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ABSTRACT 

An analytical model is presented to determine the impact response of a viscoelastic laminated composite 

plate under impact loading. In this context, the "First Shear Deformation Theory" is first used to study the 

transit wave propagation phenomenon in an analogous linear elastic laminated plate. Subsequently, the 

"Correspondence Principle" is utilized to extend the obtained elastic solution to a corresponding linear 

viscoelastic plate of the same geometry. Here, the closed-form displacement solution is obtained in the 

frequency-domain. The Fast Fourier Transformation (FFT) is, then, applied to invert numerically the arrived-

at viscoelastic solution from frequency-domain to time-domain. Microstructural effects such as fibre volume 

fraction and fibre-aspect-ratio are examined. The obtained results illustrate the importance of including 

material viscoelasticity in the analysis concerning the prediction of the response of laminated composite 

plates under impact loading. 

1. INTRODUCTION 

Laminated composite materials are used extensively in aerospace, automotive and other industries, due to 

their light weight, high specific modulus, high specific strength and superior design flexibility as compared 

with traditional materials such as metals. However, the inferior impact properties of these materials represent 

an obstacle to a wider use in new domains of applications. 

Impacts do occur during manufacturing, service operations and maintenance. The situation is even more 

critical when impacts induce internal damage undetectable by visual inspection. If significant, such damage 

causes significant increase in local stress and change of natural frequency, which may lead to deterioration in 

the strength and fatigue life, Therefore, impact analysis of laminated composites has become a subject of 

active research; e.g., Moon (1975) and Abrate (1991&1994). 
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From an impact dynamics point of view, one may assume, for the case of a high velocity impact, that the 

overall motion of the structure takes place over a time period much larger than the impact contact time. By 

further assuming that the size of the impactor is much smaller than the least dimension of the specimen or 

structural member, the analysis of the impact problem would involve the study of the following two distinct 

topics: 

(i) the local mechanics of impact with a deformable half space, and 

(ii) the response of the microstructure to a prescribed local impact force as determined in part (i) above. 

For the part (ii) of the impact problem, by prescribing the local impact force and the impact duration time, 

the wave propagation analysis method appears to be convenient in predicting the post impact response of the 

targeted structure; e.g., Moon (1975). 

Within the last four decades, or thereabout, there have been significant efforts directed towards the area of 

impact wave propagation both analytically, e.g., Moon (1972, 1973 a&b and 1975), Kim and Moon (1977), 

Sun and Lai (1974), Green and Baylis (1988), Prasad et al. (1993), Kam and Chang (1995), and Ma and 

Huang (1995), and experimentally (e.g., Daniel et al., 1979 and Sun and Wang, 1986). In these works, the 

elastic composite model was used. Due to the significant influence of the viscoelastic nature of polymeric 

matrices of composite lamina, it is necessary, however, to treat the polymeric composite laminate as a 

viscoelastic material whose material properties are, in general, time-, frequency- and temperature-dependent. 

In this context, there have been so far only few publications directed towards the analysis of the viscoelastic 

wave propagation phenomenon in laminated composites; e.g., Burtin and Hamelin (1986) and Cederbaum 

and Aboudi (1989). 

Due to the anisotropic and viscoelastic characters of laminated composites of polymeric origin, the 

pertaining wave propagation problem is much more complex by comparison with its isotropic and/or elastic 

counterpart. In this, it should be mentioned that both the approximate plate theory (e.g., Mindlin and Medick, 

1959 and Mindlin, 1961) and first shear-deformation theory (FSDT),Whitney and Pagano (1970), appear to 

work satisfactorily for the analysis of deformation in anisotropic elastic plates. 

The subject of this paper concerns itself with the analytical modelling of wave propagation in a 

viscoelastic composite plate under impact loading. Here, the complexity of the model increases due to the 

time-dependency of the problem and, hence, the presence of integro-differential constitutive relations (e.g., 

Haddad, 1995&2000). In this context, an analytical model is established, in this paper, first in frequency-

domain by correspondence to its linear elastic counterpart. Here, the analysis incorporates integral transforms 

such as Fourier and/or Laplace transforms. The final viscoelastic solution, in time domain, is consequently 

obtained by inverting the involved integral transform using, for instance, an inversion algorithm of Fast 

Fourier Transform (IFFT); e.g. Haddad and Feng (2000) and Haddad (2000). 

The internal friction (e.g., Kolsky, 1963 and Haddad, 1995) or viscoelastic damping is believed to be 

responsible for the wave attenuation phenomenon in polymer base composites. It is further recognized that 

discontinuous fibre reinforced composites have higher damping capacity as compared with the continuous 

ones, e.g., Gibson and Yau (1980), Gibson et al. (1982), Sun et al. (1985), Suarez.e/ al. (1986), and Feng 
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(1999). Therefore, the dynamic behaviour under impact loading is investigated in this paper for two material 

models pertaining to both continuous and discontinuous fibre reinforced composite laminates. In this context, 

the effects of fibre volume fraction and fibre-aspect-ratio on the dynamic behaviour of composite laminates 

are also examined. 

