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ABSTRACT

An analytical model is presented to determine the impact response of a viscoelastic laminated composite
plate under impact loading. In this context, the “First Shear Deformation Theory” is first used to study the
transit wave propagation phenomenon in an analogous linear elastic laminated plate. Subsequently, the
“Correspondence Principle” is utilized to extend the obtained elastic solution to a corresponding linear
viscoelastic plate of the same geometry. Here, the closed-form displacement solution is obtained in the
frequency-domain. The Fast Fourier Transformation (FFT) is, then, applied to invert numerically the arrived-
at viscoelastic solution from frequency-domain to time-domain. Microstructural effects such as fibre volume
fraction and fibre-aspect-ratio are examined. The obtained results illustrate the importance of including
material viscoelasticity in the analysis concerning the prediction of the response of laminated composite

plates under impact loading.

1. INTRODUCTION

Laminated composite materials are used extensively in aerospace, automotive and other industries, due to
their light weight, high specific modulus, high specific strength and superior design flexibility as compared
with traditional materials such as metals. However, the inferior impact properties of these materials represent
an obstacle to a wider use in new domains of applications.

Impacts do occur during manufacturing, service operations and maintenance. The situation is even more
critical when impacts induce internal damage undetectable by visual inspection. If significant, such damage
causes significant increase in local stress and change of natural frequency, which may lead to deterioration in
the strength and fatigue life, Therefore, impact analysis of laminated composites has become a subject of
active research; e.g., Moon (1975) and Abrate (1991&1994).
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From an impact dynamics point of view, one may assume, for the case of a high velocity impact, that the
overall motion of the structure takes place over a time period much larger than the impact contact time. By
further assuming that the size ofi the impactor is much smaller than the least dimension of the specimen or
structural member, the analysis of the impact problem would involve the study of the following two distinct
topics:

(i) the local mechanics of impact with a deformable half space, and
(ii) the response of the microstructure to a prescribed local impact force as determined in part (i) above.

For the part (ii) ofithe impact problem, by prescribing the local impact force and the impact duration time,
the wave propagation analysis method appears to be convenient in predicting the post impact response of the
targeted structure; e.g., Moon (1975).

Within the last four decades, or thereabout, there have been significant efforts directed towards the area of
impact wave propagation both analytically, e.g., Moon (1972, 1973 a&b and 1975), Kim and Moon (1977),
Sun and Lai (1974), Green and Baylis (1988), Prasad et al. (1993), Kam and Chang (1995), and Ma and
Huang (1995), and experimentally (e.g., Daniel et al., 1979 and Sun and Wang, 1986). In these works, the
elastic composite model was used. Due to the significant influence of the viscoelastic nature of polymeric
matrices of composite lamina, it is necessary, however, to treat the polymeric composite laminate as a
viscoelastic material whose material properties are, in general, time-, frequency- and temperature-dependent.
In this context, there have been so far only few publications directed towards the analysis of the viscoelastic
wave propagation phenomenon in laminated composites; e.g., Burtin and Hamelin (1986) and Cederbaum
and Aboudi (1989).

Due to the anisotropic and viscoelastic characters of laminated composites of polymeric origin, the
pertaining wave propagation problem is much more complex by comparison with its isotropic and/or elastic
counterpart. In this, it should be mentioned that both the approximate plate theory (e.g., Mindlin and Medick,
1959 and Mindlin, 1961) and first shear-deformation theory (FSDT),Whitney and Pagano (1970), appear to
work satisfactorily for the analysis of deformation in anisotropic elastic plates.

The subject of this paper concerns itselfi with the analytical modelling of wave propagation in a
viscoelastic composite plate under impact loading. Here, the complexity of the model increases due to the
time-dependency of the problem and, hence, the presence of integro-differential constitutive relations (e.g.,
Haddad, 1995&2000). In this context, an analytical model is established, in this paper, first in frequency-
domain by correspondence to its linear elastic counterpart. Here, the analysis incorporates integral transforms
such as Fourier and/or Laplace transforms. The final viscoelastic solution, in time domain, is consequently
obtained by inverting the involved integral transform using, for instance, an inversion algorithm of Fast
Fourier Transform (IFFT); e.g. Haddad and Feng (2000) and Haddad (2000).

