite

configuration C. This step can be represented using the following framework relation.

C=HSM,F,I) 3)
It is noted that equation (3) looks identical to equation (1) except for the fact that both configurations in
equation (1) are undamaged (see Figure 1) while both configurations in equation (3) are damaged (see

Figure 3).

2. The homogenizing transformation H* is then used to obtain the effective homogenized composite

configuration C from C. This step can be represented using the following framework relation.
C=H() @)
It is noted that equation (4) is exactly identical to equation (2) .

Substituting equation (3) into equation (4), we obtain the general transformation for the overall

homogenization method as follows.

C=HPWH (M,F,D) 5)
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In equation (5), effective homogenized mechanical quantities may be used for C like the effective elastic
modulus and the effective elasto-plastic modulus, while constituent related quantities may be used for M, F,
and [ like the matrix elastic or elasto-plastic modulus, fiber elastic or elasto-plastic modulus, and interface
elastic or elasto-plastic modulus. Other quantities related to the constituents may be used also like the matrix
stress, matrix strain, fiber stress, fiber strain, interface stress, and interface strain. In this method, the
complete composite material is homogenized as one medium without distinguishing between the matrix,

fibers, and interface. This is especially true of the second step outlined above.

4.2 Local Homogenization Method

Analysis of damaged composite materials using a local approach has been studied before in the literature
/34/ but not using homogenization. The local homogenization method is the second simplest method
proposed to analyze damaged composite materials. It utilizes a quadruple homogenization technique as
illustrated in Figure 4. The term “quadruple homogenization” is used to mean that four homogenizing
transformations are used in the model — three in parallel and one in sequence. Figure 4-a shows the damaged
composite configuration C,, which is composed of the three constituents M, F, and /, denoting the matrix,
fibers, and interface respectively. Figure 4-b shows the effective composite configuration Cp, which is
composed of the three constituents M, F,and I, denoting the effective matrix, fiber, and interface
configurations, respectively. Finally, Figure 4-c shows the effective homogenized composite configuration

C.
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Fig. 4: Local Homogenization Method

The local homogenization of the damaged composite configuration is performed in two steps in sequence

as follows:
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1. The three homogenizing transformations H]D, HZD, and H3D are used in parallel to obtain the effective

composite configuration Co . This step can be represented using the following three framework relations.

M=HP M)
= Hy D(F) (6)
7=H3 ()

It is noted that equations (6) are in fact identical to equation (2) except for the fact that in this step, each
constituent configuration is homogenized separately. This is the reason why we need three homogenizing

transformations working in parallel — one for each of the three constituents.

2. The homogenizing transformation H* is then used to obtain the effective homogenized composite
configuration C from Co . This step can be represented using the following framework relation.

C=H"(M,F,T) ()
It is noted that equation (7) is similar to equation (1) although effective quantities are used in equation (7).

Substituting equations (6) into equation (7), we obtain the general transformation for the local

homogenization method as follows:
C = HE(HP (M), HY (F),HY (1) 8)

In equation (8), effective homogenized mechanical quantities may be used for C like the effective elastic
modulus and the effective elasto-plastic modulus, while constituent related quantities may be used for M, F,
and 7 like the matrix elastic or elasto-plastic modulus, fiber elastic or elasto-plastic modulus, and interface
elastic or elasto-plastic modulus. Other quantities related to the constituents may also be used like the matrix
stress, matrix strain, fiber stress, fiber strain, interface stress, and interface strain. This type of
homogenization is important particularly in composites where damage may be primarily isolated at the
interface between the metal matrix and the ceramic fibers. In that case identity tensors may be used to
represent the damage in the metal matrix and the ceramic fiber.

In comparing equations (5) and (8) for the overall and local homogenization methods, respectively,
caution must be employed so as not to expect similar results. Theoretically, we should expect equations (5)
and (8) to yield identical results. However, the complexities of the models to be employed may prevent us
from proving the equivalence of these two methods analytically — although the final numerical results should

be similar.
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4.3 Mixed Homogenization Methods

One may choose to initially homogenize one or two constituents only using one or two of the three

homogenizing transformations HID, HZD, and H3D, and follow this first step with reaching an effective

homogenized composite configuration, leaving the remaining constituent(s) to be homogenized in a last third
step. These three steps constitute what is called a mixed homogenization method. This process can be
performed in six different ways, thus leading effectively to six different mixed homogenization methods.
These mixed methods are illustrated schematically in Figures (5) to (10). One may wish to utilize a mixed
method of homogenization if one wants to isolate the effect of damage in one of the constituents or in two
constituents operating in parallel. In the remaining part of this section, details of the six methods are outlined.