2. THE MODEL 

2.1. Equations of Motion 

Consider the symmetric composite laminated plate shown in Figure 1. The latter is of thickness h and is 

composed of thin material layers which are bonded together as shown in the figure. The material of 

i> 
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ι V 4 h/2 
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Fig. 1: A symmetric composite laminated plate. 

each layer is assumed to possess a plane of elastic symmetry parallel to xy-plane. The origin of a Cartesian 

coordinate system is located within the central plane (x - y) with the z-axis being normal to this plane. It is 

assumed that the plate surfaces z= ±h 12 are subjected to surface tractions defined as 

T x z ( x , y , ± h / 2 , t ) = 0 , T y z ( x , y , ± h / 2 , t ) = 0 ( l a ) 

o z ( x , y , h / 2 , t ) = q 1 , σ ζ ( x , y , - h / 2 , t ) = q2 ( l b ) 
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where q, and q2 are arbitrary functions of coordinates x, y, and z. 

The stress and moment resultants can be defined, respectively, as 

(Wy.NV.QX.Qy)°{"(0,.Oy,Xx.X„,XyI)dz 
J - h/2 

(Mx ,My ,Mx y) = / ^ ( a ; ! , o y , o x y ) z d z 
J -h/2 

(2a) 

(2b) 

Due to the presence of a plane of elastic symmetry, the constitutive relations for any given layer can be 
expressed as 

σ X 
°y a 

ζ 
τ xy 

C11 C12 C13 cie 

xy. 

(3a) 

T*y 
C44 C45 Μ τχζ C55 iv (3b) 

where cy are the components of the stiffness matrix and σ ( , , τ( h ε (,, and γ ( , represent the engineering stress, 

shear stress, normal strain, and shear strain components, respectively. 

For convenience, we employ compact notation to express the constitutive equations (3) in the form 

σ = c.. ε 
ι IJ J 

(i,j = 1 ,2 ,3 ,6) (4) 

where σι = σχ, σ2 = σγ, σ3 = σ2, σ6 = τχγ and the engineering strains Sj are defined in an analogous manner. 

Combining (3) and (4), one can arrive at 

σί = 0,αεα + 7 ί 1 σ 3 0=1,2,3,6; a = 1,2,6) 

in which Qia is defined as the plane stress reduced stiffness. 

Further, one assumes the following displacement field 

(5) 

U = U (x,y,t) + zijfx(x,y,t) 

V=V°(x,y, t ) +zi}ry(x,y,t) 

W = W°(x,y,t) 

(6a) 

(6b) 

(6c) 

292 



J. Feng and Y.M. Haddad Journal of the Mechanical Behavior of Materials 

where U, V and W represent the displacement components in the x, y and ζ directions, respectively, while ψχ 

and are, respectively, the rotations of the normals to the mid-plane about the y and χ axes. From equations 

(2), (5) and (6), and the assumption that the integrals associated with σ2 are negligible and may be dropped, 

one obtains 

A , , A 1 2 A 1 6 B „ B I 2 B 1 6 

Nx 
N " Λζΐ \ 6 B21 B22 B26 

N*y A<SI A " Af i6 B<il B " Β ή 6 

Κ ' Β π B 1 2 B I 6 d „ D 1 2 D 1 6 

Μ 
M ^ B 2 . B 2 2 B 2 6 D 1 2 D 2 2 D 2 6 

B 6 , B 6 2 B 6 6 D 6 . D 6 2 D 6 6 

and 

Qx = k 
A44 A45 W y + i | f y ' 

9». A54 A55 

where the differentiation is denoted by a comma, ()y = ()jj, and k, introduced in the expressions above for the 

transverse shear resultants, it is a material constant, representing a shear correction factor which depends on 

the analytical solution of the problem and the experimental results (e.g., Whitney & Pagano, 1970). In the set 

of equations (7), 

(Ay.By.D^ = z . z 2 ) d z (i,j = l ,2 ,6) (8a) 

V / ^ C y d z (i,j = 4,5) (8b) 

The equations of motion in terms of stress and moment resultants are expressed as 

N M + N , , , = P Ü ° + R i ( 9 a ) 

N * y . x + N y ,
 = P V° + Rl i r ' x 

Q , / Q y / q = P W ( 9 c ) 

Μ , ^ Μ ^ - Q ^ R Ü ^ I ^ ( 9 d ) 

M x y , x + M y . y - Q y = R V ° + I t y ( * ) 

u ; 

v ' 