The internal friction (e.g., Kolsky, 1963 and Haddad, 1995) or viscoelastic damping is believed to be
responsible for the wave attenuation phenomenon in polymer base composites. It is further recognized that
discontinuous fibre reinforced composites have higher damping capacity as compared with the continuous
ones, e.g., Gibson and Yau (1980), Gibson et al. (1982), Sun et al. (1985), Suarez. et al. (1986), and Feng
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(1999). Therefore, the dynamic behaviour under impact loading is investigated in this paper for two material
models pertaining to both continuous and discontinuous fibre reinforced composite laminates. In this context,

the effects of fibre volume fraction and fibre-aspect-ratio on the dynamic behaviour of composite laminates

are also examined.

2. THE MODEL
2.1. Equations of Motion

Consider the symmetric composite laminated plate shown in Figure 1. The latter is of thickness h and is

composed of thin material layers which are bonded together as shown in the figure. The material of

Y(V)
8 =10 wod -.—l-h/z
b ————9=90‘—x-z-——-—————“"’I;“ x@
T=T° TN h/2

rm)

Fig. 1: A symmetric composite laminated plate.

each layer is assumed to possess a plane of elastic symmetry parallel to xy-plane. The origin of a Cartesian
coordinate system is located within the central plane (x - y) with the z-axis being normal to this plane. It is

assumed that the plate surfaces z= +h /2 are subjected to surface tractions defined as
T. (X,y,xh/2,t)=0, T _(x,y,+W2,t)=0 (1a)

o, (x,y,W2,t)=q,, o0,(x,y,-W2,t)=q, (1b)
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where q; and q, are arbitrary functions of coordinates x, y, and z.

The stress and moment resultants can be defined, respectively, as
w2
(N,,N,N,.Q,.Q,) = f_m (0,,0,, Ty, Ty Typ) 2 (2a)
(MM, M._)= " d
X1 Vlys xy) -f_h/z(oxroyxoxy)z 4 (2b)

Due to the presence of a plane of elastic symmetry, the constitutive relations for any given layer can be

expressed as

C., C. C. C
1n %2 €3 €
o, £,
o, Cy1 €2 Cy3 Gy E,
o s - (3a)
z C31 €33 C33 Gyl 2
Ty Yay
€1 G2 C63 Coe

Cas Cus [
e (3b)

Csq Css lez_

where c;; are the components of the stiffness matrix and o), 7(), €), and ¥, represent the engineering stress,
shear stress, normal strain, and shear strain components, respectively.

For convenience, we employ compact notation to express the constitutive equations (3) in the form

g =C.€ (i,j=1,2,3,6) ()]

where 6, = Gy, 02 = Gy, O3 = Oz, O = Txy and the engineering strains ¢; are defined in an analogous manner.

Combining (3) and (4), one can arrive at
Cs ‘
oi=Qmem+r‘—03 (i=1,2,3,6, a=1,2,6) (5)
~33

in which Q,, is defined as the plane stress reduced stiffness.

Further, one assumes the following displacement field

U=U"(x,y,t) +zy, (x,y,t) (6a)
V=Voiyt) +z¥ (xy,t) (6b)
W=WO(x,y,t) (6c)
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where U, V and W represent the displacement components in the x, y and z directions, respectively, while y,

and w, are, respectively, the rotations of the normals to the mid-plane about the y and x axes. From equations

(2), (5) and (6), and the assumption that the integrals associated with o, are negligible and may be dropped,

one obtains

. An AlZ AIG Bn
N‘ Ay Ay Ay le
y

Ny | - Ag Ag Ag Bg
;\2" Bn BlZ Ble Dn
Mxyy Bzx Bzz Bze DlZ

{Bel Bg, By Dél

and

ny - A Ags W +y,
.QY. Asy Ass W'x+¢*

|

O U O v w w

UO

X

0 0
U, +Vy

XX

< &

Wi * Wiy |

(7)

(7b)

where the differentiation is denoted by a comma, ( ); = ( );;, and k, introduced in the expressions above for the

transverse shear resultants, it is a material constant, representing a shear correction factor which depends on

the analytical solution of the problem and the experimental results (e.g., Whitney & Pagano, 1970). In the set

of equations (7),

ij2 ij?