The first mixed homogenization method is illustrated in Figure 5. In this method, four homogenizing
transformations are used in three steps. The matrix and fibers are homogenized in parallel in the first step,
while the interface is homogenized separately in the third step. Figure 5-a shows the damaged composite
configuration while Figure 5-b shows the effective composite configuration with interfacial damage. Figure
5-c shows the effective homogenized composite configuration with interfacial damage while Figure 5-d

shows the effective homogenized composite configuration.

ol

(a) (b) (©) (d

Damaged Effective Effective Effective
Composite Composite Homogenized Homogenized
Configuration Configuration Composite Composite
with Configuration Configuration
Interfacial with Interfacial
Damage Damage

Fig. 5: First Mixed Homogenization Method

The first mixed homogenization of the damaged composite configuration is performed in three steps in

sequence as follows:

1. The two homogenizing transformations HID and HZD are used in parallel to obtain the effective

composite configuration with interfacial damage. This step can be represented using the following two

framework relations.
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€))

2. The homogenizing transformation H* is then used to obtain the effective homogenized composite

configuration with interfacial damage C . This step can be represented using the following framework

relation.

C=HCSM,F,D (10)
3. The homogenizing transformation H3D is finally used to obtain the effective homogenized composite

configuration C from C . This step can be represented using the following framework relation.
C=HP(©C) (1)

Substituting equations (9) into equation (10), and then substituting the resulting equation into equation

(11), we obtain the general transformation for the first mixed homogenization method as follows.
C = HY (HE(HP (M), HY (F), 1)) (12)

It is noted that in this method the interfacial damage is isolated to be dealt with in the last step.

The second mixed homogenization method is illustrated in Figure 6. In this method, three homogenizing
transformations are used in three steps. The interface is homogenized in the first step, while the matrix and
fibers are homogenized in parallel in the third step. Figure 6-a shows the damaged composite configuration
while Figure 6-b shows the effective composite configuration with matrix and fiber damage. Figure 6-c
shows the effective homogenized composite configuration with matrix and fiber damage while Figure 6-d
shows the effective homogenized composite configuration.

The second mixed homogenization of the damaged composite configuration is performed in three steps in

sequence as follows:

1. The homogenizing transformation H3D is used alone to obtain the effective composite configuration with

matrix and fiber damage. This step can be represented using the following framework relation.

T=H(1) (13)
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2. The homogenizing transformation H* is then used to obtain the effective homogenized composite

configuration with matrix and fiber damage C . This step can be represented using the following

framework relation.
C=H“M,F,I) (14)

3. The homogenizing transformation H'.D: is finally used to obtain the effective homogenized composite

configuration C from C . This step can be represented using the following framework relation.

C= H,g (©) (15)

HP2 C
(@) (b) ©) (d)
Damaged Effective Effcctive Effective
Composite Composite Homogenized 1lomogenized
Configuration Configuration Composite Composite
with Matrix and Configuration with Configuration
Fiber Damage Matrix and Fiber
Damage

Fig. 6: Second Mixed Homogenization Method

Substituting equation (13) into equation (14), and then substituting the resulting equation into equation

(15), we obtain the general transformation for the second mixed homogenization method as follows.

C=HE(H (M, F,HP () (16)

It is noted that in this method there is a coupling between the damage in the matrix and the damage in the
fibers, while the interfacial damage is isolated and dealt with in the first step.

The third mixed homogenization method is illustrated in Figure 7. In this method, four homogenizing
transformations are used in three steps. The interface and fibers are homogenized in parallel in the first step,
while the matrix is homogenized separately in the third step. Figure 7-a shows the damaged composite

configuration while Figure 7-b shows the effective composite configuration with matrix damage. Figure 7-c
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shows the effective homogenized composite configuration with matrix damage while Figure 7-d shows the

effective homogenized composite configuration.

(@) (b) © (d)
Damaged Effective Effective Effective
Compostte Composite Homogenized Homogenized

Configuration Configuration wit h Composite Composite
Matrix Damage Configuration with Configuration
Matrix Damage

Fig. 7: Third Mixed Homogenization Method
The third mixed homogenization of the damaged composite configuration is performed in three steps in

sequence as follows:
I. The two homogenizing transformations HP and HL are used in parallel to obtain the effective
g g 5 3 P

composite configuration with matrix damage. This step can be represented using the following two

framework relations.

(7

HY (F)
H (1)

F
T

2. The homogenizing transformation H' is then used to obtain the effective homogenized composite
configuration with matrix damage C . This step can be represented using the following framework

relation.

C=H"(M,F,I) (18)
3. The homogenizing transformation Hl") is finally used to obtain the effective homogenized composite

configuration C from C . This step can be represented using the following framework relation.

(19)

C=H(C)
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Substituting equations (17) into equation (18), and then substituting the resulting equation into equation

(19), we obtain the general transformation for the third mixed homogenization method as follows.

C=HPHE M, HP(F),HP (1)) (20)

It is noted that in this method the matrix damage is isolated to be dealt with in the last step.

The fourth mixed homogenization method is illustrated in Figure 8. In this method, three homogenizing
transformations are used in three steps. The matrix is homogenized in the first step, while the interface and
fibers are homogenized in parallel in the third step. Figure 8-a shows the damaged composite configuration
while Figure 8-b shows the effective composite configuration with interfacial and fiber damage. Figure 8-c
shows the effective homogenized composite configuration with interfacial and fiber damage while Figure 8-d

shows the effective homogenized composite configuration.

ol

(@ (b) (©) (d)
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Fig. 8: Fourth Mixed Homogenization Method

The fourth mixed homogenization of the damaged composite configuration is performed in three steps in

sequence as follows:

1. The homogenizing transformation H.I"j is used alone to obtain the effective composite configuration with

interfacial and fiber damage. This step can be represented using the following framework relation.