0 
•X 
0 *y 

U ° + V ° ,x xy 

Ψχ,χ 
Ψ + ψ 

χ,χ " y , y Ψ: 

(7a) 
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with, 

C P , R , I ) = f h / 2 p ( l , z , z 2 ) d z (10) 
J - h / 2 

Further, by combining (7) and (9), one obtains the equations of motion in terms of the displacement 

components as (see Whitney & Pagano, 1970) 

A „ U.L - 2A16U°xy + A 6 6 U , ; + A16 V ^ • (A,2 • A J V , ; + A,6 V ^ + B „ ψ ^ 
••η ( I I a ) 

+ 2 Β , , ψ + Β , , ψ + Β, , ψ + (Β,„ + Β „ ) ψ + Β, , vir = P U +R{|} 16' x,xy 66 Tx,yy 16 T y „ V"12 ·-·(,(,) Tyxy "26 Ty.yy Ψχ 

A16 υ L • (A,2 • A66) U, % + Α , χ + a 6 6 V0
m • 2 A,6 v i + A,2 V ; 

+ B , 6 Ψ ^ Η Β . 2 + b66) ψ ^ + B26 i | i w + b 6 6 ψ γ χ χ (1 lb) 

k [ Ass (Ψ„χ + Ψ,.,) + Α 4 5 ( ψ ^ + Ψ γ χ + 2 W x y ) t Α44 ( 1 l c ) 

Β „ U,L + 2Β16 + B66U°w + Β 1 6 V ^ + ( Β π + Ν 6 6 ) V0^ + Β26 V ^ 
+ D , . Ψχ,χχ + 2 D i i 1 f

w
 + D66 +D16ΨΥιΧΧ - ( D 1 2 η-D66) t y x x ( l i d ) 

+ D26 Ψγ,νν " ^ [ A55 (ψ χ + W x ) • Α 4 5 ( ψ γ + W y ) ] = R Ü ° + Ιψ χ 

b,6 U,L - (B1 2+B6 6) U , ; + B 2 6 U ^ + B 6 6 V ^ + 2B 2 6 v , ; 
+ V > D l t i | r w + (D , 2 + D 6 6 ) t w + D 2 6 ψ ^ • D66 ψ γ χ χ ( l i e ) 

+ 12D26t|;yyy - k [ A 4 5 ( ψ χ + W χ ) + A44 ( + W y ) ] = R V ° + Ι ψ γ 

In this, the value of the shear correction factor k was set, in the literature, as either 5/6, π2/12 or 2/3. Ten 

and Sun (1983) advanced, however, that the value π2/12, for the coefficient k, coincides satisfactorily with 

the experimental results. 

2.2. Stress Wave Propagation 

One assumes that the layers of the composite plate, Figure 1, are perfectly bonded together and that the 

plate is a symmetric cross-ply laminate, and it is simply supported all around on all edges. In this case, the 

following boundary conditions are seen to be applicable: 
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i) At χ = 0 and χ = a, 

W = i|,y = Mx = 0 (12a) 

V = N x = 0 (12b) 

ii) At y = 0 and y = b, 

W = ψχ = My = 0 (12c) 

V = Ny = 0 (12d) 

From the above definition, and on the assumption that the symmetric cross-ply laminate could be treated 

as a homogeneous continuum of transversely isotropic material, one may further assume that 

B s = 0, R = 0, A16 = A J 6 = D 1 6 = D 2 6 = A J = 0 and U, V = 0. 

Accordingly, the five equations of motion (11), could be reduced to the following three equations with 

ψχ, ψγ, W are the only unknowns, i.e., 

A5 j ( ψ ^ + W B ) + A^, (i|;yy + Wyy)] + q = PW t t (13a) 

Du Ψχ.» + °66 ψ ^ + (°12 + D 6 6) Ψ ^ - kA5 5 (ψ χ + w x ) = Ι ψ ^ (13b) 

(°12 + D 6 6 ) Ψχ,χν + D66 Ψγ,χχ + D22 " ^ A44 ( ψ γ • W y ) = Ι ψ ^ (13c) 

Following the Navier solution for plates subject to forced vibrations, the load distribution function q 

could be approximated by a double Fourier series. Therefore, one could obtain the general expression for the 

desired load distribution function as 

. m i x . ηπν 
ImnWsm s i n — i (14) 

m,n=l a b 

where the coefficients q,,,,, (t) can be found by integrating the equation 

q™(t) = 4 r f q ( x , y , t ) S i n i i l H S i n i S (15) 
ab J J a b ο ο 

The general solutions for the above impact problem which satisfy the boundary conditions (12) can also 

be expressed, in a double Fourier series form, as 

W(x,y,t) = Σ \ (t) sin Ξ Ξ * s i n H Z (16a) 
m,n=l a b 
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Ψχ (x.y.t) = Σ X ^ W c o s H H s i n ü j y (16b) 
b m,n = l 