(A;,B;,D.)=1" 0.(1.2,22)dz
i} J-h/2 y

v

A = fh:z S dz

The equations of motion in terms of stress and moment resultants are expressed as

w0 .
Nm + ny,y =PU + R\px

0 .
ny'x + Ny'y =PV + Rq,x

O)re (Ol S/

(i,j=4.5)

o Q -
M, + My, ~Q =RU° + 1§,

0 =
Mxy’x + My.y -Qy =RV + Ipr

(i,j=1,2,6)

(8a)

(8b)

(92)

(9b)

%)

(9d)

(%)
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with,

(P,R,1) = f.':z p(1,2,22)dz

(10)

Further, by combining (7) and (9), one obtains the equations of motion in terms of the displacement

components as (see Whitney & Pagano, 1970)

0 0 0 0 0 0
AnU *2AU g + AUy A Vg (A + Ag) Vy * A Vi, + By L.
-0 e
+2Bl6w’m +Bg ll":cyy *Bys q’yn i (Blz +Bge) ll’yxy * By lJf’y.w =PU + R‘l’x

0 0
AU * (At AU + AzsU,gy *Ag voxx +2A5 v.?n/ *A,, V.gy
* B U o *(By; +bgg) Wysy *Bas Wiy *Bes Uy
- 0 .
*2By W, +By ¥, =PV’ +R{,

K[Ags (W * 0,,) + A, U, +2W ) £ A,
(¥,,+W )] +q=PW

0 0 0 0 0 0
B U +2Bjg+ Uy +BgUyy +Bg Vo + (B3 *Ngd Vi +Bys Vi
* Dy Vi *2D16 Wy + D Woeww *Dig Wy * (D1 + Digg) Wy

+D26 llry,yy - k [ASS (wx +Wx)+ A45(¢y +Wy)] = RUO s wa

By U.oxx +(By; *Bg) U.gy *+Bys U,gy * Bssv.?cx +2By v.gy
0
+ B Viyy #Dig W * (D12 #* D)Wy * D6 Wiy * Digs Uy
12D, k(A (W + W)+ Ay (8, + W )] =RV + Ty,

(11a)

(11b)

(11c)

(11d)

(11e)

In this, the value of the shear correction factor k was set, in the literature, as either 5/6, 7%/12 or 2/3. Ten

and Sun (1983) advanced, however, that the value n%/12, for the coefficient k, coincides satisfactorily with

the experimental results.

2.2. Stress Wave Propagation

One assumes that the layers of the composite plate, Figure 1, are perfectly bonded together and that the

plate is a symmetric cross-ply laminate, and it is simply supported all around on all edges. In this case, the

following boundary conditions are seen to be applicable:
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i)Atx=0and x =a,

W=y =M, =0 (12a)
V=N=0 (12b)
ii)Aty=0andy=b,
W=y, =M =0 (12¢)
V=N, =0 (12d)

From the above definition, and on the assumption that the symmetric cross-ply laminate could be treated

as a homogeneous continuum of transversely isotropic material, one may further assume that
B;=0, R=0, A =A,=D;,=Dy=A;=0 and U,V=0.

Accordingly, the five equations of motion (11), could be reduced to the following three equations with

Wx Wy, W are the only unknowns, i.e.,

k[Ass(lpx.x+W)O()+A44(wyy+wyy)]+q=Pw_u (133)
Dll wxxx & D66 lIJx.yy & (Dlz v D66) wy,xy - kASS (lpx & wx) 3 Ilpx,n (13b)
(Dy; *+ D) wx.Xy + D wy.xx * Dy ~ KA, (llJy + W.y) = IWM (13¢)

Following the Navier solution for plates subject to forced vibrations, the load distribution function g
could be approximated by a double Fourier series. Therefore, one could obtain the general expression for the
desired load distribution function as

= . MTX . 0
q= Y q.,® sm—sm—by- (14)
a

ma=1

where the coefficients q,,, (t) can be found by integrating the equation

ab

4 . mMAX
t)=— t
() = — 0 { q (x,y,t) sin

. amy
sin —2 (15)
b

The general solutions for the above impact problem which satisfy the boundary conditions (12) can also

be expressed, in a double Fourier series form, as

Wiyt =Y, W_(t)sin mT"" sin "Tfy (16a)

mn=1
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¥, (x,y,t) = E X, (t) cos 2% sin Egy (16b)
mn=1
v (xy.t) = En Y, ® sin 22X cos % (16c)