M=H (M) 21)
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2. The homogenizing transformation H° is then used to obtain the effective homogenized composite

configuration with interfacial and fiber damage C . This step can be represented using the following

framework relation.
C=HCWM,F,I (22)

3. The homogenizing transformation HZD_3 is finally used to obtain the effective homogenized composite

configuration C from C . This step can be represented using the following framework relation.

C=HP(C) (23)

Substituting equation (21) into equation (22), and then substituting the resulting equation into equation

(23), we obtain the general transformation for the fourth mixed homogenization method as follows.

C=H2(HE(HP (M), F, 1) (24)

It is noted that in this method there is a coupling between the damage in the interface and the damage in
the fibers, while the matrix damage is isolated and dealt with in the first step.

The fifth mixed homogenization method is illustrated in Figure 9. In this method, four homogenizing
transformations are used in three steps. The interface and matrix are homogenized in parallel in the first step,
while the fibers are homogenized separately in the third step. Figure 9-a shows the damaged composite
configuration while Figure 9-b shows the effective composite configuration with fiber damage. Figure 9-c
shows the effective homogenized composite configuration with fiber damage while Figure 9-d shows the
effective homogenized composite configuration.

The fifth mixed homogenization of the damaged composite configuration is performed in three steps in

sequence as follows:

1. The two homogenizing transformations HlD and H3D are used in parallel to obtain the effective

composite configuration with fiber damage. This step can be represented using the following two

framework relations.

M=HS (M)

- (25)
T=H2(D)
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Fig. 9: Fifth Mixed Homogenization Method

2. The homogenizing transformation H* is then used to obtain the effective homogenized composite

configuration with fiber damage C . This step can be represented using the following framework relation.
C=H"WM,F.,I) (26)

3. The homogenizing transformation H; is finally used to obtain the effective homogenized composite

configuration C from C . This step can be represented using the following framework relation.
= DA
C=Hy (C) 27

Substituting equations (25) into equation (26), and then substituting the resulting equation into equation

(27), we obtain the general transformation for the fifth mixed homogenization method as follows.
C=HPH HP W), F,HD (1)) (28)

It is noted that in this method the fiber damage is isolated to be dealt with in the last step.

The sixth mixed homogenization method is illustrated in Figure 10. In this method, three homogenizing
transformations are used in three steps. The fibers are homogenized in the first step, while the interface and
matrix are homogenized in parallel in the third step. Figure 10-a shows the damaged composite configuration
while Figure 10-b shows the effective composite configuration with interfacial and matrix damage. Figure
10-c shows the effective homogenized composite configuration with interfacial and matrix damage while

Figure 10-d shows the effective homogenized composite configuration.
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Fig. 10: Sixth Mixed Homogenization Method

The sixth mixed homogenization of the damaged composite configuration is performed in three steps in

sequence as follows:

1. The homogenizing transformation H; is used alone to obtain the effective composite configuration with

interfacial and matrix damage. This step can be represented using the following framework relation.

F=Hy(F) (29)

2. The homogenizing transformation H‘ is then used to obtain the effective homogenized composite

configuration with interfacial and matrix damage C . This step can be represented using the following

framework relation.
C=H“(M,F,I (30)

3. The homogenizing transformation HI% is finally used to obtain the effective homogenized composite

configuration C from C . This step can be represented using the following framework relation.

C= Hl’g(é) €1}

Substituting equation (29) into equation (30), and then substituting the resulting equation into equation

(31), we obtain the general transformation for the sixth mixed homogenization method as follows.
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C=HEHC (M, HP (F),1) (32)

It is noted that in this method there is a coupling between the damage in the interface and the damage in
the matrix, while the fiber damage is isolated and dealt with in the first step.

In comparing equations (12), (16), (20), (24), (28), and (32) for the six mixed homogenization methods,
caution must be employed so as not to expect similar results. Theoretically, we should expect these six
equations to yield identical results. However, the complexities of the models to be employed may prevent us
from proving the equivalence of these six methods analytically — although the final numerical results should

be similar.

5. CONCLUSIONS

The authors have presented a systematic strategy within a consistent framework for the analysis of
damaged composite materials using the homogenization method. A total of eight homogenization methods
are proposed including an overall homogenization method, a local homogenization method, and six mixed
homogenization methods. For each method, framework equations are derived for the general characteristics
of the method. The authors provide no specific models to be used within these methods — it is left for the
interested researcher to fill in the models of his or her choice. Ample flexibility is provided especially within
the mixed methods so that a specific damage mechanism related to one or two of the composite constituents
can be isolated and investigated separately. Also, coupling between two damage mechanisms is provided for
three of the six mixed methods. It is hoped that this work will prove to be valuable for active researchers
engaged in modeling of damage in composite materials as it provides guidelines and strategy for this very

important topic.
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