Ψν(χ,Υ,1) = Σ Υ,™ (t) sin ^ cos Η Σ (16c) V ' J ' S L·^/ mn ^ ' . 
m,n = l a b 

In order to apply the "Correspondence Principle" to solve this impact problem in viscoelasticity, it is 

necessary to use Fourier transform, i.e., 
ω 

f F ( x , y , o ) = J f ( x , y , t ) e i u t d t (17) 
-ω 

where the superscript ( )F indicates the Fourier transform and ω is the Fourier parameter. By applying the 

Fourier transformation to equations (13), (14), and (16), one obtains the equations of motion in frequency-

domain as 

k[A 5 5 ( < l 4 - W l ) η- A44 ( t y
F

y + W,F ) ] + q F = - ω 2 PW F (18a) 

D „ + D66 + (D12 + D 6 6 ) ψ ^ - kA53 ( ψ ' + WX
F) = - ω2 I i|/F (18b) 

( D „ - D6 6) ψ ^ + D66 ψ ' χ χ + D22 ψ ^ - k A44 ( t F + Wy
F) = -ω 21i j iF (18c) 

Similarly, one obtains the double Fourier series of the already arrived-at general solutions as 

W F(x,y,a>) = Σ W l (ω) sin » H sin (19a) 
m,n = I a b 

Σ X ^ (ω) cos — s i n ^ (19b) 
m,n= 1 a b 

ty
F(x,y,co) = Σ Y l (ω) sin ^ c o s 3ΞΣ (19c) 

m,n = l a b 

and the Fourier transform of the impact loading distribution as 

qF(x,y,oo) = Σ q l ( ω ) sin ^ ^ sin ^ (20) 
m,n=l a b 

The Correspondence Principle is then adopted to transfer the above solutions from linear elasticity to 

linear viscoelasticity by simply replacing the elastic material parameters with their viscoelastic counterparts 

(e.g., Christensen, 1979 and Haddad, 1995, 2000), i.e. by taking 
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A1J = A , ; ( W ) = A1;, Dy = Dj* (ω) = Dj* (21) 

where A *, D * are complex frequency-dependent functions (Feng, 1999). 

Substituting equations (19) and (20) into (18), then, by differentiation and proper manipulation, one 

obtains 

w i M 
a 4 a 5 a 7 a5 a6 

2 2 2 2 q™ (") 
a i a 4 a 5 a 7 a i 3 5 a 6 a5 h + h h a5 a3 34 35 + 32 h 35 36 

(22a) 

X '„ (ω) = mn ν ' 
35 a5 

2 2 ' q l (ω) 
a2 a ^ - a ^ a , +a3 a4a5 - a, a 4 a 5 a 7 + a ,a 5 a 6 - a 2 a 3 a 5 a 6 

(22b) 

Y i M 
a2 a6 

2 2 2 3 
a,a3 a4 a-, a^ a^ + a ̂  a-, a ̂  a^ ~ ^ + a2 37 - 3 i 3 ^ 3 4 3 7 

q™ (ω) (22c) 

where 

a, - k A55 

V a ' 
kA4'4 

η 2 π2 λ 

- ω 2 Ρ 
\ " / 

(23a) 

" k A 5 5 | a h ~ ^ Α44 
η π (23b) 

a 4 = D ü 
η ι 2 π 2 

D 
' 2 2^ n ' r 

6« 

a5 = (°12 + D66) 

+ k A5*5 - ω 2 1 

a7 = D( 66 

2 2 m π 

V a 

mnu 

+ D, 

i a6 = ( ° n + D « ) 
ηιηπ2 

I b 2 

< 2 2^ m π 
+ kA 4 4 - ω 2 1 

(23c) 

(23d) 

(23e) 

2.3. Transient Wave Propagation under Impact Loading 

The local rectangular impact load distribution is shown in Figure 2. The load is modelled as cosine-cosine 

distribution with respect to the space variables and sine distribution with respect to time. The centre of the 

load is considered to be located at coordinates (x h y, ) as shown in Figure 2. The function of the pertaining 

load distribution is expressed as (e.g., Prasad el al., 1993) 
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X(U) 

Τ 
- ν — 

_ L 
h 

Y ( V ) 

z(W 

q(x,y,t) 

Fig. 2: Impact pressure distribution. 