In order to apply the “Correspondence Principle” to solve this impact problem in viscoelasticity, it is

necessary to use Fourier transform, i.e.,

fF(xy,w) = f f(x,y,t)e “dt (17)

where the superscript ( )© indicates the Fourier transform and o is the Fourier parameter. By applying the

Fourier transformation to equations (13), (14), and (16), one obtains the equations of motion in frequency-

domain as
k[Ags (Urn + W)+ Ay (W5, + W )] +qF= -?PWF (18a)
D, qJ:,xx * Dgg w:.w +(Dy; + Dg) ‘l's,xy - kA, (Y + W)) = - w1 Y (18b)
(Dy,; *+ Dg) ‘pixy + Dy Lll};xx +Dy, l‘p;:.yy - kA«(‘l’f v WyF) = -0’ wa (18¢)

Similarly, one obtains the double Fourier series of the already arrived-at general solutions as

W F(x,y,0) = E W () sin 22X sin b] (192)
mn=1

q; x,y,w) = E an((o) cos TX smn—:}—’ (19b)
mn=1

Uy (x,y,0) = E Y (w)sin 21X s“_gy (19¢)
mn=1

and the Fourier transform of the impact loading distribution as

Ty = Y ok @)sin B sin “’;y (20)

mn=]

The Correspondence Principle”is then adopted to transfer the above solutions from linear elasticity to
linear viscoelasticity by simply replacing the elastic material parameters with their viscoelastic counterparts
(e.g., Christensen, 1979 and Haddad, 1995, 2000), i.e. by taking
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A, =Aj (@) =A], Dy=D (@)=Dy

where A:-,, D: are complex frequency-dependent functions (Feng, 1999).

@1

Substituting equations (19) and (20) into (18), then, by differentiation and proper manipulation, one

obtains
a,a.a 6
-a.a
r B 495¢7 ~ ds 4 F
Wiy (0) = 2 2 ) Umn (@)
a,3,3,a,-3 253, -2, a,a, +2,3;38; -2, 8,3, +3,2,3,2,
3,358, -~ 4335
t _ 2°5 5 ¥
X () = — — : Qo (©)
3, 3,2, -2, 2,3, +2,2,3,-3 2,382, +3,35 8, ~2,3,33,
a,a ’
a,-a,a :
r ) 29394 2 % F
Y, (w) = - 5 Qn (®)
a,aya,-2a,3a,a,+2a,a,3,a, -, 4,3+, 4,-a,a,2,a,
where
[ )
. m-*T . n°m
a, - kAg +kA - w'P
1 ‘ 44 ~
a e
B mT nmw
a:l‘kASS _]v a'j_kA44 L
v a b
2.2 )
mm n‘w q 2
a Du[ = ]*Dss b2 \1+kA55-ml
a2 2

2.3. Transient Wave Propagation under Impact Loading

(22a)

(22b)

(22¢)

(23a)

(23b)

(23c)

(23d)

(23e)

The local rectangular impact load distribution is shown in Figure 2. The load is modelled as cosine-cosine

distribution with respect to the space variables and sine distribution with respect to time. The centre of the

load is considered to be located at coordinates (x,, y; ) as shown in Figure 2. The function of the pertaining

load distribution is expressed as (e.g., Prasad et al., 1993)
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Fig. 2: Impact pressure distribution.

q=P, coslt-(x—xl)coslt-(y—y!)sin“—t
u v T

0

for0<t<t0,xl—E.<x<xl+3,yl—i<y_<yl+1
2 2 2 2
and,
q =P,
u n \Y \Y
for t>1,;, Xx<x, - —, X>X, +—; y<y, - —, Y2y, + —
) 1T NS '2

By substituting equations (24) into Eqn. (15) and integrating, one obtains

16abuvP,cos mnu] cos MY 1 sin mnx] sin| TBTY
2a 2b a b

m*(p +a)(p -2a) (nv +b)(nv -b)
. [ﬂ:t)
X sin| —
ro

G (1) =

for mu#a,nv#b
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Qp(t) =0 (25b)
for mu=a,nv=>b
The load distribution function can then be approximated by a double Fourier series as
16abuvP -
qx,y.t) = -——~—£ sin i E
e Ty J mn-=1
mmu muv | . [ MUX, | | mry,
cos| ——| cos o sin - sin -
2a
(26a)
(u+a)(u-a)(nv+b)(nv-b)
for mu=#a,nveb
q(x,y,t) =0 (26b)
for mu =a.nv=b;t>t,