η π / \ t / , • Ttt 
q = P0 cos — (χ - χ ) cos — (y - y ) sin — 

u ν τ0 

c Λ „ u U V V for 0< t <τ 0 , x, - - < x < x , + - , y , - - < y < y , 
(24a) 

and, 

q = p o 

f o r t > T 0 ; x < x , - j , x > x i + y<yi 
(24b) 

By substituting equations (24) into Eqn. (15) and integrating, one obtains 

16abu ν P0 cos 

< U ( t ) = 

mrcu 

I 2a 
cos 

ηιπν 
2b 

sin 
mux 

sin rmty 

I b 
π 2 ( μ + α ) (μ - a ) (ην +b)(nv - b ) 

χ sin 
/ \ Ttt 

(25a) 

for mu * a, nv * b 
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q™(0 = o 
for mu = a; η ν = b 

(25b) 

The load distribution function can then be approximated by a double Fourier series as 

q(x,y.O = 

cos mTiu 

sin 

cos 

Ttt 

m 

\ 
rnnv 
2b J 

Σ 

sin 
mux, 

sin 
mn Y l 

(μ + a ) ( μ - a) (nv +b) (nv - b ) 

for mu * a; η ν * b 

(26a) 

q ( x , y , t ) =0 
for mu =a; η ν =b; t > t n 

(26b) 

In order to determine the solution for the viscoelastic dynamic system, Fourier transform is once again 

applied to transform the above load distribution function from time-domain to frequency-domain. In this 

context, by substituting equations (26) into equation (17), it follows that 

8 a b u v P 0 t 0 l - c o s ( u + t 0 a > ) l - c o s ( 7 t - x 0 c o ) 

+ 1 
s in(7t+T 0o) sin(Tt-t0co)N 

π - τ 0 ω 

cos 
mjtu 

2a 
cos 

raitv \ . / Γηπχι \ . / ηπ Υ ι \ . / πιπχ \ . / ηπΥ 

2b 
sin sin 

V b 
sin sin 

I b 

m,n=l (μ + 8)(μ - a)(nv + b)(nv - b) 

for mu * a, nv * b; ω τ0 * π 

and, 

q F ( x , y , c o ) = 0 
for mu = a, η ν = b, ω τ0 = π 

(27a) 

(27b) 

ρ 
From equation (20), one can determine the complex coefficient qm n((D) as 
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8abu ν P 0 tQcos 

q™ ( ω ) = 

mTiu 
2a 

cos 
mitv 

2b 
sin 

mux 
sin 

ηπγ, 

(μ + a ) ( μ - a) (ην + b)(nv - b) 

1 - c o s ( k + t 0 c o ) l - cos (7 t -T 0 o) ) 5 ΐη (π+τ 0 ω) 5 ί η ( π - τ 0 ω ) λ (28a) 

for mu Φ a, ην Φ b; ω τ0 Φ π 

and, 

q F(co) =0 
for mu = a, η ν =b, ω τ . = π (28b) 

In order to obtain the required transient wave solutions, one combines (28) with (22) and (19), to arrive first 

at the solution in the frequency domain. Then, by applying the viscoelastic parameters A44, A 55, D*j , 

D|2 , D22 and Dg6 as defined in (Feng, 1999), the Fast Fourier Transform (FFT) can be employed in order 

to numerically transform these solutions from frequency-domain to time-domain. 

3. NUMERICAL RESULTS AND DISCUSSION 

As mentioned in the foregoing, the dynamic solutions, obtained in the frequency-domain, are required to 

be inverted into the time-domain by utilizing, for instance, Fourier transform. Due to the complexity of the 

obtained dynamic solutions, however, the discrete Fourier transform would be an appropriate choice. 

Normally, the discrete Fourier transform is expressed in pair as follows, 

/ \ ν -1 η 
NT 

= Σ g (kT)e 
-i2wTlnk/N n = 0.1,.. . , N - l (29) 

g ( k T ) 
1 N-l \ 
h Σ g ν nr0 

- i2wTtnJ</N 

V NT J 
K = 0.1 N - l (30) 

where Ν is the total sampling number, Τ is sampling interval, and G (.) and g ( . ) represent the desired 

function in the frequency and time domain, respectively. 

In engineering computation, the reason for the wide use of Fourier transform is due to its capability to 

allow one to examine a function from the perspective of both time and frequency domains. The time and 

effort are further eased due to the development of the discrete Fourier transform which permits one to analyse 

behaviour of the function in a numeric fashion. Due to the large number of sampling involved in the dynamic 

analysis, the Fast Fourier Transform (FFT) is adopted in the present work. 

An essential requirement of a FFT operation (e.g., Brigham, 1988) is the determination of the total 
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sampling number Ν and the sampling interval T, which directly affect the results of the FFT computation (see 

Appendix A for the FFT computer program flowchart used in the present analysis). 

With reference to Figures 1 and 2, the dimensions of the composite laminate are set as a = 20.0 inches, b 

= 10.0 inches and h = 1.0 inches with each lamina being composed of an epoxy matrix, with embedded-in 

glass fibres. The impact is assumed to be the unit load ρ = 1.0, with a contact duration τ0 = 1 χ 10"6 sec, 

located at the centre of the plate, at x, = 10.0 inches and yi = 5.0 inches, with the loading area being a square, 

i.e., u = ν = 0.1 inches. It is further assumed that the matrix material behaves as a linear viscoelastic material, 

whereby the real part of its complex modulus is represented by (e.g., Christensen, 1979) 

E m = 1158 (1 + 100 f)0·1 (31) 

The damping factor of the viscoelastic matrix is assumed to be constant. It is set to assume the values of 

0.05 and 0.15 for comparison. The embedded-in glass fibres are assumed to be elastic in response. Glass 

fibres with limited viscoelastic response are also considered for comparison. The damping factor for the latter 

is set as 0.0014. The effects of microstructural parameters, such as fibre volume fraction and fibre- aspect-

ratio on the impact behaviour of the composite laminate are examined. Values of other material properties, 

1.e., elastic modulus, shear modulus, shear damping factor, Poisson's ratio and specific gravity, are set as 

shown in Table 1 for both the fibre and matrix. The presented values of these properties are assumed to be 

constant for the ease of calculation. Based on the analysis conducted by Prasad et al. (1993), the value of the 

shear parameter k, mentioned in the foregoing, is set as π2/12 (see, also, Ten and Sun, 1983). The total 

sampling number Ν and the sample time-interval Τ for the pertaining FFT algorithm are set, respectively, as 

Table 1 

Static Properties of Scotchply 1002 Matrix Epoxy and Ε-glass Fibres at Room Temperature, 

after Gibson et al. (1976). 

Material Properties - GPa (106 Psi) Epoxy E-glass 

Young's modulus - GPa (106 Psi) 3.79 (0.55) 72.4(10.5) 

Shear Modulus 1.38 (0.2) 30.3 (4.4) 

Damping Factor 0.015 0.0014 

Shear Damping Factor 0.018 0.0014 

Poisson's Ratio 0.36 0.2 

Specific Gravity (g) 1.23 2.54 
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8192 and 2 χ 10"6 sec. (Feng, 1999). For the purpose of limiting the length of this paper, only displacements 

along the z-axis are graphically illustrated. 

Figure 3 shows both the real and imaginary parts of the displacement in the frequency-domain as well as 

their inverted Fourier transform in the t ime-domain. The significant attenuation, due to the viscoelastic nature 

of this kind of materials, is observed in this Figure. 

>f,/A(xi(r5) 
4 
2 
0 

- 2 
- 4 
- 6 
- 8 

1 0 
1 2 
1 4 
1 6 

W j h (xlCT4) 

2 0 

* . I r : 

3 4 

Frequency (log) 

Ί 
Frequency (log) 

ι (xlO"') 

Fig. 3: Illustration of Fourier Transformation. The top two figures show the wave propagation solutions in 

their frequency-domain which can be transformed by using FFT algorithm into time-domain as 

shown in the bottom figure. 
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The effect of the damping factor of the matrix material on the impact response of composite laminates is 

presented in Figure 4. In this Figure, one observes that, under the same loading condition, a composite-

laminate with matrix of a higher damping factor produces a much smaller amplitude of the waveform-

displacement when compared with a laminate of a lower damping factor. It is obvious that the waveform of 

the laminate with a matrix of a lower damping factor is not as smooth as the one with a matrix of a higher 

damping factor, and, thus, is more complex to analyse. One, also, observes, in Figure 4, that the laminate 

with a matrix of lower damping factor exhibits a higher attenuation rate in the first 3 to 4 ms. The attenuation 

seems to slow down after the first 4 ms and the amplitude of the response waveform appears to be constant 

after the first 12 ms. For the laminate with a matrix of higher damping factor, attenuation is observed to be 

consistent throughout the entire time scale. 
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Fig. 4: Impact response of composite laminates with matrices have different damping factors, i.e., 0.5 (solid 

line) and 0.15 (dashed line). Other material properties are set as: the real modulus of matrix is E,„, = 

1158 (1 + 100 / ) ° ' , w i t h / a s frequency, the real modulus of glass fibre (continuous) is 72.4 GPa. fibre 

volume fraction is 60%, and damping factor of the fibre is 0.0014. 
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The effect of viscoelasticity of the fibre material, on wave propagation in the dealt-with class of 

composite laminate, is illustrated in Figure 5, whereby both elastic and viscoelastic glass fibre materials are 

considered under the same loading condition. In Figure 5, one observes that there is not much difference in 

effect between the considered elastic and viscoelastic fibres except in the first 1 - 1 . 5 ms time duration. This 

is due to the extremely low value of the damping factor of the considered glass fibre, which may be 

considered, for the ease of calculations, as a linear elastic material. The attenuation of the waveform, in both 

cases, is thus due the viscoelastic matrix. 