In order to determine the solution for the viscoelastic dynamic system, Fourier transform is once again
applied to transform the above load distribution function from time-domain to frequency-domain. In this
context, by substituting equations (26) into equation (17), it follows that

g (X y,0) = -

8abuvP,T, [ [ -cos(m+t,w) 1-cos(m-T,w)
2
2

TC+‘1.'0(0 ‘ T:-‘Co(l)

{ sin(m+tyw)  sin(m -tow)]
+1 -

T+T,W T-T,w
(27a)
matu mrv) ., /maxy\ | /nny N | (max\ . /nny
o €OS cos sin sinj sin sin -
W € 0 W A BV
Tt (u+a)(n—-a)nv +b)(nv-b)
for mu#anvzb,ot#n
and,
F
q°(x,y,0) =0
for mu=anv=b,oTa="n (27b)

From equation (20), one can determine the complex coefficient q,im () as
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mTmx nm
8abuv Potﬂcos[ mnu] cos( mnv) sin[ 1] sin( y,]
qn1:n (@) = 2a 2b a b

(k+a)(pu-a)(nv+b)(nv-b)

: X 28a
l-cos(m+tyw) l-cos(m-t,0) [ sin(m+T1,w) sm(‘rr—tow)\ (283)
- +1 -
T+T,W T-T,w T+T,W T -TyWw J
for muzanvzb, o tgzn
and,
F

q (w)=0

for mu=a,nv=b,wt, =7 (28b)

In order to obtain the required transient wave solutions, one combines (28) with (22) and (19), to arrive first
at the solution in the frequency domain. Then, by applying the viscoelastic parameters Ay, A;5, DTI,
D:Z, D;z and D;(, as defined in (Feng, 1999), the Fast Fourier Transform (FFT) can be employed in order

to numerically transform these solutions from frequency-domain to time-domain.

3. NUMERICAL RESULTS AND DISCUSSION

As mentioned in the foregoing, the dynamic solutions, obtained in the frequency-domain, are required to
be inverted into the time-domain by utilizing, for instance, Fourier transform. Due to the complexity of the
obtained dynamic solutions, however, the discrete Fourier transform would be an appropriate choice.

Normally, the discrete Fourier transform is expressed in pair as follows,

el
G[ N—“T) =Y g(kT)e "i2wnkN n=0.1,..,N-1 (29)
k=0
1 o oy
g (kT) = N Y G(N—T}' e K=01,..,N-1 (30)
n:=0

where N is the total sampling number, T is sampling interval, and G (.) and g ( . ) represent the desired
function in the frequency and time domain, respectively.

In engineering computation, the reason for the wide use of Fourier transform is due to its capability to
allow one to examine a function from the perspective of both time and frequency domains. The time and
effort are further eased due to the development of the discrete Fourier transform which permits one to analyse
behaviour of the function in a numeric fashion. Due to the large number of sampling involved in the dynamic
analysis, the Fast Fourier Transform (FFT) is adopted in the present work.

An essential requirement of a FFT operation (e.g., Brigham, 1988) is the determination of the total
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sampling number N and the sampling interval T, which directly affect the results of the FFT computation (see
Appendix A for the FFT computer program flowchart used in the present analysis).

With reference to Figures 1 and 2, the dimensions of the composite laminate are set as a = 20.0 inches, b
= 10.0 inches and h = 1.0 inches with each lamina being composed of an epoxy matrix, with embedded-in
glass fibres. The impact is assumed to be the unit load p = 1.0, with a contact duration 1o = 1 x 10 sec,
located at the centre of the plate, at x; = 10.0 inches and y, = 5.0 inches, with the loading area being a square,
i.e, u=v =0.1 inches. It is further assumed that the matrix material behaves as a linear viscoelastic material,

whereby the real part of its complex modulus is represented by (e.g., Christensen, 1979)
E_ = 1158 (1+100f)*! GD