W/h (xlO-*) 

Time (ms) 

Fig. 5: Impact response of composite laminates with elastic and viscoelastic fibres, i.e., fibre damping 

factors as 0.0014 (solid line) and 0.00 (dashed line). Other material properties are set as: the real 

modulus of glass fibre (continuous) is 72.4 GPa, fibre volume fraction is 60%, the real modulus of 

the matrix is Em, = 1158 (1 + 1 0 0 / ) ° w i t h / a s frequency, and damping factor of the matrix is 0.05. 
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Figures 6 and 7 present the effect of fibre volume fraction on the impact response of the laminate with a 

matrix damping factor of 0.15 and 0.05, respectively. Apparently, the initial amplitude of response waveform 

of a composite laminate of a higher fibre volume fraction is much more significant as compared with that of a 

smaller fibre volume fraction. This observation ascertains that the viscoelasticity of the laminate increases as 

the fibre volume fraction, of the class of the considered fibres, decreases. The delayed phase response of a 

composite laminate with a lower fibre volume fraction is also observed when compared with that pertaining 

to a higher fibre volume fraction laminate. This may be attributed to a corresponding change in the transverse 

properties of the laminate. 
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Fig. 6: Impact response of composite laminates with various fibre volume fractions, i.e. 50% (solid line), 

60% (dash-dotted line) and 70% (dashed line). Other material properties are set as: the real modulus 

of glass fibre (continuous) is 72.4 GPa, fibre damping factor is 0.0014, the real modulus of the 

matrix is E „ = 1158 (1 + 1 0 0 / ) ° ' , with / as frequency, and damping factor of the matrix is 0.15. 
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Fig. 7: Impact response of composite laminates with various fibre volume fractions, i.e. 50% (solid line), 

60% (dash-dotted line) and 70% (dashed line). Other material properties are set as: the real modulus 

of glass fibre (continuous is 72.4 GPa, fibre damping factor is 0.0014, the real modulus of the matrix 

is Emr = 1158 (1 + 1 0 0 / ) ° w i t h / a s frequency, and damping factor of the matrix is 0.05. 

Due to the high volume of discontinuous fibre reinforced composite applications in automotive and 

aerospace industries and their superior damping capacities compared to continuous fibre reinforced 

composites, it is equally important to examine the effect of discontinuous fibre-reinforcement on the dynamic 

response of the composite laminate under impact loading. The effect of discontinuous fibre reinforcement on 

the mechanical properties under static loading was analysed in previous work by the authors (e.g., Haddad 

and Feng. 2000 and Feng, 1999); see, also Gibson and Yau (1980), Gibson et al. (1982), Sun et al. (1985) 

and Suarez et al. (1986). The observation made by Cox (1952) shows that, for fibre-reinforced composite 

xlO ) 
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materials, the reduction of the effective longitudinal modulus due to the load transfer from fibre to fibre is 

important only if the fibre-aspect-ratio is less than 100. In this context, Figures 8 and 9 compare the wave 

propagation pattern of composite laminae with continuous vi. discontinuous fibre-reinforcement, with the 

matrix damping factor is set as 0.15 and 0.05, respectively, for comparison. For the composite laminate with 

a matrix of low damping matrix, the response waveform fits well with the observation made by Cox (1952) 

that the discontinuous fibre- reinforced laminate with a fibre-aspect-ratio larger than 100 can be treated as a 

continuous fibre-reinforced laminate. For the laminate with a higher damping matrix, there is, however, a 

slight difference between the two pertaining results. 
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Fig. 8: Impact response of composite laminates with various fibre aspect ratios, i.e. continuous (solid line), 

and 100 (dash-dotted line). Other material properties are set as: the real modulus of glass fibre is 

72.4 GPa, fibre damping factor is 0.0014, fibre volume fraction is 60%, the real modulus of the 

matrix is Emr = 1158 ( 1 + 1 0 0 / ) ° w i t h / a s frequency, and damping factor of the matrix is 0.15. 
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W/h (xlCT4) 

Time (ms) 

Fig. 9: Impact response of composite laminates with various fibre aspect ratios, i.e. continuous (solid line), 

and 100 (dash-dotted line). Other material properties are set as: the real modulus of glass fibre is 

72.4 GPa, fibre damping factor is 0.0014, fibre volume fraction is 60%, the real modulus of the 

matrix is Emr = 1158 (1 + 1 0 0 / ) ° w i t h / a s frequency, and damping factor of the matrix is 0.05. 