The damping factor of the viscoelastic matrix is assumed to be constant. It is set to assume the values of
0.05 and 0.15 for comparison. The embedded-in glass fibres are assumed to be elastic in response. Glass
fibres with limited viscoelastic response are also considered for comparison. The damping factor for the latter
is set as 0.0014. The effects of microstructural parameters, such as fibre volume fraction and fibre- aspect-
ratio on the impact behaviour of the composite laminate are examined. Values of other material properties,
i.e., elastic modulus, shear modulus, shear damping factor, Poisson’s ratio and specific gravity, are set as
shown in Table 1 for both the fibre and matrix. The presented values of these properties are assumed to be
constant for the ease of calculation. Based on the analysis conducted by Prasad et al. (1993), the value of the
shear parameter k, mentioned in the foregoing, is set as 7%/12 (see, also, Ten and Sun, 1983). The total
sampling number N and the sample time-interval T for the pertaining FFT algorithm are set, respectively, as

Table 1
Static Properties of Scotchply 1002 Matrix Epoxy and E-glass Fibres at Room Temperature,
after Gibson et al. (1976).

Material Properties - GPa (10° Psi) Epuxy E-glass
Young’s modulus - GPa (10° Psi) 3.79 (0.55) 72.4 (10.5)
Shear Modulus 1.38 (0.2) 30344
Damping Factor 0.015 0.0014
Shear Damping Factor 0.018 0.0014
Poisson’s Ratio 0.36 0.2
Specific Gravity (g) 1.23 2.54
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8192 and 2 x 10°® sec. (Feng, 1999). For the purpose of limiting the length of this paper, only displacements
along the z-axis are graphically illustrated.

Figure 3 shows both the real and imaginary parts of the displacement in the frequency-domain as well as
their inverted Fourier transform in the time-domain. The significant attenuation, due to the viscoelastic nature

of this kind of materials, is observed in this Figure.
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Fig. 3: Illustration of Fourier Transformation. The top two figures show the wave propagation solutions in
their frequency-domain which can be transformed by using FFT algorithm into time-domain as

shown in the bottom figure.
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The effect of the damping factor of the matrix material on the impact response of composite laminates is
presented in Figure 4. In this Figure, one observes that, under the same loading condition, a composite-
laminate with matrix of a higher damping factor produces a much smaller amplitude of the waveform-
displacement when compared with a laminate of a lower damping factor. It is obvious that the waveform of
the laminate with a matrix of a lower damping factor is not as smooth as the one with a matrix of a higher
damping factor, and, thus, is more complex to analyse. One, also, observes, in Figure 4, that the laminate
with a matrix of lower damping factor exhibits a higher attenuation rate in the first 3 to 4 ms. The attenuation
seems to slow down after the first 4 ms and the amplitude of the response waveform appears to be constant
after the first 12 ms. For the laminate with a matrix of higher damping factor, attenuation is observed to be

consistent throughout the entire time scale.
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"Fig. 4: Impact response of composite laminates with matrices have different damping factors, i.e., 0.5 (solid
line) and 0.15 (dashed line). Other material properties are set as: the real modulus of matrix is E,,, =
1158 (1+100/)° !, with f'as frequency, the real modulus of glass fibre (continuous) is 72.4 GPa. fibre
volume fraction is 60%, and damping factor of the fibre is 0.0014.
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The effect of viscoelasticity of the fibre material, on wave propagation in the dealt-with class of
composite laminate, is illustrated in Figure 5, whereby both elastic and viscoelastic glass fibre materials are
considered under the same loading condition. In Figure 5, one observes that there is not much difference in
effect between the considered elastic and viscoelastic fibres except in the first 1 - 1.5 ms time duration. This
is due to the extremely low value of the damping factor of the considered glass fibre, which may be
considered, for the ease of calculations, as a linear elastic material. The attenuation of the waveform, in both

cases, is thus due the viscoelastic matrix.
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Fig. 5: Impact response of composite laminates with elastic and viscoelastic fibres, i.e., fibre damping
factors as 0.0014 (solid line) and 0.00 (dashed line). Other material properties are set as: the real
modulus of glass fibre (continuous) is 72.4 GPa, fibre volume fraction is 60%, the real modulus of

the matrix is Eme = 1158 (1 + 100f)°", with fas frequency, and damping factor of the matrix is 0.05.
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Figures 6 and 7 present the effect of fibre volume fraction on the impact response of the laminate with a
matrix damping factor of 0.15 and 0.05, respectively. Apparently, the initial amplitude of response waveform
of a composite laminate of a higher fibre volume fraction is much more significant as compared with that of a
smaller fibre volume fraction. This observation ascertains that the viscoelasticity of the laminate increases as
the fibre volume fraction, of the class of the considered fibres, decreases. The delayed phase response of a
composite laminate with a lower fibre volume fraction is also observed when compared with that pertaining
to a higher fibre volume fraction laminate. This may be attributed to a corresponding change in the transverse

properties of the laminate.
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Fig. 6: Impact response of composite laminates with various fibre volume fractions, i.e. 50% (solid line),
60% (dash-dotted line) and 70% (dashed line). Other material properties are set as: the real modulus
of glass fibre (continuous) is 72.4 GPa, fibre damping factor is 0.0014, the real modulus of the
matrix is Ep = 1158 (1+1007)"", with fas frequency, and damping factor of the matrix is 0.15.
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W/h (x107)

60

50%

Time (ms)

Fig. 7: Impact response of composite laminates with various fibre volume fractions, i.e. 50% (solid line),
60% (dash-dotted line) and 70% (dashed line). Other material properties are set as: the real modulus
of glass fibre (continuous is 72.4 GPa, fibre damping factor is 0.0014, the real modulus of the matrix
is Emr = 1158 (1+100/)° ", with fas frequency, and damping factor of the matrix is 0.05.

Due to the high volume of discontinuous fibre reinforced composite applications in automotive and
aerospace industries and their superior damping capacities compared to continuous fibre reinforced
composites, it is equally important to examine the effect of discontinuous fibre-reinforcement on the dynamic
response of the composite laminate under impact loading. The effect of discontinuous fibre reinforcement on
the mechanical properties under static loading was analysed in previous work by the authors (e.g., Haddad
and Feng, 2000 and Feng, 1999); see, also Gibson and Yau (1980), Gibson et al. (1982), Sun er al. (1985)
and Suarez ef al. (1986). The observation made by Cox (1952) shows that, for fibre-reinforced composite
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materials, the reduction of the effective longitudinal modulus due to the load transfer from fibre to fibre is
important only if the fibre-aspect-ratio is less than 100. In this context, Figures 8 and 9 compare the wave
propagation pattern ofi composite laminae with continuous vs. discontinuous fibre-reinforcement, with the
matrix damping factor is set as 0.15 and 0.05, respectively, for comparison. For the composite laminate with
a matrix of low damping matrix, the response waveform fits well with the observation made by Cox (1952)
that the discontinuous fibre- reinforced laminate with a fibre-aspect-ratio larger than 100 can be treated as a
continuous fibre-reinforced laminate. For the laminate with a higher damping matrix, there is, however, a

slight difference between the two pertaining results.
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Fig. 8: Impact response of composite laminates with various fibre aspect ratios, i.e. continuous (solid line),
and 100 (dash-dotted line). Other material properties are set as: the real modulus ofi glass fibre is
72.4 GPa, fibre damping factor is 0.0014, fibre volume fraction is 60%, the real modulus ofi the
matrix is E,, = 1158 (1+100f)"", with fas frequency, and damping factor ofithe matrix is 0.15.
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Fig. 9: Impact response of composite laminates with various fibre aspect ratios, i.e. continuous (solid line),
and 100 (dash-dotted line). Other material properties are set as: the real modulus of glass fibre is
72.4 GPa, fibre damping factor is 0.0014, fibre volume fraction is 60%, the real modulus of the
matrix is Ep, = 1158 (1+1007)° ", with fas frequency, and damping factor ofithe matrix is 0.05.

Figures 10 and 11 compare the effect of different fibre-aspect-ratio on the dynamic response under the
same impact loading for the cases of laminates with both low and high damping matrices (i.e., damping
factor of 0.05 and 0.15, respectively). The same trend could be found from both figures that the amplitude of
response waveform decreases with the decrease of the fibre-aspect-ratio, which agrees well with the
observations made earlier by the authors; see Haddad and Feng (2000) and Feng (1999). It is generally
agreed upon that the change of fibre volume fraction results in a corresponding change in the overall

mechanical properties of the considered composite, i.e., including changes in the longitudinal as well as
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Fig. 10: Impact response of composite laminates with various fibre aspect ratios, i.e. 5 (solid line), 30
(dash-dotted line), and 100 (dashed line). Other material properties are set as: the real modulus of
glass fibre is 72.4 GPa, fibre damping factor is 0.0014, fibre volume fraction is 60%, the real
modulus of the matrix is Eq = 1158 (1+100 £)°, with f as frequency, and damping factor of the

matrix is 0.15.

transverse properties. On the other hand, a change in the fibre-aspect-ratio may only change material
properties at longitudinal (fibre) direction. Thus, with reference to Figures 6 and 7, it is interesting to note
that, due to their different relationship with material damping properties and stiffness, fibre-aspect-ratio has a
different effect on the impact response of the composite laminate if compared with fibre volume fraction. It is
also interesting to observe that the phase of the response waveform does not vary in correspondence to the

change of fibre-aspect-ratio (Figures 10 and 11).