Figures 10 and 11 compare the effect of different fibre-aspect-ratio on the dynamic response under the 

same impact loading for the cases of laminates with both low and high damping matrices (i.e., damping 

factor of 0.05 and 0.15, respectively). The same trend could be found from both figures that the amplitude of 

response waveform decreases with the decrease of the fibre-aspect-ratio, which agrees well with the 

observations made earlier by the authors; see Haddad and Feng (2000) and Feng (1999). It is generally 

agreed upon that the change of fibre volume fraction results in a corresponding change in the overall 

mechanical properties of the considered composite, i.e., including changes in the longitudinal as well as 
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Fig. 10: Impact response of composite laminates with various fibre aspect ratios, i.e. 5 (solid line), 30 

(dash-dotted line), and 100 (dashed line). Other material properties are set as: the real modulus of 

glass fibre is 72.4 GPa, fibre damping factor is 0.0014, fibre volume fraction is 60%, the real 

modulus of the matrix is Em = 1158 (1 + 1 0 0 / ) ° w i t h / a s frequency, and damping factor of the 

matrix is 0.15. 

transverse properties. On the other hand, a change in the fibre-aspect-ratio may only change material 

properties at longitudinal (fibre) direction. Thus, with reference to Figures 6 and 7, it is interesting to note 

that, due to their different relationship with material damping properties and stiffness, fibre-aspect-ratio has a 

different effect on the impact response of the composite laminate if compared with fibre volume fraction. It is 

also interesting to observe that the phase of the response waveform does not vary in correspondence to the 

change of fibre-aspect-ratio (Figures 10 and 11). 
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Fig. 11: Impact response of composite laminates with various fibre aspect ratios, i.e. 5 (solid line), 30 

(dash-dotted line), and 100 (dashed line). Other material properties are set as: the real modulus of 

glass fibre is 72.4 Gpa, fibre damping factor is 0.0014, fibre volume fraction is 60%, the real 

modulus of the matrix is E ^ = 1158 (1 + 1 0 0 / ) ° ' , with / a s frequency, and damping factor of the 

matrix is 0.05. 
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4. CONCLUSIONS 

(1) The anisotropy and the viscoelastic nature of composite laminates make wave propagation analysis 

much more complex as compared to their isotropic and elastic counterparts. The "First Shear 

Deformation Theory" (FSDT), Whitney and Pagano (1970), is adopted, and appears to work well in the 

presented analysis. During the course of the analysis, the "Navier Solution" for plates under forced 

vibrations and "Fourier Transformation" are utilised to transfer the equations of motion from time-

domain to frequency-domain. Then, the "Correspondence Principle" is applied to solve the impact 

problem in linear viscoelasticity. Finally, the Fast Fourier Transformation (FFT) is employed to inverse 

these solutions from frequency-domain into time-domain. 

(2) For a given E-glass/Epoxy laminated composite, the matrix material makes a major contribution to the 

attenuation of stress waves. In this context, it is evident that transit wave propagation, in polymeric 

composite systems, must be examined within the scope of Viscoelasticity. 

(3) The resulted transit wave propagation has been further explored in relation to the properties of the 

microstructural constituents. The attenuation of the laminate with a lower fibre volume fraction is much 

more significant than the one with a higher fibre volume fraction. The same phenomenon is also 

identified for the laminate with a lower fibre-aspect-ratio compared with the one with a higher fibre-

aspect-ratio. These results are in agreement with the observations made earlier by the authors (e.g., 

Haddad and Feng, 2000 and Feng, 1999) that discontinuous fibre-reinforced composites have a damping 

property superior than that of the corresponding continuous-fibre composite and that composites with a 

lower fibre volume fraction have superior energy absorbing capability compared with the ones with a 

higher fibre volume fraction. These results further demonstrate that in order to increase the damping, it 

is necessary to sacrifice the stiffness, and vice versa. Such a trade-offs requires a careful examination, 

but, meantime, it provides flexibility in the course of designing a laminated composite with 

discontinuous fibre-reinforcement. 
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Appendix A 

T3 = x(k) 
x(k) = x(i) Msk= 
x(i) = T3 x(i) = T3 YES 

STOP STOP Μ = Integer value 
Ρ = IBR (M) 

of( k / 2nu') 

T1 = Wr x(k + N2) 
x(k + N2) = x(k) - T1 

x(k) = x(k) + T1 

1 = 1+1 

INPUT 
M, NU NO ^ — — ^ YES 

Is I = NU 

INITIAL 
II = I 

IBR = 0 
Is I1>NU 

YES 

RETURN 

YES 

1 = 1+1 
N2 = Ν 2/2 

NU1 = NU1 -1 
k = 0 

J2 = M/2 
IBR = 2*IBR + (M -2*J2) 

M = J2 

J2 = M/2 
IBR = 2*IBR + (M -2*J2) 

M = J2 
11 =1! + 1 

'no 
J2 = M/2 

IBR = 2*IBR + (M -2*J2) 
M = J2 

11 =1! + 1 
'no 

J2 = M/2 
IBR = 2*IBR + (M -2*J2) 

M = J2 
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