309



Vol. 12, No.

W/h (x
30

. 5, 2001 Propagation of Viscoelastic Waves in a Composite Laminated Plate

107

20

----30
f\ ----- 100
10 M
£ i ¥
" A M, i M
TR 3
0 \}: J{kl‘ KI . ™ MQJH ¥ R :
art [Ny R . W \f ¥ V
W A (1K t
Vi j A

v Y / K

-10 ¢ [ >
v
!
K [}
-20 LY
."
-30 4
-40
0 1 2 3 4 5 6 7 8 9
Time (ms)
Fig. 11: Impact response of composite laminates with various fibre aspect ratios, i.e. 5 (solid line), 30
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(dash-dotted line), and 100 (dashed line). Other material properties are set as: the real modulus of
glass fibre is 72.4 Gpa, fibre damping factor is 0.0014, fibre volume fraction is 60%, the real
modulus of the matrix is Ep,, = 1158 (1+100 f)° ', with f as frequency, and damping factor of the
matrix is 0.05.
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4. CONCLUSIONS

The anisotropy and the viscoelastic nature of composite laminates make wave propagation analysis
much more complex as compared to their isotropic and elastic counterparts. The “First Shear
Deformation Theory” (FSDT), Whitney and Pagano (1970), is adopted, and appears to work well in the
presented analysis. During the course of the analysis, the “Navier Solution™ for plates under forced
vibrations and “Fourier Transformation” are utilised to transfer the equations of motion from time-
domain to frequency-domain. Then, the “Correspondence Principle” is applied to solve the impact
problem in linear viscoelasticity. Finally, the Fast Fourier Transformation (FFT) is employed to inverse
these solutions from frequency-domain into time-domain.

For a given E-glass/Epoxy laminated composite, the matrix material makes a major contribution to the
attenuation of stress waves. In this context, it is evident that transit wave propagation, in polymeric
composite systems, must be examined within the scope of Viscoelasticity.

The resulted transit wave propagation has been further explored in relation to the properties of the
microstructural constituents. The attenuation of the laminate with a lower fibre volume fraction is much
more significant than the one with a higher fibre volume fraction. The same phenomenon is also
identified for the laminate with a lower fibre-aspect-ratio compared with the one with a higher fibre-
aspect-ratio. These results are in agreement with the observations made earlier by the authors (e.g.,
Haddad and Feng, 2000 and Feng, 1999) that discontinuous fibre-reinforced composites have a damping
property superior than that of the corresponding continuous-fibre composite and that composites with a
lower fibre volume fraction have superior energy absorbing capability compared with the ones with a
higher fibre volume fraction. These results further demonstrate that in order to increase the damping, it
is necessary to sacrifice the stiffness, and vice versa. Such a trade-offs requires a careful examination,
but, meantime, it provides flexibility in the course of designing a laminated composite with

discontinuous fibre-reinforcement.
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Appendix A

INPUT DATA
Data: x(k), k=0,1, ...... J,N-1,N

N= 2" yan integer
NU =y

l

INITIALIZATION

1=1
N2 =N/2; NUI =y-1
k=0

— NO
T3 = x(k) I I=1
x(K) = x(i) |—' Is k=N-1
x(i) = T3 R
t=1+1
STOP M = Integer value of ( k / 2*V) N2 =N2/2
P = IBR (M) NU1 =NUI -1
1 k=0
T1= W7’ x(k+N2)
x(k + N2) =x(k) - Tl
x(k) = x(k) + T1
I=1+1 k=k+1
INPUT | YES
M, NU NO =~ YES NO

————w—O k=k+N2 Is k <N-1

INITIAL 2= MP J
=1 IsII>NU  }——s . — 11=11+1
’ =2*IBR + (M -2*J2
[BR =0 NO lBhE;=le R+ (M )
YES
RETURN
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